CN107241081A - The design method of the sparse FIR ptototype filters of cosine modulated filters group - Google Patents

The design method of the sparse FIR ptototype filters of cosine modulated filters group Download PDF

Info

Publication number
CN107241081A
CN107241081A CN201710429939.3A CN201710429939A CN107241081A CN 107241081 A CN107241081 A CN 107241081A CN 201710429939 A CN201710429939 A CN 201710429939A CN 107241081 A CN107241081 A CN 107241081A
Authority
CN
China
Prior art keywords
mrow
mtd
msubsup
mtr
msub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710429939.3A
Other languages
Chinese (zh)
Other versions
CN107241081B (en
Inventor
徐微
李怡
缪竟鸿
李安宇
张瑞华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Polytechnic University
Original Assignee
Tianjin Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Polytechnic University filed Critical Tianjin Polytechnic University
Priority to CN201710429939.3A priority Critical patent/CN107241081B/en
Publication of CN107241081A publication Critical patent/CN107241081A/en
Application granted granted Critical
Publication of CN107241081B publication Critical patent/CN107241081B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H2017/0072Theoretical filter design
    • H03H2017/0081Theoretical filter design of FIR filters

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Filters That Use Time-Delay Elements (AREA)

Abstract

The invention discloses a kind of design method of the sparse linear Phase FIR ptototype filter of cosine modulated filters group.Comprise the following steps that:1st, the initialization of the sparse linear Phase FIR ptototype filter design parameter of cosine modulated filters group;2nd, iterative calculation meets the sparse linear Phase FIR ptototype filter for the cosine modulated filters group for rebuilding condition completely, includes non-zero tap number of coefficients, position and the determination for having factor v of unit impulse response.The present invention can design the ptototype filter of low non-zero tap number, and the openness of wave filter achieves adder number of multipliers reduction used, so as to improve its arithmetic speed, reduce arithmetic eror and reduction energy consumption, and then reduces production cost.

