CN107238846A - A kind of satellite position based on GLONASS almanac parameters and velocity prediction method - Google Patents

A kind of satellite position based on GLONASS almanac parameters and velocity prediction method Download PDF

Info

Publication number
CN107238846A
CN107238846A CN201710278228.0A CN201710278228A CN107238846A CN 107238846 A CN107238846 A CN 107238846A CN 201710278228 A CN201710278228 A CN 201710278228A CN 107238846 A CN107238846 A CN 107238846A
Authority
CN
China
Prior art keywords
msub
mrow
msubsup
mover
centerdot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710278228.0A
Other languages
Chinese (zh)
Inventor
谢小刚
陆明泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201710278228.0A priority Critical patent/CN107238846A/en
Publication of CN107238846A publication Critical patent/CN107238846A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/08Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing integrity information, e.g. health of satellites or quality of ephemeris data

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

The invention discloses a kind of satellite position based on GLONASS almanac parameters and velocity prediction method.The problem of can quickly estimating satellite position and speed using GLONASS almanac parameters using the present invention, amount of calculation is small.Orbital tracking method for expressing of the invention based on satellite orbit principle of dynamics and satellite position speed, orbit parameter and its rates of change such as mean angular velocity, semi-major axis, eccentric anomaly, mean anomaly and right ascension of ascending node according to the GLONASS almanac parameters calculating observation moment, and then try to achieve latitude argument, latitude argument rate of change, footpath arrow and the footpath arrow rate of change at observation moment, thus satellite can be tried to achieve in the position of orbital coordinate system and speed, position and speed of the satellite under the coordinate systems of PZ 90 are finally tried to achieve according to Formula of Coordinate System Transformation.

