CN107238824A - 基于先验dem数据的星载sar图像几何精校正方法 - Google Patents

基于先验dem数据的星载sar图像几何精校正方法 Download PDF

Info

Publication number
CN107238824A
CN107238824A CN201710371665.7A CN201710371665A CN107238824A CN 107238824 A CN107238824 A CN 107238824A CN 201710371665 A CN201710371665 A CN 201710371665A CN 107238824 A CN107238824 A CN 107238824A
Authority
CN
China
Prior art keywords
sar image
borne sar
pixel
satellite
corrected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710371665.7A
Other languages
English (en)
Other versions
CN107238824B (zh
Inventor
李真芳
田锋
邢超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201710371665.7A priority Critical patent/CN107238824B/zh
Publication of CN107238824A publication Critical patent/CN107238824A/zh
Application granted granted Critical
Publication of CN107238824B publication Critical patent/CN107238824B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4052Means for monitoring or calibrating by simulation of echoes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种基于先验DEM数据的星载SAR图像几何精校正方法,其主要思路为:获取待校正的实际星载SAR图像,并建立待校正的实际星载SAR图像的距离多普勒模型,记为成像模型,然后利用所述成像模型对待校正的实际星载SAR图像中的P×N个像素点分别进行定位,分别得到待校正的实际星载SAR图像P×N个像素点各自的定位坐标;根据待校正的实际星载SAR图像P×N个像素点各自的定位坐标,进而计算待校正的实际星载SAR图像P×N个像素点各自的电磁波入射角,以及最终反演的理想星载SAR图像Sima;分别计算待校正的实际星载SAR图像相对于Sima在方位向的像素偏差量na,以及待校正的实际星载SAR图像相对于Sima在距离向的像素偏差量nr,进而计算得到几何精校正后的实际星载SAR图像。