Description

The design method of the sparse FIR ptototype filters of cosine modulated filters group
Technical field
The invention belongs to digital signal processing technique field, there is provided sparse, the efficient cosine modulated filters group of one kind Linear phase fir (finite impulse response (FIR)) ptototype filter design method.
Background technology
Multirate filter group theory and design because its communication, voice and Image Coding/compression, System Discrimination, The fields such as quick calculating are widely used and received much concern.And the form of the composition of wave filter group generally can be divided into DFT wave filters Group and cosine modulated filters group.Cosine modulated filters group is passed through by optimizing design to lowpass prototype filter Fast discrete cosine transform (DCT) obtains analysis and synthesis wave filter group, because it has computation complexity low and design process letter Single the advantages of, it is widely used in fields such as signal transacting, communication and biomedical engineerings.With sparse linear phase fir The cosine modulated filters group of (finite impulse response (FIR)) ptototype filter is that the filter coefficient of each passage has sparse characteristic The wave filter group of (number of non-zero tap coefficient is less than filter order).Sparse wave filter its realize used addition and multiply Musical instruments used in a Buddhist or Taoist mass number is far fewer than the similar wave filter suitable with its filter effect, and therefore, sparse wave filter has arithmetic speed height, fortune Calculate that error is small and low power consumption and other advantages.
The design method for cosine modulated filters group is broadly divided into the analysis separately designed in wave filter group and filtered at present After ripple device group and synthesis filter group and individually designed lowpass prototype filter wave filter group is obtained by cosine-modulation, and for In the design method of the cosine filtering group proposed, P.P.Vaidyanathan and R.D.Koilpillai design method are finally It is classical, by analysis method, estimates and meet amplitude distortion and the minimum wave filter group of aliased distortion standard.
The content of the invention
The present invention seeks to design to realize small ripple, low tap number, the cosine-modulation filter of low amplitude distortion and aliased distortion The linear phase fir ptototype filter of ripple device group, and a kind of brand-new design method is provided --- it can design sparse, it is efficient remaining The method of the linear phase fir ptototype filter of string modulated filter group.
The design method of the sparse linear Phase FIR ptototype filter for the cosine modulated filters group that the present invention is provided is specific Step is as follows:
1st, the initialization of the sparse linear Phase FIR ptototype filter design parameter of cosine modulated filters group;
2nd, iterative calculation meets the sparse linear Phase FIR prototype filter for the cosine modulated filters group for rebuilding condition completely Ripple device, includes non-zero tap number of coefficients, position and the determination for having factor v of unit impulse response.
(below by taking II Linear phase FIR filters as an example):
(1) initial parameter is constructed according to design requirement:
The present invention is according to the port number M of cosine modulated filters group, selection passband, intermediate zone and stopband is corresponding respectively adopts Sample number Lp, Lt, LsWith ripple value δp, δt, δs, the initial exponent number N of linear phase fir ptototype filter is determined, linear phase fir is former The tap coefficient of mode filter is expressed as with vector h:
H=2 [h1,h2,…,hm…,hN/2]T (1)
Wherein hm(1≤m≤N/2) represents m-th of tap coefficient of FIR ptototype filters;By cosine modulated filters group Sparse linear Phase FIR ptototype filter design problem be converted into following mathematical optimization problem:
s.t.|Bh-d|≤e (2b)
Wherein | | h | |00- norm computings are represented, that is, represent the number of non-zero tap in tap coefficient vector;" min " with Formula (2a)-(2c) of " s.t. " combination, which represents to solve, meets (2b) and (2c) requirement | | h | |0Minimum value;Sampling matrix B It is expressed as B=[Bp;Bt;Bs], wherein Bp、BtAnd BsThe sampling matrix of passband, intermediate zone and stopband is represented respectively, is expressed as
WhereinRepresentDimension row Vector;(Lp+Lt+LsThe vectorial d that) × 1 is tieed up is the ideal frequency response of discretization, is expressed as:
Wherein f (ω) is the intermediate zone frequency response function to be approached, and is expressed as:
Wherein ω0=α pi/2s M (0≤α≤1), formula (7) is met rebuilds condition completely,Represent transition The stepped-frequency signal of band;Error vector e is (Lp+Lt+LsThe column vector that) × 1 is tieed up, is expressed as:
E=[δp … δp δt … δt δs … δs]T, (8)
(2) (L is setp+Lt+LsThe vectorial initial value of the dimensional weight of) × 1 is w(1)=[1,1 ..., 1]T, the present invention is in kth (1 ≤ k≤N/2) in secondary iteration, normalized is done to B matrix column vectors:
WhereinUtilize The following problem of OMP Algorithm for Solving:
s.t.||h(k)||0≤k (10b)
And calculate (Lp+Lt+LsThe residual vector r that) × 1 is tieed up(k), it is expressed as:
r(k)(k)s(k)-d (11)
The s that wherein k × 1 is tieed up(k)For the operation result of formula (10),Represent OMP algorithms From B(k)In the column vector set selected, set Λ(k)={ n1,n2,…,nkRepresent non-zero tap coefficient index set.
(3) present invention utilizes the index set Λ of obtained non-zero tap coefficient(k), solve following linear programming problem In:
s.t.|B(k)h(k)-d|≤e+μ·1L×1 (11b)
Judge whether μ is less than zero, if it is greater than zero, then updating weight vectors w, its more new formula is expressed as:
Wherein w(k+1)(l) new weight vectors w is represented(k+1)In value, rl (k)Represent residual vector r(k)In value;To newly it weigh Weight vector w(k+1)It is brought into cycle calculations in the 2nd step;If μ is less than or equal to zero, stop interative computation, calculate what is obtainedAs final sparse linear phase fir ptototype filter.
The present invention has the advantages that:
1st, the present invention provides a kind of sparse, efficient cosine modulated filters group linear phase fir prototype filter first Ripple device design method.
2nd, the present invention can design the ptototype filter of low non-zero tap number, wave filter it is openness achieve it is used Adder number of multipliers is reduced, and so as to improve its arithmetic speed, reduce arithmetic eror and reduction energy consumption, and then reduces production Cost.
3rd, simulation result shows, under the requirement of same design index, and the number of non-zero tap coefficient of the invention compares state The number few more than 35% of inside and outside optimal similar wave filter.
Brief description of the drawings
Fig. 1 is the sparse linear Phase FIR ptototype filter design method for realizing the cosine modulated filters group of the present invention Flow chart;
Fig. 2 is according to function eam(ω) calculates the amplitude distortion figure of the approximate cosine modulated filters group rebuild completely;
Fig. 3 is according to function ea(ω) calculates the aliased distortion of the approximate cosine modulated filters group rebuild completely Figure;
Fig. 4 is the frequency domain response for the sparse linear Phase FIR ptototype filter for drawing cosine modulated filters group in table -2 Figure.
Embodiment
Embodiment 1:
The sparse linear Phase FIR ptototype filter design method for the cosine modulated filters group that the present invention is provided specifically is walked It is rapid as follows:
1st, the initialization of the sparse linear Phase FIR ptototype filter design parameter of cosine modulated filters group;
2nd, iterative calculation meets the sparse linear Phase FIR prototype filter for the cosine modulated filters group for rebuilding condition completely Ripple device, includes non-zero tap number of coefficients, position and the determination for having factor v of unit impulse response.
In order to verify the validity of the filter set designing method, computer simulation emulation has been carried out to this method.
Design requirement:Utilize document:(F.Tan,et al.:“Optimal design of cosine modulated filter banks using quantum-behaved particle swarm optimization algorithm,”4th International Congress on Image and Signal Processing,vol.5,pp.2280-2284, 2011.)(F.Tan,et al.:" the cosine modulated filters group optimization design based on quantum particle swarm optimization, " the 4th boundary International image and signal transacting meeting, vol.5, pp.2280-2284,2011.) given in the design objective that goes out, wave filter group leads to Road number M=16, ptototype filter initial coefficients number N=256, and design passband, intermediate zone and the corresponding sampling of stopband difference Number Lp=4, Lt=7, Ls=94, ripple value δpts=110-8Bring calculating into.Present invention IROMP algorithms design cosine The ptototype filter of wave filter group, according to the calculating of weighted value, in obtained variables set B, selects the coefficient positions pair of non-zero The column vector B answeredj, it is brought into the filter coefficient for iterating to calculate and obtaining in IROMP algorithms.
Step one:Required according to the design parameter of the sparse linear Phase FIR ptototype filter of cosine modulated filters group Bring each design parameter into initialization condition, obtain problem to be solved:
s.t.|Bh-d|≤e (2b)
The passband of design, intermediate zone and stopband are distinguished into corresponding hits Lp=4, Lt=7, Ls=94 bring formula (6) into The ideal frequency response d of the discretization of the dimension of (4+7+94) × 1 is obtained, is expressed as:
Wherein f (ω) numerical value is as shown in Table-1:
Table -1
Will design ripple value δpts=110-8Bring formula (7) into, obtain the dimension error column vector of (4+7+94) × 1 Each value is 110 in e, vector-8, the vectorial initial value of the dimensional weight of (4+7+94) × 1 is set as w(1)=[1,1 ..., 1]T
Step 2:In kth (1≤k≤N/2) secondary iteration, normalized is done to B matrix column vectors:
Then the following problem of OMP Algorithm for Solving in annex 1 is used:
s.t.||h(k)||0≤k (10b)
Calculate the index set Λ for obtaining non-zero tap coefficient(k)
Step 3:The index set Λ of obtained non-zero tap coefficient is solved using step 2(k), bring into and solve following line In property planning problem:
s.t.|B(k)h(k)-d|≤e+μ·1L×1 (11b)
And then obtain the sparse linear Phase FIR ptototype filter tap coefficient of cosine modulated filters groupIts Numerical value is listed in table -2.
Table -2
Because the impulse response of II type FIR filters has symmetry, therefore by the filter tap system of the invention tried to achieve NumberTo need the half of the ptototype filter tap coefficient solved, second half is symmetry equivalent, i.e., required sparse FIR prototypes filtering The total tap coefficient of device is expressed as:
WhereinRepresent vectorSpin upside down.
Variables choice is carried out to matrix of variables B using inventive algorithm.For 256 rank wave filters, this algorithm is selected The all situations (second half coefficient is symmetry equivalent with it) of half tap coefficient are can obtain afterwards, i.e., WillBring into the total tap coefficient expression formula of wave filter, obtain the total tap coefficient of ptototype filterThe cosine-modulation finally given The sparse linear Phase FIR ptototype filter of wave filter group is the wave filter that nonzero coefficient is 166 ranks, with particle swarm optimization algorithm Compared to saving 35.6%.
The ptototype filter tap coefficient obtained using step 3 calculates analysis filter group hm(n) with synthesis filter group gm(n):
Wherein 1≤m≤M, and calculate the amplitude distortion value e of cosine modulated filters groupamWith aliased distortion value ea, it is calculated Formula is expressed as:
eam(ω)=1- | A0(e)
Wherein A0(e) and Al(e) be expressed as:
Hk(e) be analysis filter group frequency domain response, Gk(e) be synthesis filter group frequency domain response.
In table -3, the rank for the FIR notch filter that inventive algorithm is obtained with particle swarm optimization algorithm has been respectively compared Several key indexs such as number, the quantity of non-zero tap weight, the amplitude distortion of wave filter group and aliased distortion, such as institute in table -3 Show, in amplitude distortion value eamWith aliased distortion value eaUnder similar situation, ptototype filter exponent number of the invention is considerably less than particle Colony optimization algorithm.
Table -3
In fig 2, according to function eam(ω) calculates the amplitude of the approximate cosine modulated filters group rebuild completely Distortion map, the amplitude distortion value e that its maximum is obtained with inventive algorithm in table -3amCorrespondent equal;In fig. 3, according to letter Number ea(ω) calculates the aliased distortion figure of the approximate cosine modulated filters group rebuild completely, its maximum and this in table -3 The aliased distortion value e that invention algorithm is obtainedaCorrespondent equal;Fig. 4 is the sparse linear for drawing cosine modulated filters group in table -2 The frequency domain response of Phase FIR ptototype filter.
Annex 1
Formula (13) OMP algorithm calculating process
Using OMP algorithms calculating formula (10), M × N matrix B is the sensing matrix of OMP algorithms, and the d of N × 1 is observation Value, riResidual error is represented, t represents iterations,Represent empty set, ΛtRepresent the index set of t iteration, λtRepresent the t times repeatedly The index that generation is found, ajRepresenting matrix Β jth row, BtRepresent by index ΛtThe row set for the matrix B selected, θtFor t × 1 Column vector, symbol ∪ represents collection union operation,<rt-1,aj>Represent to seek the residual error and matrix Β jth before the t times iteration renewal Column vector inner product.Implement step as follows:
1st, initialization residual error makes it equal to
r0=d; (1)
2nd, formula is used
Calculating obtains indexing λt
3rd, to ΛtAnd BtUnion operation, order
Λtt-1∪{λt,
4th, observation of looking for novelty d=BtθtLeast square solution:
5th, the least square solution tried to achieve with (4)Update residual error ri, it is calculated as:
6th, t=t+1 is made, (2) step is returned if t is less than preset value, otherwise stops iteration and enters the 7th step;
7th, reconstruct gainedIn ΛtThere is nonzero term at place, and its value is respectively obtained by last time iteration