Description

A kind of satellite position based on GLONASS almanac parameters and velocity prediction method
Technical field
The present invention relates to technical field of satellite navigation, and in particular to a kind of satellite position based on GLONASS almanac parameters With velocity prediction method.
Background technology
Almanac parameters are the important components of satellite navigation system navigation message, and it is captured in navigation receiver signal During play a very important role.In the case of no auxiliary information, receiver estimates satellite according to almanac parameters General location and speed, reappear visible satellite and scan for, it is to avoid search star all over the sky.Meanwhile, estimate satellite according to satellite velocities The outline Doppler frequency shift of relative receiver, can search for signal in signal acquisition phase supplementary frequency-domain, substantially reduce satellite letter Number capture time, and then shorten primary positioning time.Therefore, succinct effectively directly affect of almanac parameters user algorithm is led Navigate receiver signal capturing and tracking performances.Existing GLONASS almanac parameters user algorithm, which is used, is based on satellite orbit mean elements Analytic modell analytical model method, this method expression formula is complicated, calculation procedure is more.The present invention proposes a kind of GLONASS of simple and fast Almanac parameters user's algorithm, and give detailed calculation procedure and specific calculation formula.
The content of the invention
In view of this, the invention provides a kind of satellite position based on GLONASS almanac parameters and velocity prediction side Method, the problem of can quickly estimating satellite position and speed using GLONASS almanac parameters, amount of calculation is small.
The satellite position based on GLONASS almanac parameters of the present invention and velocity prediction method, comprise the following steps:
Step 1, the time of ascending node is passed through in one day in GLONASS almanac parameters firstThe calculating observation moment T is relativeNaturalization time tk
Step 2, t is calculatedkMoment satellite orbit period Tk, satellite motion mean angular velocity n0kWith satellite orbit semi-major axis Ak
n0k=2 π/Tk
Wherein,To spend the ascending node moment first to satellite orbit period average value in GLONASS almanac parameters Correction value;ForRate of change;GM is the Gravitational coefficient of the Earth of PZ-90 coordinate systems;
Step 3, calculateThe satellite orbit eccentric anomaly E at moment0kWith mean anomaly M0k
Wherein,For in GLONASS almanac parameters first cross ascending node moment satellite orbit perigee angle,For Ascending node moment eccentricity of satellite orbit is crossed first in GLONASS almanac parameters;
Step 4, t is calculatedkThe moment right ascension average rate of change
Wherein, ReFor earth radius;J2For gravitational field zonal harmonic coefficient;ikFor inclination of satellite orbit, PkFor satellite and the radial distance in the earth's core, For in GLONASS almanac parameters cross ascending node when Carve the correction value to inclination of satellite orbit average value;
Step 5, t is calculatedkMoment satellite mean angular velocity rate of change
Step 6, t is calculatedkMoment satellite mean anomaly Mk
Step 7, with MkIt is used as Ek-1Initial value, utilize Newton iteration method calculate tkThe eccentric anomaly E at momentk
Iteration termination condition is | Ek-Ek-1|≤10σ;Depending on wherein σ is according to computational accuracy;
Step 8, t is calculatedkMoment satellite orbit latitude argument phikR is sweared with footpathk
Step 9, defined according to the track six roots of sensation number of satellite orbit, calculate each satellite orbit parameter rate of change:Satellite orbit Mean anomaly rate of changeEccentric anomaly rate of changeLatitude argument rate of changeHalf-court axle rate of changeAscending node Right ascension rate of changeEarth rotation speed ωeRate of change is sweared with footpath
Step 10, position (x' of the satellite in orbital coordinate system is calculatedk,y'k,z'k) and speed (v'x, v'y, v'z):
x'k=rkcosφk,y'k=rksinφk,z'k=0
Step 11, t is calculatedkMoment ascending node of satellite orbit longitude Ωk
Step 12, position and speed of the satellite under PZ-90 coordinate systems are calculated, satellite position (x is obtainedk, yk, zk) and speed Spend (vxk, vyk, vzk):
xk=x'kcosΩk-y'kcosik sinΩk
yk=x'ksinΩk+y'kcosikcosΩk
zk=y'k sinik
vyk=v'xksinΩk-v'ykcosikcosΩk-xkΩk
vzk=v'yksinik
Beneficial effect:
Prior art is contrasted, the present invention can effectively reduce algorithm complex, realize that GLONASS almanac parameters user calculates Method, in the known ephemeris time, satellite orbital position and velocity information are calculated using the method in the present invention, and amount of calculation is small.