Description

基于先验DEM数据的星载SAR图像几何精校正方法
技术领域
本发明属于信号处理技术领域,特别涉及一种基于先验DEM数据的星载SAR图像几何精校正方法,适用于减小星载SAR因为***误差造成的SAR图像场景中的像素点成像位置偏离真实位置点的问题,从而改善星载SAR的成像质量,有助于用户对SAR图像的判读和解译。
背景技术
星载SAR是从空间对地观测的一种有效手段,具有全天时、全天候、多波段及高分辨率的优点,能够详细、准确地测绘地形、地貌,获取地球表面的信息,最终生成目标场景的高分辨地图。
但是星载SAR在从雷达脉冲的发射一直到最后通过成像算法生成星载SAR图像的过程中,会有很多非理想因素误差引入其中,这样会使得实际得到的星载SAR图像中每个像素点对应的场景中位置和实际场景中的位置都会有一定的偏移,使得实际得到的星载SAR图像与真实场景并不完全对应,进而无法详细、准确地测绘地形、地貌,获取地球表面的信息。
发明内容
针对上述现有技术存在的不足,本发明的目的在于提出一种基于先验DEM数据的星载SAR图像几何精校正方法,该种基于先验DEM数据的星载SAR图像几何精校正方法使用星载SAR回波数据进行成像处理,得到实际星载SAR图像,然后由星载SAR的POS数据结合RD模型定位星载SAR所在场景中每个像素点的坐标,利用Ulaby模型产生后向散射系数矩阵,反演出理想的星载SAR图像,理想的星载SAR图像和实际SAR图像进行比对,求出两者之间的偏移量,从而修正实际SAR图像因全链路非理想因素而引起的***误差,最终完成星载SAR图像的几何精校正。
为达到上述技术目的,本发明采用如下技术方案予以实现。
一种基于先验DEM数据的星载SAR图像几何精校正方法,包括以下步骤:
步骤1,获取待校正的实际星载SAR图像,所述待校正的实际星载SAR图像为P×N维矩阵,P表示待校正的实际星载SAR图像的方位向包含的像素点个数,N表示待校正的实际星载SAR图像的距离向包含的像素点个数,P、N分别为大于0的正整数;
步骤2,建立待校正的实际星载SAR图像的距离多普勒模型,记为成像模型,然后利用所述成像模型对待校正的实际星载SAR图像中的P×N个像素点分别进行定位,分别得到待校正的实际星载SAR图像中P×N个像素点各自的定位坐标;
步骤3,根据待校正的实际星载SAR图像中P×N个像素点各自的定位坐标,计算得到待校正的实际星载SAR图像中P×N个像素点各自的电磁波入射角;
步骤4,根据待校正的实际星载SAR图像中P×N个像素点各自的电磁波入射角对待校正的实际星载SAR图像进行反演,得到最终反演的理想星载SAR图像;
步骤5,分别计算待校正的实际星载SAR图像相对于最终反演的理想星载SAR图像在方位向的像素偏差量na,以及待校正的实际星载SAR图像相对于最终反演的理想星载SAR图像在距离向的像素偏差量nr
步骤6,根据待校正的实际星载SAR图像相对于最终反演的理想星载SAR图像在方位向的像素偏差量na,以及待校正的实际星载SAR图像相对于最终反演的理想星载SAR图像在距离向的像素偏差量nr,对待校正的实际星载SAR图像进行几何精校正,得到几何精校正后的实际星载SAR图像。
本发明与现有的技术相比具有以下优点:
第一,本发明利用先验DEM信息,可以实现无控制点的图像几何精校正,不需要在在场景中布置角反射器,减少了工作量,提高了效率。
第二,本发明中利用了SRTM库中的DEM来提高定位精度,从而使星载SAR图像的反演更加准确,提高了几何精校正的准确性。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细说明。
图1为本发明的一种基于先验DEM数据的星载SAR图像几何精校正方法流程图;
图2为待校正的实际星载SAR图像的距离多普勒模型示意图;
图3为求解待校正的实际星载SAR图像中J个像素点各自的定位坐标的流程图;
图4为计算待校正的实际星载SAR图像中的像素点电磁波入射角过程示意图;
图5为将几何精校正后的实际星载SAR图像中P×N个像素点分别转换到经纬度坐标系中的过程示意图;
图6为高分三号星载SAR图像示意图;
图7a为图6中地形起伏较大的山地部分示意图;
图7b为根据本发明方法对几何精校正后的图7a中每一个像素点分别进行反演后得到的理想星载SAR图像示意图;
图8为对图6进行几何精校正后得到的星载SAR图像示意图;
图9为图8经过地理编码后得到的结果示意图;
图10为对图9中的每一个像素点进行评估后的结果示意图。
具体实施方式
参照图1,为本发明的一种基于先验DEM数据的星载SAR图像几何精校正方法流程图;其中所述基于先验DEM数据的星载SAR图像几何精校正方法,包括以下步骤:
步骤1,获取待校正的实际星载SAR图像,所述待校正的实际星载SAR图像为P×N维矩阵,P表示待校正的实际星载SAR图像的方位向包含的像素点个数,N表示待校正的实际星载SAR图像的距离向包含的像素点个数,P、N分别为大于0的正整数。
具体地,确定星载SAR,并获取星载SAR回波数据,然后通过SAR成像算法对获取的星载SAR回波数据进行成像处理,得到待校正的实际星载SAR图像;也可以直接下载网上提供的仅仅进行了成像处理的初级SAR图像。
步骤2,建立待校正的实际星载SAR图像的距离多普勒模型,记为成像模型,然后利用所述成像模型对待校正的实际星载SAR图像中的P×N个像素点分别进行定位,分别得到待校正的实际星载SAR图像中P×N个像素点各自的定位坐标。
2.1建立待校正的实际星载SAR图像的距离多普勒模型,如图2所示,在所述距离多普勒模型中,卫星沿着自身轨道飞行,且卫星自带的GPS会对星载雷达的空间位置坐标进行记录,星载雷达位于卫星上,星载雷达的空间位置包括M个点,M个点各自的坐标都是WGS84坐标系中的坐标,WGS84坐标系的原点是地球的中心;赤道和0度经线的交点,与地球中心的连线构成WGS84坐标系的X轴;北极点和地球的中心连线构成WGS84坐标系的Z轴,再由右手坐标系原则确定出WGS84坐标系的Y轴;将星载雷达的空间位置包括的M个点中第i个点记为Si,i=1,2,3,...,M,第i个点的坐标为(Xi,Yi,Zi),Xi表示第i个点Si在WGS84坐标系的X轴坐标值,Yi表示第i个点Si在WGS84坐标系的Y轴坐标值,Zi表示第i个点Si在WGS84坐标系的Z轴坐标值;将M个点各自的坐标记为星载雷达POS数据,星载雷达POS数据对应包括M个POS数据;将M个点各自的坐标进行逐点连接后形成星载雷达航迹。
根据星载雷达POS数据,并由速度和位移关系,计算得到星载雷达的空间位置中第l个点处的瞬时速度 PRF表示为脉冲重复频率,Sl+1表示第l+1个点,Sl表示第l个点,M表示星载雷达的空间位置包含的点个数,与POS数据个数取值相等。
星载雷达在卫星轨道上飞行的过程中,会向地面发射电磁波,就像黑夜里墙头上的手电筒倾斜的照射到地面上,在地面上形成一个椭圆形的光照区域一样,星载雷达发射的电磁波照射到地面上时也会形成一个椭圆的照射区域,随着星载雷达从第1个POS数据到第M个POS数据运动,该椭圆的照射区域会慢慢在地面上移动,直到星载雷达运动到第M个POS数据的位置,对应椭圆的照射区域形成一个长方形条带,将所述长方形条带记为合成孔径雷达(SAR)图像成像区域,SAR图像成像区域对应一个长方形条带。
将与星载雷达航迹平行的SAR图像成像区域的对应方向,记作SAR图像成像区域的方位向;将与星载雷达航迹垂直的SAR图像成像区域的对应方向,记作SAR图像成像区域的距离向,且SAR图像成像区域对应待校正的实际星载SAR图像,待校正的实际星载SAR图像的方位向包含P个像素点,待校正的实际星载SAR图像的距离向包含N个像素点,因此待校正的实际星载SAR图像为P×N维矩阵。