Claims (3)

1. the design method of the sparse linear Phase FIR ptototype filter of a kind of cosine modulated filters group, it is characterised in that should Method is carried out as steps described below:
1st, according to the port number M of cosine modulated filters group, selection passband, intermediate zone and stopband distinguish corresponding hits Lp, Lt, LsWith ripple value δp, δt, δs, determine the initial exponent number N of linear phase fir ptototype filter, the filtering of linear phase fir prototype The tap coefficient of device is expressed as with vector h:
H=2 [h1,h2,…,hm…,hN/2]T (1)
Wherein hm(1≤m≤N/2) represents m-th of tap coefficient of FIR ptototype filters;By the sparse of cosine modulated filters group Linear phase fir ptototype filter design problem is converted into following mathematical optimization problem:
<mrow> <mtable> <mtr> <mtd> <munder> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>h</mi> </munder> </mtd> <mtd> <mrow> <mo>|</mo> <mo>|</mo> <mi>h</mi> <mo>|</mo> <msub> <mo>|</mo> <mn>0</mn> </msub> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mi>a</mi> <mo>)</mo> </mrow> </mrow>
s.t.|Bh-d|≤e (2b)
<mrow> <mi>c</mi> <mrow> <mo>(</mo> <mfrac> <mi>&amp;pi;</mi> <mrow> <mn>2</mn> <mi>M</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <mi>h</mi> <mo>=</mo> <mfrac> <msqrt> <mn>2</mn> </msqrt> <mn>2</mn> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mi>c</mi> <mo>)</mo> </mrow> </mrow>
Wherein | | h | |00- norm computings are represented, that is, represent the number of non-zero tap in tap coefficient vector;" min " and " s.t. " Formula (2a)-(2c) of combination, which represents to solve, meets (2b) and (2c) requirement | | h | |0Minimum value;Sampling matrix B is expressed as B=[Bp;Bt;Bs], wherein Bp、BtAnd BsThe sampling matrix of passband, intermediate zone and stopband is represented respectively, is expressed as
<mrow> <msub> <mi>B</mi> <mi>p</mi> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>c</mi> <mrow> <mo>(</mo> <msubsup> <mi>&amp;omega;</mi> <mn>1</mn> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </msubsup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mtable> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> </mtable> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>c</mi> <mrow> <mo>(</mo> <msubsup> <mi>&amp;omega;</mi> <msub> <mi>L</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </msubsup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mo>&amp;lsqb;</mo> <msubsup> <mi>&amp;omega;</mi> <mn>1</mn> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>&amp;omega;</mi> <mn>2</mn> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </msubsup> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msubsup> <mi>&amp;omega;</mi> <msub> <mi>L</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </msubsup> <mo>&amp;rsqb;</mo> <mo>&amp;Element;</mo> <mo>&amp;lsqb;</mo> <mn>0</mn> <mo>,</mo> <msub> <mi>&amp;omega;</mi> <mn>0</mn> </msub> <mo>)</mo> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>B</mi> <mi>t</mi> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>c</mi> <mrow> <mo>(</mo> <msubsup> <mi>&amp;omega;</mi> <mn>1</mn> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </msubsup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mtable> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> </mtable> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>c</mi> <mrow> <mo>(</mo> <msubsup> <mi>&amp;omega;</mi> <msub> <mi>L</mi> <mi>t</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </msubsup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mo>&amp;lsqb;</mo> <msubsup> <mi>&amp;omega;</mi> <mn>1</mn> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>&amp;omega;</mi> <mn>2</mn> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </msubsup> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msubsup> <mi>&amp;omega;</mi> <msub> <mi>L</mi> <mi>t</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </msubsup> <mo>&amp;rsqb;</mo> <mo>&amp;Element;</mo> <mo>&amp;lsqb;</mo> <msub> <mi>&amp;omega;</mi> <mn>0</mn> </msub> <mo>,</mo> <mfrac> <mi>&amp;pi;</mi> <mi>M</mi> </mfrac> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mn>0</mn> </msub> <mo>&amp;rsqb;</mo> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>B</mi> <mi>s</mi> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>c</mi> <mrow> <mo>(</mo> <msubsup> <mi>&amp;omega;</mi> <mn>1</mn> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </msubsup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mtable> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> </mtable> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>c</mi> <mrow> <mo>(</mo> <msubsup> <mi>&amp;omega;</mi> <msub> <mi>L</mi> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </msubsup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mo>&amp;lsqb;</mo> <msubsup> <mi>&amp;omega;</mi> <mn>1</mn> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>&amp;omega;</mi> <mn>2</mn> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </msubsup> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msubsup> <mi>&amp;omega;</mi> <msub> <mi>L</mi> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </msubsup> <mo>&amp;rsqb;</mo> <mo>&amp;Element;</mo> <mo>(</mo> <mfrac> <mi>&amp;pi;</mi> <mi>M</mi> </mfrac> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>&amp;pi;</mi> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
WhereinRepresentTie up row vector;
(Lp+Lt+LsThe vectorial d that) × 1 is tieed up is the ideal frequency response of discretization, is expressed as:
<mrow> <mi>d</mi> <mo>=</mo> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mo>...</mo> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <msubsup> <mi>&amp;omega;</mi> <mn>1</mn> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </msubsup> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mo>...</mo> </mtd> <mtd> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <msubsup> <mi>&amp;omega;</mi> <msub> <mi>L</mi> <mi>t</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </msubsup> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>...</mo> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