Embodiment
Embodiment is named, the present invention will be described in detail.
The present invention is had based on the specifically defined of GLONASS almanac parameters to existing classical GPS user algorithm model Pointedly improve there is provided a kind of satellite position based on GLONASS almanac parameters and velocity prediction method, based on satellite The orbital tracking method for expressing of dynamics of orbits principle and satellite position speed, according to GLONASS almanac parameters (such as the institute of table 1 Show) orbit parameter such as mean angular velocity, semi-major axis, eccentric anomaly, mean anomaly and the right ascension of ascending node at calculating observation moment And its rate of change, and then latitude argument, latitude argument rate of change, footpath arrow and the footpath arrow rate of change at observation moment are tried to achieve, thus Satellite can be tried to achieve in the position of orbital coordinate system and speed, satellite is finally tried to achieve according to Formula of Coordinate System Transformation in PZ-90 coordinate systems Under position and speed.
Table 1GLONASS almanac parameters
Specifically include following steps:
Step 1, any observation moment t is specified, its is calculated relativeNaturalization time tk
Wherein,Pass through the time of ascending node first for one day in almanac parameters.
Step 2, the single order rate of change based on satellite orbit period, calculates tkMoment satellite orbit period Tk
Wherein,For the ascending node moment is spent in almanac parameters first to satellite orbit period average value (43200s) Correction value;ForRate of change.
Step 3, t is calculatedkMoment satellite motion mean angular velocity n0kAnd satellite orbit semi-major axis Ak
n0k=2 π/Tk (3)
Wherein, GM is the Gravitational coefficient of the Earth of PZ-90 coordinate systems.
Step 4, calculateThe satellite orbit eccentric anomaly E at moment0kWith mean anomaly M0k
Wherein,For in almanac parameters first cross ascending node moment satellite orbit perigee angle,Join for almanac Ascending node moment eccentricity of satellite orbit is crossed first in number.
Step 5, because the GLONASS satellite location prediction time is shorter, perturbation of earths gravitational field in earth operation is ignored high Rank variable quantity and life are set in a small amount, calculate tkThe moment right ascension average rate of change
Wherein, ReFor earth radius, J2For gravitational field zonal harmonic coefficient, ikFor inclination of satellite orbit, computational methods are shown in formula (8);PkFor satellite and the radial distance in the earth's core, computational methods are shown in formula (9):
Wherein,To cross correction value of the ascending node moment to inclination of satellite orbit average value in almanac parameters.
Step 6, according to satellite period and the display expression formula relation of satellite motion mean angular velocity, t is calculatedkWhen Carve satellite mean angular velocity rate of change
Step 7, t is calculatedkThe satellite mean anomaly M at momentk
With MkIt is used as Ek-1Initial value, utilize Newton iteration method calculate tkThe eccentric anomaly E at momentk
Iteration termination condition is | Ek-Ek-1| depending on≤10 σ, wherein σ are according to computational accuracy, typically take -12.
Step 8, t is calculatedkMoment satellite orbit latitude argument phikR is sweared with footpathk
Step 9, defined according to the track six roots of sensation number of satellite orbit, calculate each satellite orbit parameter rate of change:
Wherein,For mean anomaly rate of change,For eccentric anomaly rate of change,For latitude argument rate of change,For Half-court axle rate of change,For right ascension of ascending node rate of change, ωeFor earth rotation speed,Rate of change is sweared for footpath.
Step 10, satellite is calculated in the position of orbital coordinate system and speed:
Step 11, t is calculatedkMoment ascending node of satellite orbit longitude Ωk
Step 12, position and speed of the satellite under PZ-90 coordinate systems are calculated:
xk=x'kcosΩk-y'kcosik sinΩk
yk=x'ksinΩk+y'kcosikcosΩk (24)
zk=y'k sinik
vzk=v'yksinik
So far, the calculating by GLONASS almanac parameters to satellite orbital position and speed is just completed.
In summary, presently preferred embodiments of the present invention is these are only, the protection model of the present invention is not intended to limit Enclose.Within the spirit and principles of the invention, any modification, equivalent substitution and improvements made etc., should be included in this hair Within bright protection domain.