2.2RD模型即距离多普勒模型,距离多普勒模型的提出是为了对待校正的实际星载SAR图像中的P×N个像素点分别进行定位,即利用M个POS数据结合成像模型对SAR图像成像区域中的P×N个像素点分别进行定位。
将待校正的实际星载SAR图像中第m行、第n列处的像素点记作Tmn,Tmn的坐标记作(Xmn,Ymn,Zmn),Xmn表示待校正的实际星载SAR图像中第m行、第n列处的像素点在WGS84坐标系的X轴坐标值,Ymn表示待校正的实际星载SAR图像中第m行、第n列处的像素点在WGS84坐标系的Y轴坐标值,Zmn表示待校正的实际星载SAR图像中第m行、第n列处的像素点在WGS84坐标系的Z轴坐标值。
星载雷达空间位置包含的点个数与待校正的实际星载SAR图像的方位向包含的像素数个数取值相同,且一一对应;将第i个点Si和待校正的实际星载SAR图像中第m行、第n列处的像素点Tmn之间的斜距记为n=1,2,3,…,N,m=1,2,3,…,P,i和m取值相同,且通过星载雷达开始接收回波的时间和星载雷达接收的回波在距离向的采样率求出,且Tstarti表示星载雷达的空间位置中第i个点Si开始接收回波的时间,Fs表示星载雷达的距离向采样率,c为光速;由此可以看出,第i个点Si和待处理的实际星载SAR图像中第m行、第n列处的像素点Tmn之间的斜距与m无关。
对于待校正的实际星载SAR图像中P×N个像素点各自的坐标,通过对应得到P×N个斜距均求解出来。
2.3以下通过三个非线性方程组去求解待校正的实际星载SAR图像中第m行、第n列处的像素点Tmn的坐标。
方程一:距离方程
星载雷达开始接收回波时间和星载雷达接收的回波距离向采样率都是已知的,对于待校正的实际星载SAR图像中的每个像素点,通过星载雷达开始接收回波的时间和星载雷达接收的回波距离向采样率准确确定每个像素点反射回波到星载雷达的时间,因而可以知道星载雷达与该像素点的距离,如图1中所示;也就是说,通过距离方程得到第i个点Si和待校正的实际星载SAR图像中第m行、第n列处的像素点Tmn之间的斜距记为其满足方程如下:
显然只用方程(1)无法求出待校正的实际星载SAR图像中第m行、第n列处的像素点Tmn,要解出Tmn的坐标(Xmn,Ymn,Zmn),必须寻找其他方程。
方程二:多普勒方程:
计算得到星载雷达的多普勒频率fd求解方法如下:
其中表示星载雷达的径向速度,→表示矢量,λ表示为星载雷达载频对应的波长;对于本发明要研究的问题,计算得到第i个点Si和待校正的实际星载SAR图像中第m行、第n列处的像素点Tmn之间的斜距对应的多普勒频率其表达式为:
其中,表示星载雷达的空间位置中第l个点处的瞬时速度矢量,通过POS数据可以求解;表示第i个点Si和待校正的实际星载SAR图像中第m行、第n列处的像素点Tmn之间的斜距矢量,→表示矢量,λ为星载雷达载频对应的波长,| |表示求绝对值操作。
星载雷达采取正侧视观测模式时,星载雷达的空间位置中第l个点处的瞬时速度矢量垂直,因此第i个点Si和待校正的实际星载SAR图像中第m行、第n列处的像素点Tmn之间的斜距对应的多普勒频率取值为0,所以
方程三:待校正的实际星载SAR图像中第m行、第n列处的像素点Tmn满足的地球椭球方程为:
其中,Re为地球的赤道半径,Rp为地球的极地半径,Re和Rp都是已知量;h表示待校正的实际星载SAR图像中第m行、第n列处的像素点Tmn的海拔高度,且h是未知量;Xmn表示待校正的实际星载SAR图像中第m行、第n列处的像素点在WGS84坐标系的X轴坐标值,Ymn表示待校正的实际星载SAR图像中第m行、第n列处的像素点在WGS84坐标系的Y轴坐标值,Zmn表示待校正的实际星载SAR图像中第m行、第n列处的像素点在WGS84坐标系的Z轴坐标值;n=1,2,3,…,N,m=1,2,3,…,P,P表示待校正的实际星载SAR图像的方位向包含的像素点个数,N表示待校正的实际星载SAR图像的距离向包含的像素点个数。
因为待校正的实际星载SAR图像所在场景是地球上的某一区域,所以将该区域内像素点的坐标分别代入地球椭球方程中,在h已知的情况下,将满足等式(4)。
联立方程(1)、(3)、(4)三个方程,三个未知数(假设h已知),分别计算得到待校正的星载实际SAR图像中第m行、第n列处的像素点Tmn的坐标(Xmn,Ymn,Zmn),求解完成也就意味着完成待校正的实际星载SAR图像中第m行、第n列处的像素点Tmn的定位。
2.4使用迭代法求解一组方程,来对待校正的实际星载SAR图像中第m行、第n列处的像素点Tmn进行定位,Tmn的坐标为(Xmn,Ymn,Zmn),Xmn表示待校正的实际星载SAR图像中第m行、第n列处的像素点在WGS84坐标系的X轴坐标值,Ymn表示待校正的实际星载SAR图像中第m行、第n列处的像素点在WGS84坐标系的Y轴坐标值,Zmn表示待校正的实际星载SAR图像中第m行、第n列处的像素点在WGS84坐标系的Z轴坐标值;n=1,2,3,…,N,m=1,2,3,…,P,P表示待校正的实际星载SAR图像的方位向包含的像素点个数,N表示待校正的实际星载SAR图像的距离向包含的像素点个数,m和n的初始值分别为1。
假设h已知,并联立式(1)、式(3)和式(4)三个方程,三个未知数,通过求解方程组得出待校正的实际星载SAR图像中第m行、第n列处的像素点坐标;而实际情况中,一般是不知道SAR图像场景中每一个像素点的海拔高度的,也就是说式(1)、式(3)和式(4)三个方程中包含四个未知数,三个方程,显然是无法求解的;这种情况下,本发明解决策略是先假设待校正的实际星载SAR图像中第m行、第n列处的像素点海拔高度为0。
参照图3,为求解待校正的实际星载SAR图像中J个像素点各自的定位坐标的流程图;初始化:令f表示第f次迭代,f的初始值为1,令h0表示待校正的实际星载SAR图像中每个像素点的海拔高度预设值,其中每个像素点分别为SAR图像场景中每个像素点;设定待校正的实际星载SAR图像中包含J个像素点,令j表示第j个像素点,j∈{1,2,…,J},j的初始值为1,J=P×N。
2.5将第f-1次迭代后第j个像素点的海拔高度预设值hf-1带入方程(4),并根据式(1)和式(3),得到如下方程组:
其中,Xi表示第i个点Si在WGS84坐标系的X轴坐标值,Xjf表示第f次迭代后第i个点Si在WGS84坐标系的X轴坐标值,Yi表示第i个点Si在WGS84坐标系的Y轴坐标值,Yjf表示第f次迭代后第i个点Si在WGS84坐标系的Y轴坐标值,Zi表示第i个点Si在WGS84坐标系的Z轴坐标值,Zjf表示第f次迭代后第i个点Si在WGS84坐标系的Z轴坐标值,表示第f次迭代后第i个点Si和待校正的实际星载SAR图像中第j个像素点之间的斜距,fdjf表示第f次迭代后第i个点Si和待校正的实际星载SAR图像中第j个像素点之间的斜距对应的多普勒频率,表示星载雷达的空间位置中第i个点处的瞬时速度矢量,表示第f次迭代后第i个点Si和待校正的实际星载SAR图像中第j个像素点之间的斜距矢量,→表示矢量,λ表示星载雷达载频对应的波长,| |表示求绝对值操作,Re表示地球的赤道半径,hj(f-1)表示第f-1次迭代后第j个像素点的海拔高度预设值,Rp表示地球的极地半径。
求解以上方程组,三个方程,三个未知数,计算得到第f次迭代后第j个像素点的坐标(Xjf,Yjf,Zjf),所述第f次迭代后第j个像素点的坐标(Xjf,Yjf,Zjf)是在WGS84坐标系中的,将(Xjf,Yjf,Zjf)转换到经纬度坐标系中,其转换过程直接调用Matlab中的坐标转换函数ecef2lla,即将第f次迭代后第j个像素点的坐标(Xjf,Yjf,Zjf)转换到了经纬度坐标系中,得到第f次迭代后第j个像素点的经纬度坐标(Ljf,Bjf,Hjf),其中Ljf为第f次迭代后第j个像素点的经度,Bjf为第f次迭代后第j个像素点的纬度,Hjf为第f次迭代后第j个像素点的海拔高度。