Wherein f (ω) is the intermediate zone frequency response function to be approached,Represent the frequency sampling of intermediate zone Point;Error vector e is (Lp+Lt+LsThe column vector that) × 1 is tieed up, is expressed as:
E=[δp … δp δt … δt δs … δs]T, (7)
2nd, (L is setp+Lt+LsThe vectorial initial value of the dimensional weight of) × 1 is w(1)=[1,1 ..., 1]T, it is secondary in kth (1≤k≤N/2) In iteration, normalized is done to B matrix column vectors:
<mrow> <msup> <mi>B</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>=</mo> <mo>&amp;lsqb;</mo> <msubsup> <mi>b</mi> <mn>1</mn> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>b</mi> <mn>2</mn> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msubsup> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msubsup> <mi>b</mi> <mi>n</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msubsup> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msubsup> <mi>b</mi> <mrow> <mi>N</mi> <mo>/</mo> <mn>2</mn> </mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msubsup> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
WhereinL=Lp+Lt+Ls;Utilize OMP Algorithm for Solving Following problem:
<mrow> <mtable> <mtr> <mtd> <munder> <mi>min</mi> <msup> <mi>h</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> </munder> </mtd> <mtd> <mrow> <mo>|</mo> <mo>|</mo> <msup> <mi>B</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <msup> <mi>h</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>-</mo> <mi>d</mi> <mo>|</mo> <msubsup> <mo>|</mo> <mn>2</mn> <mn>2</mn> </msubsup> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mi>a</mi> <mo>)</mo> </mrow> </mrow>
s.t.||h(k)||0≤k (9b)
And calculate (Lp+Lt+LsThe residual vector r that) × 1 is tieed up(k), it is expressed as:
r(k)(k)s(k)-d (10)
The s that wherein k × 1 is tieed up(k)For the operation result of formula (9),Represent OMP algorithms from B(k) In the column vector set selected, set Λ(k)={ n1,n2,…,nkRepresent non-zero tap coefficient index set;
3rd, the index set Λ of obtained non-zero tap coefficient is utilized(k), solve in following linear programming problem:
<mrow> <mtable> <mtr> <mtd> <munder> <mi>min</mi> <mrow> <msup> <mi>h</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>,</mo> <mi>&amp;mu;</mi> </mrow> </munder> </mtd> <mtd> <mi>&amp;mu;</mi> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mi>a</mi> <mo>)</mo> </mrow> </mrow>
s.t.|B(k)h(k)-d|≤e+μ·1L×1 (11b)
<mrow> <mi>c</mi> <mrow> <mo>(</mo> <mfrac> <mi>&amp;pi;</mi> <mrow> <mn>2</mn> <mi>M</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <msup> <mi>h</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>=</mo> <mfrac> <msqrt> <mn>2</mn> </msqrt> <mn>2</mn> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mi>c</mi> <mo>)</mo> </mrow> </mrow>
<mrow> <msubsup> <mi>h</mi> <mi>n</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mi>n</mi> <mo>&amp;Element;</mo> <mo>{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>N</mi> <mo>/</mo> <mn>2</mn> <mo>}</mo> <mo>-</mo> <msup> <mi>&amp;Lambda;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mi>d</mi> <mo>)</mo> </mrow> </mrow>
Judge whether μ is less than zero, if it is greater than zero, weight vectors w is then updated, by new weight vectors w(k+1)It is brought into the 2nd step Cycle calculations;If μ is less than or equal to zero, stop interative computation, will calculate what is obtainedAs final sparse line Property Phase FIR ptototype filter.
2. the sparse linear Phase FIR ptototype filter of cosine modulated filters group according to claim 1 a kind of is set Meter method, it is characterised in that the intermediate zone frequency response function f (ω) to be approached is expressed as in formula (6):
<mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <mfrac> <mi>M</mi> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&amp;alpha;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>(</mo> <mrow> <mi>&amp;omega;</mi> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mn>0</mn> </msub> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
Wherein ω0=α pi/2s M (0≤α≤1), formula (12) is met rebuilds condition completely.
3. the sparse linear Phase FIR ptototype filter of cosine modulated filters group according to claim 1 a kind of is set Meter method, it is characterised in that the formula of the renewal weight vectors w described in the 3rd step is expressed as:
<mrow> <msup> <mi>w</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>l</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mfrac> <msubsup> <mi>r</mi> <mi>l</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msubsup> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mo>{</mo> <mfrac> <mrow> <mo>|</mo> <msup> <mover> <mi>h</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>|</mo> </mrow> <mn>100</mn> </mfrac> <mo>}</mo> </mrow> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>)</mo> </mrow> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </msup> <mo>,</mo> <mn>1</mn> <mo>&amp;le;</mo> <mi>l</mi> <mo>&amp;le;</mo> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mi>p</mi> </msub> <mo>+</mo> <msub> <mi>L</mi> <mi>t</mi> </msub> <mo>+</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
Wherein w(k+1)(l) new weight vectors w is represented(k+1)In value, rl (k)Represent residual vector r(k)In value.
CN201710429939.3A 2017-06-09 2017-06-09 Design method of sparse FIR prototype filter of cosine modulation filter bank Expired - Fee Related CN107241081B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710429939.3A CN107241081B (en) 2017-06-09 2017-06-09 Design method of sparse FIR prototype filter of cosine modulation filter bank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710429939.3A CN107241081B (en) 2017-06-09 2017-06-09 Design method of sparse FIR prototype filter of cosine modulation filter bank