Claims (1)

1. a kind of satellite position based on GLONASS almanac parameters and velocity prediction method, it is characterised in that including following step Suddenly:
Step 1, the time of ascending node is passed through in one day in GLONASS almanac parameters firstThe calculating observation moment, t was relativeNaturalization time tk
<mrow> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>=</mo> <mi>t</mi> <mo>-</mo> <msubsup> <mi>t</mi> <mrow> <mi>&amp;lambda;</mi> <mi>n</mi> </mrow> <mi>A</mi> </msubsup> </mrow>
Step 2, t is calculatedkMoment satellite orbit period Tk, satellite motion mean angular velocity n0kWith satellite orbit semi-major axis Ak
<mrow> <msub> <mi>T</mi> <mi>k</mi> </msub> <mo>=</mo> <msubsup> <mi>&amp;Delta;T</mi> <mi>n</mi> <mi>A</mi> </msubsup> <mo>+</mo> <mn>43200</mn> <mo>+</mo> <mi>&amp;Delta;</mi> <msubsup> <mover> <mi>T</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>n</mi> <mi>A</mi> </msubsup> <mo>&amp;CenterDot;</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>/</mo> <mrow> <mo>(</mo> <msubsup> <mi>&amp;Delta;T</mi> <mi>n</mi> <mi>A</mi> </msubsup> <mo>+</mo> <mn>43200</mn> <mo>)</mo> </mrow> </mrow>
n0k=2 π/Tk
<mrow> <msub> <mi>A</mi> <mi>k</mi> </msub> <mo>=</mo> <mroot> <mrow> <mi>G</mi> <mi>M</mi> <mo>/</mo> <msubsup> <mi>n</mi> <mrow> <mn>0</mn> <mi>k</mi> </mrow> <mn>2</mn> </msubsup> </mrow> <mn>3</mn> </mroot> </mrow>
Wherein,To cross amendment of the ascending node moment to satellite orbit period average value first in GLONASS almanac parameters Value;ForRate of change;GM is the Gravitational coefficient of the Earth of PZ-90 coordinate systems;
Step 3, calculateThe satellite orbit eccentric anomaly E at moment0kWith mean anomaly M0k
<mrow> <msub> <mi>E</mi> <mrow> <mn>0</mn> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mn>2</mn> <mi>arctan</mi> <mrow> <mo>(</mo> <mi>t</mi> <mi>a</mi> <mi>n</mi> <mo>(</mo> <mrow> <mo>-</mo> <msubsup> <mi>&amp;omega;</mi> <mi>n</mi> <mi>A</mi> </msubsup> <mo>/</mo> <mn>2</mn> </mrow> <mo>)</mo> <mo>&amp;CenterDot;</mo> <msqrt> <mrow> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&amp;epsiv;</mi> <mi>n</mi> <mi>A</mi> </msubsup> </mrow> </msqrt> <mo>/</mo> <msqrt> <mrow> <mn>1</mn> <mo>+</mo> <msubsup> <mi>&amp;epsiv;</mi> <mi>n</mi> <mi>A</mi> </msubsup> </mrow> </msqrt> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>M</mi> <mrow> <mn>0</mn> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>E</mi> <mrow> <mn>0</mn> <mi>k</mi> </mrow> </msub> <mo>-</mo> <msubsup> <mi>&amp;epsiv;</mi> <mi>n</mi> <mi>A</mi> </msubsup> <mo>&amp;CenterDot;</mo> <mi>sin</mi> <mi> </mi> <msub> <mi>E</mi> <mrow> <mn>0</mn> <mi>k</mi> </mrow> </msub> </mrow>
Wherein,For in GLONASS almanac parameters first cross ascending node moment satellite orbit perigee angle,For Ascending node moment eccentricity of satellite orbit is crossed first in GLONASS almanac parameters;
Step 4, t is calculatedkThe moment right ascension average rate of change
<mrow> <msub> <mover> <mi>&amp;Omega;</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mn>0</mn> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <mn>3</mn> <msub> <mi>n</mi> <mrow> <mn>0</mn> <mi>k</mi> </mrow> </msub> <msub> <mi>J</mi> <mn>2</mn> </msub> </mrow> <mn>2</mn> </mfrac> <msup> <mrow> <mo>(</mo> <mfrac> <msub> <mi>R</mi> <mi>e</mi> </msub> <msub> <mi>P</mi> <mi>k</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <msub> <mi>i</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow>
Wherein, ReFor earth radius;J2For gravitational field zonal harmonic coefficient;ikFor inclination of satellite orbit,PkTo defend Star and the radial distance in the earth's core, To spend the ascending node moment to defending in GLONASS almanac parameters The correction value of star orbital road inclination average value;
Step 5, t is calculatedkMoment satellite mean angular velocity rate of change
<mover> <mrow> <msub> <mover> <mi>n</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mo>-</mo> <mn>2</mn> <mi>&amp;pi;</mi> <mo>&amp;CenterDot;</mo> <mi>&amp;Delta;</mi> <msubsup> <mover> <mi>T</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>n</mi> <mi>A</mi> </msubsup> <mo>/</mo> <msubsup> <mi>T</mi> <mi>k</mi> <mn>3</mn> </msubsup> </mrow> <mo>&amp;OverBar;</mo> </mover>
Step 6, t is calculatedkMoment satellite mean anomaly Mk
<mrow> <msub> <mi>M</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>M</mi> <mrow> <mn>0</mn> <mi>k</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mn>0</mn> <mi>k</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>+</mo> <msub> <mover> <mi>n</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msubsup> <mi>t</mi> <mi>k</mi> <mn>2</mn> </msubsup> <mo>/</mo> <mn>2</mn> </mrow>
Step 7, with MkIt is used as Ek-1Initial value, utilize Newton iteration method calculate tkThe eccentric anomaly E at momentk
<mrow> <msub> <mi>E</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>M</mi> <mi>k</mi> </msub> <mo>+</mo> <msubsup> <mi>&amp;epsiv;</mi> <mi>n</mi> <mi>A</mi> </msubsup> <mo>&amp;CenterDot;</mo> <mi>sin</mi> <mi> </mi> <msub> <mi>E</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow>