然后利用航天飞机雷达地形测绘使命(SRTM)数据库中的数字高程模型(DEM)数据去找出地球上经纬度(Ljf,Bjf)对应的海拔高度Hjf',Hjf'为经纬度(Ljf,Bjf)对应的标准海拔高度,且此时的第f-1次迭代后第j个像素点的海拔高度预设值hf-1和Hjf'不相等;其中,所述SRTM数据库中的DEM数据为先验DEM数据。
2.6如果|hf-1-Hjf'|≥ε00表示设定的门限阈值,本实施例中ε0=10-2,则令f加1,将经纬度(Ljf,Bjf)对应的海拔高度Hjf'作为第f-1次迭代后第j个像素点的海拔高度预设值hf-1,返回2.5。
如果|hf-1-Hjf'|<ε0,则迭代停止,并将迭代停止时得到的第f次迭代后第j个像素点的坐标(Xjf,Yjf,Zjf),作为待校正的实际星载SAR图像中第j个像素点的定位坐标。
2.7令j加1,返回2.5,直到得到待校正的实际星载SAR图像中第1个像素点的定位坐标至待校正的实际星载SAR图像中第J个像素点的定位坐标,此时求得了待校正的实际星载SAR图像中J个像素点各自的定位坐标,完成了待校正的实际星载SAR图像中J个像素点各自的准确定位,J=P×N。
步骤3,根据待校正的实际星载SAR图像中P×N个像素点各自的定位坐标,计算得到待校正的实际星载SAR图像中P×N个像素点各自的电磁波入射角。
具体地,步骤2结束后可得到待校正的实际星载SAR图像中P×N个像素点各自的准确定位,在星载雷达的POS数据已知的情况下,根据空间几何关系得到每个像素点处电磁波的局部入射角,为下一步的反演星载SAR图像作准备。
参照图4,为计算待校正的实际星载SAR图像中的像素点电磁波入射角过程示意图;步骤3的子步骤为:
3.1根据向量夹角计算公式,计算得到待校正的实际星载SAR图像中第m行、第n列处像素点的电磁波入射角θmn
其中,Tmn表示待校正的实际星载SAR图像中第m行、第n列处的像素点,Tm(n+2)表示待校正的实际星载SAR图像中第m行、第n+2列处的像素点,当n=N-1时,待校正的实际星载SAR图像中第m行、第N+1列处的像素点Tm(N+1)不存在,直接舍去,即记为0;当n=N时,待校正的实际星载SAR图像中第m行、第N+2列处的像素点Tm(N+2)不存在,直接舍去,即记为0;Si表示第i个点,n=1,2,3,…,N,n+2=1,2,3,…,N,m=1,2,3,…,P,i=1,2,3,…,M,P表示待处理的实际星载SAR图像的方位向包含的像素数个数,M表示星载雷达的空间位置包含的点个数,i和m取值相等且一一对应;·表示点乘,*表示乘法,N表示待校正的实际星载SAR图像的距离向包含的像素点个数,→表示矢量。
3.2令m不变,且n分别取1至N,重复执行3.1,进而分别得到待校正的实际星载SAR图像中第m行、第1列处像素点的电磁波入射角θm1至待校正的实际星载SAR图像中第m行、第N列处像素点的电磁波入射角θmN,记为待校正的实际星载SAR图像中第m行N个像素点的电磁波入射角θm
3.3令m分别取1至P,重复执行3.2,进而分别得到待校正的实际星载SAR图像中第1行N个像素点的电磁波入射角θ1至待校正的实际星载SAR图像中第P行N个像素点的电磁波入射角θP,记为待校正的实际星载SAR图像中P×N个像素点各自的电磁波入射角。
步骤4,根据待校正的实际星载SAR图像中P×N个像素点各自的电磁波入射角,以及Ulaby地物散射系数经验模型,对待校正的实际星载SAR图像进行反演,得到最终反演的理想星载SAR图像Sima。
步骤4的子步骤为:
4.1根据大量的实验和研究,待校正的实际星载SAR图像的幅度与其电磁波入射角存在近似关系;即根据待校正的实际星载SAR图像中第m行、第n列处像素点的电磁波入射角θmn,计算得到理想星载SAR图像中第m行、第n列处像素点的幅度Amn
Amn=1-sin(θmn) (7)
其中,sin表示求正弦操作。
4.2令m不变,且n分别取1至N,重复执行4.1,进而分别得到理想星载SAR图像中第m行、第1列处像素点的幅度Am1至理想星载SAR图像中第m行、第N列处像素点的幅度AmN,记为理想星载星载SAR图像中第m行N个像素点的幅度Am
4.3令m分别取1至P,重复执行4.2,进而分别得到理想SAR图像中第1行N个像素点的幅度A1至理想星载SAR图像中第P行N个像素点的幅度AP,记为理想星载SAR图像中P×N个像素点各自的幅度。
上述的公式(7)是表示的一个近似关系,而且并没有考虑到雷达的工作频率、极化方式、地物类型等因素对后向散射系数的影响;要想得出更为准确的反演SAR图像,需要用到Ulaby地物散射系数经验模型。
4.4Ulaby地物散射系数经验模型是美国密歇根大学F.T.Ulaby和M.C.Dobson提出的一个简单灵活的模型,他们二人综合了20实际60年代至80年代公开发表的大量地面后向散射系数测量数据,提出了Ulaby模型经验公式,来更加准确的由电磁波入射角计算场景的后向散射系数,进而计算得到基于Ulaby地物散射系数经验模型的理想星载SAR图像中第m行、第n列处像素点的幅度σmn
σmn(dB)=P1+P2exp(-P3θmn)+P4cos(P5θmn+P6) (8)
其中,dB是分贝的单位,cos表示求余弦操作,exp表示指数函数,P1表示Ulaby地物散射系数经验模型的常数项,P2表示Ulaby地物散射系数经验模型的指数系数项,P3表示Ulaby地物散射系数经验模型的指数相位项,P4表示Ulaby地物散射系数经验模型的三角系数项,P5表示Ulaby地物散射系数经验模型的三角相位系数项,P6表示Ulaby地物散射系数经验模型的三角相位常数项;P1、P2、P3、P4、P5和P6都是考虑星载雷达工作波段、星载雷达发射信号的极化方式、观测星载雷达所在场景的地物类型等因素,并经过大量实验而得出的经验值,详细数值可以参见雷达手册。
4.5令m不变,且n分别取1至N,重复执行4.4,进而分别得到基于Ulaby地物散射系数经验模型的理想星载SAR图像中第m行、第1列处像素点的幅度σm1至基于Ulaby地物散射系数经验模型的理想星载SAR图像中第m行、第N列处像素点的幅度σmN,记为基于Ulaby地物散射系数经验模型的理想星载SAR图像中第m行N个像素点的幅度σm
4.6令m分别取1至P,重复执行4.5,进而分别得到基于Ulaby地物散射系数经验模型的理想星载SAR图像中第1行N个像素点的幅度σ1至基于Ulaby地物散射系数经验模型的理想星载SAR图像中第P行N个像素点的幅度σP,记为基于Ulaby地物散射系数经验模型的理想星载SAR图像中P×N个像素点各自的幅度,并将所述基于Ulaby地物散射系数经验模型的理想星载SAR图像中P×N个像素点各自的幅度作为经过反演得到的理想星载SAR图像,简记为最终反演的理想星载SAR图像Sima。
步骤5,分别计算待校正的实际星载SAR图像相对于最终反演的理想星载SAR图像Sima在方位向的像素偏差量na,以及待校正的实际星载SAR图像相对于最终反演的理想星载SAR图像Sima在距离向的像素偏差量nr
步骤5的子步骤为:
5.1对待校正的实际星载SAR图像和最终反演的理想星载SAR图像Sima进行配准可以使用很多方法,本发明采用相关函数法在频域实现,将待校正的实际星载SAR图像和最终反演的理想星载SAR图像Sima分别变换到二维频域,分别得到待校正的实际星载SAR图像的二维频谱S2f,以及最终反演的理想星载SAR图像的二维频谱σ2f,其表达式分别为:
S2f=fft(fft(Sreal)) (9)
σ2f=fft(fft(σMN)) (10)