Publications (2)

Publication Number Publication Date
CN107241081A true CN107241081A (en) 2017-10-10
CN107241081B CN107241081B (en) 2020-10-27

Family

ID=59987825

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710429939.3A Expired - Fee Related CN107241081B (en) 2017-06-09 2017-06-09 Design method of sparse FIR prototype filter of cosine modulation filter bank

Country Status (1)

Country Link
CN (1) CN107241081B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107947760A (en) * 2017-12-18 2018-04-20 天津工业大学 A kind of design method of the accurate adjustable sparse linear Phase FIR multifrequency trapper of trap frequency
CN109510609A (en) * 2018-12-11 2019-03-22 天津工业大学 A kind of design method of the sparse FIR low pass filter of low complex degree
CN109818890A (en) * 2019-03-12 2019-05-28 北京科技大学 A kind of ptototype filter determines method and determining device
CN110365314A (en) * 2019-06-04 2019-10-22 杭州电子科技大学 The design method of separable Two dimensional FIR Filter with sparse coefficient
CN112528582A (en) * 2021-02-07 2021-03-19 北京理工大学 Prototype filter generation method and device, channelization method and satellite-borne communication device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101972170A (en) * 2010-10-22 2011-02-16 广东工业大学 Self-adapting filter for least square support vector machine and filtering method thereof
CN102882491A (en) * 2012-10-23 2013-01-16 南开大学 Design method of sparse frequency-deviation-free linear phase FIR (finite impulse response) notch filter
EP3018906A1 (en) * 2014-11-05 2016-05-11 Dolby Laboratories Licensing Corp. Systems and methods for rectifying image artifacts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101972170A (en) * 2010-10-22 2011-02-16 广东工业大学 Self-adapting filter for least square support vector machine and filtering method thereof
CN102882491A (en) * 2012-10-23 2013-01-16 南开大学 Design method of sparse frequency-deviation-free linear phase FIR (finite impulse response) notch filter
EP3018906A1 (en) * 2014-11-05 2016-05-11 Dolby Laboratories Licensing Corp. Systems and methods for rectifying image artifacts