Iteration termination condition is | Ek-Ek-1|≤10σ;Depending on wherein σ is according to computational accuracy;
Step 8, t is calculatedkMoment satellite orbit latitude argument phikR is sweared with footpathk
<mrow> <msub> <mi>&amp;phi;</mi> <mi>k</mi> </msub> <mo>=</mo> <mn>2</mn> <mi>arctan</mi> <mrow> <mo>(</mo> <msqrt> <mrow> <mn>1</mn> <mo>+</mo> <msubsup> <mi>&amp;epsiv;</mi> <mi>n</mi> <mi>A</mi> </msubsup> <mo>/</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&amp;epsiv;</mi> <mi>n</mi> <mi>A</mi> </msubsup> </mrow> </msqrt> <mo>&amp;CenterDot;</mo> <mi>tan</mi> <mi> </mi> <msub> <mi>E</mi> <mi>k</mi> </msub> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>&amp;omega;</mi> <mi>n</mi> <mi>A</mi> </msubsup> </mrow> 1
<mrow> <msub> <mi>r</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>A</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&amp;epsiv;</mi> <mi>n</mi> <mi>A</mi> </msubsup> <mi>cos</mi> <mi> </mi> <msub> <mi>E</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow>
Step 9, defined according to the track six roots of sensation number of satellite orbit, calculate each satellite orbit parameter rate of change:Satellite orbit it is flat Near point angular rate of changeEccentric anomaly rate of changeLatitude argument rate of changeHalf-court axle rate of changeRight ascension of ascending node Rate of changeEarth rotation speed ωeRate of change is sweared with footpath
Step 10, position x ' of the satellite in orbital coordinate system is calculatedk,y′k,z′kWith speed v 'x, v 'y, v 'z
x′k=rkcosφk,y′k=rksinφk,z′k=0
<mrow> <msubsup> <mi>v</mi> <mi>x</mi> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <msub> <mover> <mi>r</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>k</mi> </msub> <msub> <mi>cos&amp;phi;</mi> <mi>k</mi> </msub> <mo>-</mo> <msub> <mi>r</mi> <mi>k</mi> </msub> <msub> <mover> <mi>&amp;phi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>k</mi> </msub> <msub> <mi>sin&amp;phi;</mi> <mi>k</mi> </msub> <mo>,</mo> <msubsup> <mi>v</mi> <mi>y</mi> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <msub> <mover> <mi>r</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>k</mi> </msub> <msub> <mi>sin&amp;phi;</mi> <mi>k</mi> </msub> <mo>+</mo> <msub> <mi>r</mi> <mi>k</mi> </msub> <msub> <mover> <mi>&amp;phi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>k</mi> </msub> <msub> <mi>cos&amp;phi;</mi> <mi>k</mi> </msub> <mo>,</mo> <msubsup> <mi>v</mi> <mi>z</mi> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <mn>0</mn> </mrow>
Step 11, t is calculatedkMoment ascending node of satellite orbit longitude Ωk
<mrow> <msub> <mi>&amp;Omega;</mi> <mi>k</mi> </msub> <mo>=</mo> <msubsup> <mi>&amp;lambda;</mi> <mi>n</mi> <mi>A</mi> </msubsup> <mo>+</mo> <msub> <mover> <mi>&amp;Omega;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mi>e</mi> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> </mrow>
Step 12, position and speed of the satellite under PZ-90 coordinate systems are calculated, satellite position x is obtainedk, yk, zkWith speed vxk, vyk, vzk
xk=x 'kcosΩk-y′kcosiksinΩk
yk=x 'ksinΩk+y′kcosikcosΩk
zk=y 'ksinik
<mrow> <msub> <mi>v</mi> <mrow> <mi>x</mi> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>v</mi> <mrow> <mi>x</mi> <mi>k</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <msub> <mi>cos&amp;Omega;</mi> <mi>k</mi> </msub> <mo>-</mo> <msubsup> <mi>v</mi> <mrow> <mi>y</mi> <mi>k</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mi>cos</mi> <mi> </mi> <msub> <mi>i</mi> <mi>k</mi> </msub> <msub> <mi>sin&amp;Omega;</mi> <mi>k</mi> </msub> <mo>-</mo> <msub> <mi>y</mi> <mi>k</mi> </msub> <msub> <mover> <mi>&amp;Omega;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>k</mi> </msub> </mrow>
<mrow> <msub> <mi>v</mi> <mrow> <mi>y</mi> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>v</mi> <mrow> <mi>x</mi> <mi>k</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <msub> <mi>sin&amp;Omega;</mi> <mi>k</mi> </msub> <mo>-</mo> <msubsup> <mi>v</mi> <mrow> <mi>y</mi> <mi>k</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mi>cos</mi> <mi> </mi> <msub> <mi>i</mi> <mi>k</mi> </msub> <msub> <mi>cos&amp;Omega;</mi> <mi>k</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>k</mi> </msub> <msub> <mover> <mi>&amp;Omega;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>k</mi> </msub> </mrow>
vzk=v 'yksinik
CN201710278228.0A 2017-04-25 2017-04-25 A kind of satellite position based on GLONASS almanac parameters and velocity prediction method Pending CN107238846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710278228.0A CN107238846A (en) 2017-04-25 2017-04-25 A kind of satellite position based on GLONASS almanac parameters and velocity prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710278228.0A CN107238846A (en) 2017-04-25 2017-04-25 A kind of satellite position based on GLONASS almanac parameters and velocity prediction method