其中,fft表示做快速傅立叶变换操作,Sreal表示待校正的实际星载SAR图像,σMN表示最终反演的理想星载SAR图像Sima,下标2f表示二维频域。
使用max函数分别确定待校正的实际星载SAR图像的二维频谱S2f的峰值位置和最终反演的理想星载SAR图像的二维频谱σ2f的峰值位置,然后比较S2f的峰值位置和σ2f的峰值位置的偏差,分别将S2f的峰值位置记作(Samax,Srmax),将σ2f的峰值位置记作(σamax,σrmax),Samax表示待校正的实际星载SAR图像的二维频谱最大值所在位置在方位向的坐标值,Srmax表示待校正的实际星载SAR图像的二维频谱最大值所在位置在距离向的坐标值,σamax表示最终反演的理想星载SAR图像的二维频谱最大值所在位置在方位向的坐标值,σrmax表示最终反演的理想星载SAR图像的二维频谱最大值所在位置在距离向的坐标值。
5.2进而分别计算得到待校正的实际星载SAR图像相对于最终反演的理想星载SAR图像Sima在方位向的像素偏差量na,以及待校正的实际星载SAR图像相对于最终反演的理想星载SAR图像Sima在距离向的像素偏差量nr,其表达式分别为:
na=Samaxamax (11)
nr=Srmaxrmax (12)。
步骤6,根据待校正的实际星载SAR图像相对于最终反演的理想星载SAR图像Sima在方位向的像素偏差量na,以及待校正的实际星载SAR图像相对于最终反演的理想星载SAR图像Sima在距离向的像素偏差量nr,使用Matlab中二维插值函数interp2对待校正的实际星载SAR图像进行几何精校正,得到几何精校正后的实际星载SAR图像。
具体地,根据待校正的实际星载SAR图像相对于最终反演的理想星载SAR图像在方位向的像素偏差量na,以及待校正的实际星载SAR图像相对于最终反演的理想星载SAR图像距离向的像素偏差量nr,使用Matlab中二维插值函数interp2对几何精校正后的实际星载SAR图像进行几何精校正,得到几何精校正后的实际星载SAR图像,即分别令x为几何精校正后的实际星载SAR图像中第x行,x=1,2,3,…,P;y为几何精校正后的实际星载SAR图像中第y列,y=1,2,3,…,N,P表示待处理的实际星载SAR图像的方位向包含的像素数个数,与几何精校正后的实际星载SAR图像的列数取值相等;N表示待校正的实际星载SAR图像的距离向包含的像素点个数,与几何精校正后的实际星载SAR图像的行数取值相等。
将几何精校正后的实际星载SAR图像中第x行、第y列处的像素点记为重采样后的实际星载SAR图像Srxy,Srxy=interp2(x,y,Sreal,x+nr,y+na),Sreal表示待校正的实际星载SAR图像,interp2表示Matlab中二维插值函数。
x=1,2,3,…,P,y=1,2,3,…,N,遍历待校正的实际星载SAR图像中P×N个像素点,进而得到几何精校正后的实际星载SAR图像。
步骤7,对几何精校正后的实际星载SAR图像进行地理编码,得到地理编码后的几何精校正星载SAR图像。
具体地,几何精校正后的实际星载SAR图像中P×N个像素点的坐标都是WGS84坐标系中的,现在将几何精校正后的实际星载SAR图像中P×N个像素点分别转换到经纬度坐标系中;使用Matlab中自带的一个函数ecef2lla将几何精校正后的实际星载SAR图像中P×N个像素点分别转换到经纬度坐标系中,其转换过程如图5所示。
图5中的左图是几何精校正后的实际星载SAR图像,图4中的右图是由经度轴和纬度轴组成的经纬度坐标系;当知道几何精校正后的实际星载SAR图像中每一个像素点的WGS84坐标后,通过ecef2lla函数将几何精校正后的实际星载SAR图像中每一个像素点的WGS84坐标分别转换到经纬度坐标系中,具体为:
7.1令几何精校正后的实际星载SAR图像中第m行、第n列处的像素点为T'mn,T'mn的WGS84坐标为(X'mn,Y'mn,Z'mn),X'mn表示几何精校正后的实际星载SAR图像中第m行、第n列处的像素点T'mn在WGS84坐标系中X轴的坐标值,Y'mn表示几何精校正后的实际星载SAR图像中第m行、第n列处的像素点T'mn在WGS84坐标系中Y轴的坐标值,Z'mn表示几何精校正后的实际星载SAR图像中第m行、第n列处的像素点T'mn在WGS84坐标系中Z轴的坐标值。
将几何精校正后的实际星载SAR图像中第m行、第n列处的像素点T'mn的WGS84坐标对应转换到经纬度坐标系中,得到几何精校正后的实际星载SAR图像中第m行、第n列处的像素点经纬度坐标(Lmn,Bmn,Hmn),Lmn表示几何精校正后的实际星载SAR图像中第m行、第n列处像素点的经度值,Bmn表示几何精校正后的实际星载SAR图像中第m行、第n列处像素点的纬度值,Hmn表示几何精校正后的实际星载SAR图像中第m行、第n列处像素点的高度值。
7.2令m不变,且n分别取1至N,重复执行7.1,进而分别得到几何精校正后的实际星载SAR图像中第m行、第1列处的像素点经纬度坐标(Lm1,Bm1,Hm1)至几何精校正后的实际星载SAR图像中第m行、第N列处的像素点经纬度坐标(LmN,BmN,HmN),记为几何精校正后的实际星载SAR图像中第m行N个像素点的经纬度坐标。
7.3令m分别取1至P,重复执行7.2,进而分别得到几何精校正后的实际星载SAR图像中第1行N个像素点的经纬度坐标至几何精校正后的实际星载SAR图像中第P行N个像素点的经纬度坐标,记为几何精校正后的实际星载SAR图像中P×N个像素点各自的经纬度坐标,并将所述几何精校正后的实际星载SAR图像中P×N个像素点各自的经纬度坐标作为地理编码后的几何精校正星载SAR图像。
结合实测数据对本发明效果作进一步验证说明。
参照图6,为高分三号星载SAR图像示意图,图6中每个像素点的经纬度和实际经纬度都是存在偏差的,这些偏差是由于星载雷达的***误差造成的。
图7a为图6中地形起伏较大的山地部分示意图;用所述地形起伏较大的山地部分确定星载SAR图像的***误差,从而完成几何精校正。
图7b为根据本发明方法对几何精校正后的图7a中每一个像素点分别进行反演后得到的理想星载SAR图像示意图;
图8为对图6进行几何精校正后得到的星载SAR图像示意图;
选取图8所在场景中的一个像素点来验证几何精校正的效果,图8上半部分是城区,在密集的城区中有一块矩形的建筑区,如图8中的十字线处,选取图8矩形建筑区的右下角这个像素点进行验证。
用Google Earth准确找出这个像素点的经纬度高程坐标为:(34.896336,112.816433,113),第一个参数是纬度,第二个参数是经度,第三个参数是高程,该经纬度高程坐标是该像素点的实际坐标。
在未进行几何精校正之前,经过定位这个点的经纬度高程为:(34.897016,112.817699,113),这个坐标和实际坐标的距离误差为138.1368m。
进行几何精校正之后,这个点的经纬度高程为:(34.896536,112.816483,113),这个坐标和实际坐标的距离误差为22.6720m。
可以看出,经过本专利的几何精校正技术,SAR图像中像素点的位置更加准确,SAR图像的利用价值更高;图6和图8整体看上去差距不大,但是选择其中的一个点去进行评估,就会发现经过几何精校正后的图像比校正之前,每个像素点的位置有了更为精确的改善;图9为图8经过地理编码后得到的结果示意图;图10为对图9中的每一个像素点进行评估后的结果示意图。
综上所述,仿真实验验证了本发明的正确性,有效性和可靠性。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围;这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (8)