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
G. ABHILASH,G.V. ANAND: "TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region", 《TENCON 2003. CONFERENCE ON CONVERGENT TECHNOLOGIES FOR ASIA-PACIFIC REGION》 *
杨君 等: "一种非均匀信道化滤波方法", 《现代雷达》 *
黄绍广: "高效数字FIR滤波器及滤波器组的设计", 《中国优秀硕士学位论文全文数据库信息科技辑》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107947760A (en) * 2017-12-18 2018-04-20 天津工业大学 A kind of design method of the accurate adjustable sparse linear Phase FIR multifrequency trapper of trap frequency
CN107947760B (en) * 2017-12-18 2021-05-04 天津工业大学 Design method of sparse FIR trap
CN109510609A (en) * 2018-12-11 2019-03-22 天津工业大学 A kind of design method of the sparse FIR low pass filter of low complex degree
CN109818890A (en) * 2019-03-12 2019-05-28 北京科技大学 A kind of ptototype filter determines method and determining device
CN110365314A (en) * 2019-06-04 2019-10-22 杭州电子科技大学 The design method of separable Two dimensional FIR Filter with sparse coefficient
CN110365314B (en) * 2019-06-04 2020-04-07 杭州电子科技大学 Design method of separable two-dimensional FIR filter with sparse coefficient
CN112528582A (en) * 2021-02-07 2021-03-19 北京理工大学 Prototype filter generation method and device, channelization method and satellite-borne communication device
CN112528582B (en) * 2021-02-07 2021-06-29 北京理工大学 Prototype filter generation method and device, channelization method and satellite-borne communication device

Also Published As

Publication number Publication date
CN107241081B (en) 2020-10-27

Similar Documents

Publication Publication Date Title
CN107241081A (en) The design method of the sparse FIR ptototype filters of cosine modulated filters group
CN103900610B (en) MEMS gyro random error Forecasting Methodology based on Lycoperdon polymorphum Vitt wavelet neural network
CN106487358A (en) A kind of maximal correlation entropy volume kalman filter method based on statistical linear regression
Krikun Local structure of random quadrangulations
Ashok et al. Fractional branes in Landau-Ginzburg orbifolds
CN101425152B (en) Design method for FIR filter based on learning rate changing neural net
CN102882491B (en) A kind of sparse method for designing without frequency deviation linear phase fir notch filter
CN107256537A (en) A kind of design method for designing two passage orthogonal graph wave filter groups
CN101799368A (en) Electromechanical device nonlinear failure prediction method
CN110457806A (en) The whole flow field analogy method of five rank WENO format of center based on staggered-mesh
Yang et al. Generalised finite-frequency KYP lemma in delta domain and applications to fault detection
Viswanathan et al. Preserving convexity through rational cubic spline fractal interpolation function
CN116336400B (en) Baseline detection method for oil and gas gathering and transportation pipeline
CN107181474A (en) A kind of kernel adaptive algorithm filter based on functional expansion
CN106227964B (en) Nonlinear systems with hysteresis parameter identification method based on extended state observer
CN104598971A (en) Radial basis function neural network based unit impulse response function extraction method
CN104469374A (en) Image compression method
Wang Reduced-order modeling of complex engineering and geophysical flows: analysis and computations
CN116881665A (en) CMOA optimization-based TimesNet-BiLSTM photovoltaic output prediction method
CN105243241A (en) Two-channel biorthogonal figure filter band design method based on lifting structure
CN107565932A (en) A kind of FIR ptototype filter design methods based on linear neural network
Biswas et al. ENO and WENO schemes using arc-length based smoothness measurement
Chang Volterra filter modeling of nonlinear discrete-time system using improved particle swarm optimization
CN106982045A (en) A kind of design method based on the SOCP EIR CMFB structures optimized
Gishkori et al. Compressed sensing for block-sparse smooth signals

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201027