Publications (1)

Publication Number Publication Date
CN107238846A true CN107238846A (en) 2017-10-10

Family

ID=59984199

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710278228.0A Pending CN107238846A (en) 2017-04-25 2017-04-25 A kind of satellite position based on GLONASS almanac parameters and velocity prediction method

Country Status (1)

Country Link
CN (1) CN107238846A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109358352A (en) * 2018-09-30 2019-02-19 天津讯联科技有限公司 A kind of spaceborne real-time occultation forecasting procedure
CN109765926A (en) * 2018-12-27 2019-05-17 宁波天擎航天科技有限公司 A kind of right ascension of ascending node accuracy control method, system and device
CN110595485A (en) * 2019-08-08 2019-12-20 上海航天电子有限公司 Low-orbit satellite long-term orbit forecasting method based on two-line root number
CN112202484A (en) * 2019-07-08 2021-01-08 华为技术有限公司 Satellite communication method, device, terminal equipment, satellite and readable storage medium
CN114440886A (en) * 2021-12-30 2022-05-06 上海航天控制技术研究所 High-precision track calculation method for large-eccentricity track
CN114814904A (en) * 2022-03-25 2022-07-29 西安电子科技大学 Confidence prediction method and system
CN117092664A (en) * 2023-10-17 2023-11-21 青岛杰瑞自动化有限公司 Positioning anti-interference method and system based on time service system and electronic equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000162302A (en) * 1998-11-27 2000-06-16 Japan Radio Co Ltd Satellite navigation apparatus
CN101609140A (en) * 2009-07-09 2009-12-23 北京航空航天大学 A kind of compatible navigation receiver positioning system and localization method thereof
CN102841362A (en) * 2012-09-24 2012-12-26 桂林电子科技大学 Three-mode satellite signal simulation method and simulator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000162302A (en) * 1998-11-27 2000-06-16 Japan Radio Co Ltd Satellite navigation apparatus
CN101609140A (en) * 2009-07-09 2009-12-23 北京航空航天大学 A kind of compatible navigation receiver positioning system and localization method thereof
CN102841362A (en) * 2012-09-24 2012-12-26 桂林电子科技大学 Three-mode satellite signal simulation method and simulator