1.一种基于先验DEM数据的星载SAR图像几何精校正方法,其特征在于,包括以下步骤:
步骤1,获取待校正的实际星载SAR图像,所述待校正的实际星载SAR图像为P×N维矩阵,P表示待校正的实际星载SAR图像的方位向包含的像素点个数,N表示待校正的实际星载SAR图像的距离向包含的像素点个数,P、N分别为大于0的正整数;
步骤2,建立待校正的实际星载SAR图像的距离多普勒模型,记为成像模型,然后利用所述成像模型对待校正的实际星载SAR图像中的P×N个像素点分别进行定位,分别得到待校正的实际星载SAR图像中P×N个像素点各自的定位坐标;
步骤3,根据待校正的实际星载SAR图像中P×N个像素点各自的定位坐标,计算得到待校正的实际星载SAR图像中P×N个像素点各自的电磁波入射角;
步骤4,根据待校正的实际星载SAR图像中P×N个像素点各自的电磁波入射角对待校正的实际星载SAR图像进行反演,得到最终反演的理想星载SAR图像;
步骤5,分别计算待校正的实际星载SAR图像相对于最终反演的理想星载SAR图像在方位向的像素偏差量na,以及待校正的实际星载SAR图像相对于最终反演的理想星载SAR图像在距离向的像素偏差量nr
步骤6,根据待校正的实际星载SAR图像相对于最终反演的理想星载SAR图像在方位向的像素偏差量na,以及待校正的实际星载SAR图像相对于最终反演的理想星载SAR图像在距离向的像素偏差量nr,对待校正的实际星载SAR图像进行几何精校正,得到几何精校正后的实际星载SAR图像。
2.如权利要求1所述的一种基于先验DEM数据的星载SAR图像几何精校正方法,其特征在于,还包括:
步骤7,对几何精校正后的实际星载SAR图像进行地理编码,得到地理编码后的几何精校正星载SAR图像。
3.如权利要求1所述的一种基于先验DEM数据的星载SAR图像几何精校正方法,其特征在于,步骤2的子步骤为:
2.1建立待校正的实际星载SAR图像的距离多普勒模型,在所述距离多普勒模型中,卫星沿着自身轨道飞行,且卫星自带的GPS会对星载雷达的空间位置坐标进行记录,星载雷达位于卫星上,星载雷达的空间位置包括M个点,M个点各自的坐标都是WGS84坐标系中的坐标,WGS84坐标系的原点是地球的中心;赤道和0度经线的交点,与地球中心的连线构成WGS84坐标系的X轴;北极点和地球的中心连线构成WGS84坐标系的Z轴,再由右手坐标系原则确定出WGS84坐标系的Y轴;将星载雷达的空间位置包括的M个点中第i个点记为Si,i=1,2,3,...,M,第i个点的坐标为(Xi,Yi,Zi),Xi表示第i个点Si在WGS84坐标系的X轴坐标值,Yi表示第i个点Si在WGS84坐标系的Y轴坐标值,Zi表示第i个点Si在WGS84坐标系的Z轴坐标值;将M个点各自的坐标记为星载雷达POS数据,星载雷达POS数据对应包括M个POS数据;将M个点各自的坐标进行逐点连接后形成星载雷达航迹;
根据星载雷达POS数据,并由速度和位移关系,计算得到星载雷达的空间位置中第l个点处的瞬时速度 l=1,2,3,...,M-1,PRF表示为脉冲重复频率,Sl+1表示第l+1个点,Sl表示第l个点,M表示星载雷达的空间位置包含的点个数,与POS数据个数取值相等;
星载雷达在卫星轨道上飞行的过程中,会向地面发射电磁波,星载雷达发射的电磁波照射到地面上时也会形成一个椭圆的照射区域,随着星载雷达从第1个POS数据到第M个POS数据运动,该椭圆的照射区域会在地面上移动形成一个长方形条带,将所述长方形条带记为SAR图像成像区域;
将与星载雷达航迹平行的SAR图像成像区域的对应方向,记作SAR图像成像区域的方位向;将与星载雷达航迹垂直的SAR图像成像区域的对应方向,记作SAR图像成像区域的距离向,且SAR图像成像区域对应待校正的实际星载SAR图像,待校正的实际星载SAR图像的方位向包含P个像素点,待校正的实际星载SAR图像的距离向包含N个像素点,则待校正的实际星载SAR图像为P×N维矩阵;
2.2将待校正的实际星载SAR图像中第m行、第n列处的像素点记作Tmn,Tmn的坐标记作(Xmn,Ymn,Zmn),Xmn表示待校正的实际星载SAR图像中第m行、第n列处的像素点在WGS84坐标系的X轴坐标值,Ymn表示待校正的实际星载SAR图像中第m行、第n列处的像素点在WGS84坐标系的Y轴坐标值,Zmn表示待校正的实际星载SAR图像中第m行、第n列处的像素点在WGS84坐标系的Z轴坐标值;
星载雷达空间位置包含的点个数与待校正的实际星载SAR图像的方位向包含的像素数个数取值相同,且一一对应;
2.3使用迭代法对待校正的实际星载SAR图像中第m行、第n列处的像素点Tmn进行定位,Tmn的坐标为(Xmn,Ymn,Zmn),n=1,2,3,…,N,m=1,2,3,…,P,P表示待校正的实际星载SAR图像的方位向包含的像素点个数,N表示待校正的实际星载SAR图像的距离向包含的像素点个数,m和n的初始值分别为1;
初始化:令f表示第f次迭代,f的初始值为1,令h0表示待校正的实际星载SAR图像中每个像素点的海拔高度预设值,其中每个像素点分别为SAR图像场景中每个像素点;设定待校正的实际星载SAR图像中包含J个像素点,令j表示第j个像素点,j∈{1,2,…,J},j的初始值为1,J=P×N;
2.4根据第f-1次迭代后第j个像素点的海拔高度预设值hf-1,得到如下方程组:
其中,Xi表示第i个点Si在WGS84坐标系的X轴坐标值,Xjf表示第f次迭代后第i个点Si在WGS84坐标系的X轴坐标值,Yi表示第i个点Si在WGS84坐标系的Y轴坐标值,Yjf表示第f次迭代后第i个点Si在WGS84坐标系的Y轴坐标值,Zi表示第i个点Si在WGS84坐标系的Z轴坐标值,Zjf表示第f次迭代后第i个点Si在WGS84坐标系的Z轴坐标值,表示第f次迭代后第i个点Si和待校正的实际星载SAR图像中第j个像素点之间的斜距,fdjf表示第f次迭代后第i个点Si和待校正的实际星载SAR图像中第j个像素点之间的斜距对应的多普勒频率,表示星载雷达的空间位置中第i个点处的瞬时速度矢量,表示第f次迭代后第i个点Si和待校正的实际星载SAR图像中第j个像素点之间的斜距矢量,→表示矢量,λ表示星载雷达载频对应的波长,||表示求绝对值操作,Re表示地球的赤道半径,hj(f-1)表示第f-1次迭代后第j个像素点的海拔高度预设值,Rp表示地球的极地半径;
求解以上方程组,计算得到第f次迭代后第j个像素点的坐标(Xjf,Yjf,Zjf),所述第f次迭代后第j个像素点的坐标(Xjf,Yjf,Zjf)是在WGS84坐标系中的,将(Xjf,Yjf,Zjf)转换到经纬度坐标系中,得到第f次迭代后第j个像素点的经纬度坐标(Ljf,Bjf,Hjf),其中Ljf为第f次迭代后第j个像素点的经度,Bjf为第f次迭代后第j个像素点的纬度,Hjf为第f次迭代后第j个像素点的海拔高度;
然后利用SRTM库中的DEM数据确定地球上经纬度(Ljf,Bjf)对应的海拔高度Hjf',Hjf'为经纬度(Ljf,Bjf)对应的标准海拔高度,且此时的第f-1次迭代后第j个像素点的海拔高度预设值hf-1和Hjf'不相等;
2.5如果|hf-1-Hjf'|≥ε00表示设定的门限阈值,则令f加1,将经纬度(Ljf,Bjf)对应的海拔高度Hjf'作为第f-1次迭代后第j个像素点的海拔高度预设值hf-1,返回2.4;
如果|hf-1-Hjf'|<ε0,则迭代停止,并将迭代停止时得到的第f次迭代后第j个像素点的坐标(Xjf,Yjf,Zjf),作为待校正的实际星载SAR图像中第j个像素点的定位坐标。
2.6令j加1,返回2.4,直到得到待校正的实际星载SAR图像中第1个像素点的定位坐标至待校正的实际星载SAR图像中第J个像素点的定位坐标,此时求得了待校正的实际星载SAR图像中J个像素点各自的定位坐标,完成了待校正的实际星载SAR图像中J个像素点各自的准确定位,J=P×N,即得到待校正的实际星载SAR图像中P×N个像素点各自的定位坐标。
4.如权利要求3所述的一种基于先验DEM数据的星载SAR图像几何精校正方法,其特征在于,步骤3的子步骤为:
3.1计算得到待校正的实际星载SAR图像中第m行、第n列处像素点的电磁波入射角θmn
其中,Tmn表示待校正的实际星载SAR图像中第m行、第n列处的像素点,Tm(n+2)表示待校正的实际星载SAR图像中第m行、第n+2列处的像素点,当n=N-1时,待校正的实际星载SAR图像中第m行、第N+1列处的像素点Tm(N+1)不存在,直接舍去,即记为0;当n=N时,待校正的实际星载SAR图像中第m行、第N+2列处的像素点Tm(N+2)不存在,直接舍去,即记为0;Si表示第i个点n=1,2,3,…,N,n+2=1,2,3,…,N,m=1,2,3,…,P,i=1,2,3,…,M,P表示待处理的实际星载SAR图像的方位向包含的像素数个数,M表示星载雷达的空间位置包含的点个数,i和m取值相等且一一对应;·表示点乘,*表示乘法,N表示待校正的实际星载SAR图像的距离向包含的像素点个数,→表示矢量;
3.2令m不变,且n分别取1至N,重复执行3.1,进而分别得到待校正的实际星载SAR图像中第m行、第1列处像素点的电磁波入射角θm1至待校正的实际星载SAR图像中第m行、第N列处像素点的电磁波入射角θmN,记为待校正的实际星载SAR图像中第m行N个像素点的电磁波入射角θm
3.3令m分别取1至P,重复执行3.2,进而分别得到待校正的实际星载SAR图像中第1行N个像素点的电磁波入射角θ1至待校正的实际星载SAR图像中第P行N个像素点的电磁波入射角θP,记为待校正的实际星载SAR图像中P×N个像素点各自的电磁波入射角。
5.如权利要求4所述的一种基于先验DEM数据的星载SAR图像几何精校正方法,其特征在于,步骤4的子步骤为:
4.1计算得到基于Ulaby地物散射系数经验模型的理想星载SAR图像中第m行、第n列处像素点的幅度σmn
σmn(dB)=P1+P2exp(-P3θmn)+P4cos(P5θmn+P6)
其中,dB是分贝的单位,cos表示求余弦操作,exp表示指数函数,P1表示Ulaby地物散射系数经验模型的常数项,P2表示Ulaby地物散射系数经验模型的指数系数项,P3表示Ulaby地物散射系数经验模型的指数相位项,P4表示Ulaby地物散射系数经验模型的三角系数项,P5表示Ulaby地物散射系数经验模型的三角相位系数项,P6表示Ulaby地物散射系数经验模型的三角相位常数项;
4.2令m不变,且n分别取1至N,重复执行4.1,进而分别得到基于Ulaby地物散射系数经验模型的理想星载SAR图像中第m行、第1列处像素点的幅度σm1至基于Ulaby地物散射系数经验模型的理想星载SAR图像中第m行、第N列处像素点的幅度σmN,记为基于Ulaby地物散射系数经验模型的理想星载SAR图像中第m行N个像素点的幅度σm
4.3令m分别取1至P,重复执行4.2,进而分别得到基于Ulaby地物散射系数经验模型的理想星载SAR图像中第1行N个像素点的幅度σ1至基于Ulaby地物散射系数经验模型的理想星载SAR图像中第P行N个像素点的幅度σP,记为基于Ulaby地物散射系数经验模型的理想星载SAR图像中P×N个像素点各自的幅度,并将所述基于Ulaby地物散射系数经验模型的理想星载SAR图像中P×N个像素点各自的幅度作为经过反演得到的理想星载SAR图像,简记为最终反演的理想星载SAR图像Sima。
6.如权利要求5所述的一种基于先验DEM数据的星载SAR图像几何精校正方法,其特征在于,步骤5的子步骤为:
5.1将待校正的实际星载SAR图像和最终反演的理想星载SAR图像Sima分别变换到二维频域,分别得到待校正的实际星载SAR图像的二维频谱S2f,以及最终反演的理想星载SAR图像的二维频谱σ2f,其表达式分别为:
S2f=fft(fft(Sreal))
σ2f=fft(fft(σMN))
其中,fft表示做快速傅立叶变换操作,Sreal表示待校正的实际星载SAR图像,σMN表示最终反演的理想星载SAR图像,下标2f表示二维频域;
分别确定待校正的实际星载SAR图像的二维频谱S2f的峰值位置和最终反演的理想星载SAR图像的二维频谱σ2f的峰值位置,并分别将S2f的峰值位置记作(Samax,Srmax),将σ2f的峰值位置记作(σamax,σrmax),Samax表示待校正的实际星载SAR图像的二维频谱最大值所在位置在方位向的坐标值,Srmax表示待校正的实际星载SAR图像的二维频谱最大值所在位置在距离向的坐标值,σamax表示最终反演的理想星载SAR图像的二维频谱最大值所在位置在方位向的坐标值,σrmax表示最终反演的理想星载SAR图像的二维频谱最大值所在位置在距离向的坐标值;
5.2进而分别计算得到待校正的实际星载SAR图像相对于最终反演的理想星载SAR图像在方位向的像素偏差量na,以及待校正的实际星载SAR图像相对于最终反演的理想星载SAR图像在距离向的像素偏差量nr,其表达式分别为:na=Samaxamax,nr=Srmaxrmax
7.如权利要求6所述的一种基于先验DEM数据的星载SAR图像几何精校正方法,其特征在于,步骤6的过程为:
根据待校正的实际星载SAR图像相对于最终反演的理想星载SAR图像在方位向的像素偏差量na,以及待校正的实际星载SAR图像相对于最终反演的理想星载SAR图像距离向的像素偏差量nr,使用Matlab中二维插值函数interp2对几何精校正后的实际星载SAR图像进行几何精校正,得到几何精校正后的实际星载SAR图像。
8.如权利要求1或7所述的一种基于先验DEM数据的星载SAR图像几何精校正方法,其特征在于,步骤7的子步骤为:
7.1令几何精校正后的实际星载SAR图像中第m行、第n列处的像素点为T'mn,T'mn的WGS84坐标为(X'mn,Y'mn,Z'mn),X'mn表示几何精校正后的实际星载SAR图像中第m行、第n列处的像素点T'mn在WGS84坐标系中X轴的坐标值,Y'mn表示几何精校正后的实际星载SAR图像中第m行、第n列处的像素点T'mn在WGS84坐标系中Y轴的坐标值,Z'mn表示几何精校正后的实际星载SAR图像中第m行、第n列处的像素点T'mn在WGS84坐标系中Z轴的坐标值;
将几何精校正后的实际星载SAR图像中第m行、第n列处的像素点T'mn的WGS84坐标对应转换到经纬度坐标系中,得到几何精校正后的实际星载SAR图像中第m行、第n列处的像素点经纬度坐标(Lmn,Bmn,Hmn),Lmn表示几何精校正后的实际星载SAR图像中第m行、第n列处像素点的经度值,Bmn表示几何精校正后的实际星载SAR图像中第m行、第n列处像素点的纬度值,Hmn表示几何精校正后的实际星载SAR图像中第m行、第n列处像素点的高度值;
7.2令m不变,且n分别取1至N,重复执行7.1,进而分别得到几何精校正后的实际星载SAR图像中第m行、第1列处的像素点经纬度坐标(Lm1,Bm1,Hm1)至几何精校正后的实际星载SAR图像中第m行、第N列处的像素点经纬度坐标(LmN,BmN,HmN),记为几何精校正后的实际星载SAR图像中第m行N个像素点的经纬度坐标;
7.3令m分别取1至P,重复执行7.2,进而分别得到几何精校正后的实际星载SAR图像中第1行N个像素点的经纬度坐标至几何精校正后的实际星载SAR图像中第P行N个像素点的经纬度坐标,记为几何精校正后的实际星载SAR图像中P×N个像素点各自的经纬度坐标,并将所述几何精校正后的实际星载SAR图像中P×N个像素点各自的经纬度坐标作为地理编码后的几何精校正星载SAR图像。
CN201710371665.7A 2017-05-24 2017-05-24 基于先验dem数据的星载sar图像几何精校正方法 Active CN107238824B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710371665.7A CN107238824B (zh) 2017-05-24 2017-05-24 基于先验dem数据的星载sar图像几何精校正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710371665.7A CN107238824B (zh) 2017-05-24 2017-05-24 基于先验dem数据的星载sar图像几何精校正方法