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
崔莹莹 等: "GLONASS历书解算与卫星可见性预测", 《航天控制》 *
谢小刚 等: "一种基于模型转换的GLONASS历书预报算法", 《北京理工大学学报》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109358352B (en) * 2018-09-30 2021-05-18 天津讯联科技有限公司 Satellite-borne real-time occultation forecasting method
CN109358352A (en) * 2018-09-30 2019-02-19 天津讯联科技有限公司 A kind of spaceborne real-time occultation forecasting procedure
CN109765926A (en) * 2018-12-27 2019-05-17 宁波天擎航天科技有限公司 A kind of right ascension of ascending node accuracy control method, system and device
CN109765926B (en) * 2018-12-27 2021-12-07 宁波天擎航天科技有限公司 Method, system and device for accurately controlling ascension point and right ascension channel
CN112202484B (en) * 2019-07-08 2022-07-22 华为技术有限公司 Satellite communication method, device, terminal equipment, satellite and readable storage medium
US11962396B2 (en) 2019-07-08 2024-04-16 Huawei Technologies Co., Ltd. Satellite communication method and apparatus, terminal device, satellite, and readable storage medium
CN112202484A (en) * 2019-07-08 2021-01-08 华为技术有限公司 Satellite communication method, device, terminal equipment, satellite and readable storage medium
CN110595485B (en) * 2019-08-08 2023-08-11 上海航天电子有限公司 Low-orbit satellite long-term orbit prediction method based on two-row number
CN110595485A (en) * 2019-08-08 2019-12-20 上海航天电子有限公司 Low-orbit satellite long-term orbit forecasting method based on two-line root number
CN114440886A (en) * 2021-12-30 2022-05-06 上海航天控制技术研究所 High-precision track calculation method for large-eccentricity track
CN114440886B (en) * 2021-12-30 2023-09-05 上海航天控制技术研究所 High-accuracy track calculation method for large-eccentricity track
CN114814904A (en) * 2022-03-25 2022-07-29 西安电子科技大学 Confidence prediction method and system
CN117092664A (en) * 2023-10-17 2023-11-21 青岛杰瑞自动化有限公司 Positioning anti-interference method and system based on time service system and electronic equipment
CN117092664B (en) * 2023-10-17 2024-01-09 青岛杰瑞自动化有限公司 Positioning anti-interference method and system based on time service system and electronic equipment

Similar Documents

Publication Publication Date Title
CN107238846A (en) A kind of satellite position based on GLONASS almanac parameters and velocity prediction method
CN102508275B (en) Multiple-antenna GPS(Global Positioning System)/GF-INS (Gyroscope-Free-Inertial Navigation System) depth combination attitude determining method
CN101666868B (en) Satellite signal vector tracking method based on SINS/GPS deep integration data fusion
Sun Ultra-tight GPS/reduced IMU for land vehicle navigation
CN103777218B (en) The performance evaluation system of GNSS/INS hypercompact combination navigation system and method
CN106932804A (en) Inertia/the Big Dipper tight integration navigation system and its air navigation aid of astronomy auxiliary
CN108931791B (en) System and method for correcting satellite inertial force combined clock difference
CN103148849B (en) Combined navigation method based on earth-moon satellite united distance measurement and ultraviolet sensor
EP2725322B1 (en) Smoothed navigation solution using filtered resets
CN103675861A (en) Satellite autonomous orbit determination method based on satellite-borne GNSS multiple antennas
CN101743453A (en) The post-mission high accuracy position and azimuth determining system
WO2012125293A2 (en) Offline ephemeris prediction
CN103217161B (en) A kind of pulsar navigation position and velocity joint method of estimation
US6567712B1 (en) Method for determining the co-ordinates of a satellite
CN107677292B (en) Vertical line deviation compensation method based on gravity field model
CN113375659B (en) Pulsar navigation method based on starlight angular distance measurement information
CN104833335A (en) Method for obtaining satellite solar angle and time on basis of satellite orbit characteristics
CN103017787A (en) Initial alignment method suitable for rocking base
CN103954282B (en) Strapdown inertial navigation method based on accelerometer output increment
CN111965683A (en) Combined positioning method, device and storage medium for satellite positioning and inertial navigation positioning
CN103968834A (en) Autonomous astronomical navigation method for deep space probe on near-ground parking track
CN104931994A (en) Software receiver-based distributed deep integrated navigation method and system
CN105938199A (en) Method for calculating GPS satellite position through broadcast ephemeris
CN106959457B (en) GLONASS almanac parameter estimation method for satellite navigation
CN102707080A (en) Method for simulating strapdown inertial navigation gyroscope by using star sensor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171010