Publications (2)

Publication Number Publication Date
CN107238824A true CN107238824A (zh) 2017-10-10
CN107238824B CN107238824B (zh) 2019-11-22

Family

ID=59985181

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710371665.7A Active CN107238824B (zh) 2017-05-24 2017-05-24 基于先验dem数据的星载sar图像几何精校正方法

Country Status (1)

Country Link
CN (1) CN107238824B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109298421A (zh) * 2018-11-14 2019-02-01 北京遥感设备研究所 一种可配置图幅的sar成像***及其实现方法
CN109597074A (zh) * 2018-12-28 2019-04-09 中国测绘科学研究院 一种sar影像几何定位参数校正方法及***
CN110133682A (zh) * 2019-01-08 2019-08-16 西安电子科技大学 星载全方位sar自适应目标三维重建方法
CN110456319A (zh) * 2019-08-29 2019-11-15 西安电子工程研究所 一种基于srtm的雷达通视性计算方法
CN110488287A (zh) * 2019-07-30 2019-11-22 中国科学院电子学研究所 多基sar相位失配的校正方法、装置、计算设备及存储介质
CN110865346A (zh) * 2018-08-28 2020-03-06 中国人民解放军61646部队 一种基于直接定位算法的星载sar时间参数标定方法
CN111127334A (zh) * 2019-11-15 2020-05-08 航天恒星科技有限公司 基于rd平面像素映射的sar图像实时几何校正方法及***
CN113093190A (zh) * 2021-04-08 2021-07-09 中国电子科技集团公司第三十八研究所 基于高精度组合惯导***的机载条带sar图像定位方法
CN113702972A (zh) * 2021-08-30 2021-11-26 中国科学院空天信息创新研究院 基于地形先验的机载多通道雷达幅相误差估计方法
CN114325709A (zh) * 2022-03-14 2022-04-12 中国科学院空天信息创新研究院 多角度星载sar成像方法、装置、设备及介质
CN116430346A (zh) * 2023-06-13 2023-07-14 西安羚控电子科技有限公司 一种sar图像像素点经纬度计算方法及装置
CN116503269A (zh) * 2023-03-27 2023-07-28 中山大学 一种sar图像的校正方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102323571A (zh) * 2011-05-31 2012-01-18 北京航空航天大学 综合总体参数的星载双天线sar干涉定标器布放方法
CN102654576A (zh) * 2012-05-16 2012-09-05 西安电子科技大学 基于sar图像和dem数据的图像配准方法
CN104091064A (zh) * 2014-07-02 2014-10-08 北京航空航天大学 基于优化解空间搜索法的PS-DInSAR地表形变测量参数估计方法
CN106249236A (zh) * 2016-07-12 2016-12-21 北京航空航天大学 一种星载InSAR长短基线图像联合配准方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102323571A (zh) * 2011-05-31 2012-01-18 北京航空航天大学 综合总体参数的星载双天线sar干涉定标器布放方法
CN102654576A (zh) * 2012-05-16 2012-09-05 西安电子科技大学 基于sar图像和dem数据的图像配准方法
CN104091064A (zh) * 2014-07-02 2014-10-08 北京航空航天大学 基于优化解空间搜索法的PS-DInSAR地表形变测量参数估计方法
CN106249236A (zh) * 2016-07-12 2016-12-21 北京航空航天大学 一种星载InSAR长短基线图像联合配准方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨桃丽 等: "星载多站方位多通道高分辨宽测绘带SAR 成像", 《电子与信息学报》 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110865346A (zh) * 2018-08-28 2020-03-06 中国人民解放军61646部队 一种基于直接定位算法的星载sar时间参数标定方法
CN110865346B (zh) * 2018-08-28 2021-07-20 中国人民解放军61646部队 一种基于直接定位算法的星载sar时间参数标定方法
CN109298421A (zh) * 2018-11-14 2019-02-01 北京遥感设备研究所 一种可配置图幅的sar成像***及其实现方法
CN109298421B (zh) * 2018-11-14 2022-09-30 北京遥感设备研究所 一种可配置图幅的sar成像***及其实现方法
CN109597074A (zh) * 2018-12-28 2019-04-09 中国测绘科学研究院 一种sar影像几何定位参数校正方法及***
CN110133682B (zh) * 2019-01-08 2023-02-10 西安电子科技大学 星载全方位sar自适应目标三维重建方法
CN110133682A (zh) * 2019-01-08 2019-08-16 西安电子科技大学 星载全方位sar自适应目标三维重建方法
CN110488287A (zh) * 2019-07-30 2019-11-22 中国科学院电子学研究所 多基sar相位失配的校正方法、装置、计算设备及存储介质
CN110456319A (zh) * 2019-08-29 2019-11-15 西安电子工程研究所 一种基于srtm的雷达通视性计算方法
CN111127334A (zh) * 2019-11-15 2020-05-08 航天恒星科技有限公司 基于rd平面像素映射的sar图像实时几何校正方法及***
CN111127334B (zh) * 2019-11-15 2023-12-12 航天恒星科技有限公司 基于rd平面像素映射的sar图像实时几何校正方法及***
CN113093190A (zh) * 2021-04-08 2021-07-09 中国电子科技集团公司第三十八研究所 基于高精度组合惯导***的机载条带sar图像定位方法
CN113702972A (zh) * 2021-08-30 2021-11-26 中国科学院空天信息创新研究院 基于地形先验的机载多通道雷达幅相误差估计方法
CN114325709A (zh) * 2022-03-14 2022-04-12 中国科学院空天信息创新研究院 多角度星载sar成像方法、装置、设备及介质
CN116503269A (zh) * 2023-03-27 2023-07-28 中山大学 一种sar图像的校正方法及装置
CN116503269B (zh) * 2023-03-27 2023-12-19 中山大学 一种sar图像的校正方法及装置
CN116430346A (zh) * 2023-06-13 2023-07-14 西安羚控电子科技有限公司 一种sar图像像素点经纬度计算方法及装置
CN116430346B (zh) * 2023-06-13 2023-10-17 西安羚控电子科技有限公司 一种sar图像像素点经纬度计算方法及装置

Also Published As

Publication number Publication date
CN107238824B (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
CN107238824B (zh) 基于先验dem数据的星载sar图像几何精校正方法
Magruder et al. Performance analysis of airborne photon-counting lidar data in preparation for the ICESat-2 mission
CN103439693B (zh) 一种线阵sar稀疏重构成像与相位误差校正方法
Boy et al. CryoSat-2 SAR-mode over oceans: Processing methods, global assessment, and benefits
Kurtz et al. Sea ice thickness, freeboard, and snow depth products from Operation IceBridge airborne data
CN102288964B (zh) 一种星载高分辨率合成孔径雷达的成像处理方法
Brunt et al. Assessment of NASA airborne laser altimetry data using ground-based GPS data near Summit Station, Greenland
CN103926589A (zh) 星载激光测高***固体地表目标平面和高程精度检测方法
Rodriguez et al. Wide-swath altimetry: a review
CN110646782B (zh) 一种基于波形匹配的星载激光在轨指向检校方法
Li et al. Dual antenna space-based GNSS-R ocean surface mapping: Oil slick and tropical cyclone sensing
EP2759847A1 (en) Method and apparatus for determining equivalent velocity
RU2372627C1 (ru) Способ получения двумерного радиолокационного изображения объекта в большом диапазоне изменения величин эффективных площадей рассеивания локальных центров при многочастотном импульсном зондировании
Gens Quality assessment of SAR interferometric data
Fois et al. DopSCAT: A mission concept for simultaneous measurements of marine winds and surface currents
CN103778633B (zh) 确定数字高程模型单元网格遮挡的方法及装置
CN105842259A (zh) 星载盐度计冷空外定标方法和装置
CN109116351A (zh) 一种星载InSAR定位解析算法
CN117491978A (zh) 基于点云数据的星载激光雷达回波仿真方法及装置
CN106597438A (zh) 基于物理光学的太赫兹雷达回波成像方法
Schutz GLAS altimeter post-launch calibration/validation Plan
Carreno-Luengo Contributions to GNSS-R earth remote sensing from nano-satellites
Csatho et al. Ice sheet elevation mapping and change detection with the Ice, Cloud and land Elevation Satellite-2
CN113420932B (zh) 卫星星座观测影响评估方法、装置、设备及介质
Tummala Synthetic Aperture Radar (SAR) Data Simulation for Radar Backscatter Cross-section Retrieval

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Li Zhenfang

Inventor after: Lou Liangsheng

Inventor after: Li Shizhong

Inventor after: Tian Feng

Inventor after: Xing Chao

Inventor before: Li Zhenfang

Inventor before: Tian Feng

Inventor before: Xing Chao

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant