CN107238538B - 弱***诱导的应变型岩爆现场模拟试验方法 - Google Patents

弱***诱导的应变型岩爆现场模拟试验方法 Download PDF

Info

Publication number
CN107238538B
CN107238538B CN201710390981.9A CN201710390981A CN107238538B CN 107238538 B CN107238538 B CN 107238538B CN 201710390981 A CN201710390981 A CN 201710390981A CN 107238538 B CN107238538 B CN 107238538B
Authority
CN
China
Prior art keywords
tunnel
test
hole
rock
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710390981.9A
Other languages
English (en)
Other versions
CN107238538A (zh
Inventor
严鹏
董凯
卢文波
陈明
王高辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN201710390981.9A priority Critical patent/CN107238538B/zh
Publication of CN107238538A publication Critical patent/CN107238538A/zh
Application granted granted Critical
Publication of CN107238538B publication Critical patent/CN107238538B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/30Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
    • G01N3/313Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight generated by explosives
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0658Indicating or recording means; Sensing means using acoustic or ultrasonic detectors

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

本发明提出一种弱***诱导的应变型岩爆现场模拟试验方法,在深埋隧洞最大埋深段开挖试验支洞和监测支洞,利用数值模拟确定监测支洞围岩中的应力集中区,然后向围岩应力集中区钻设炮孔并在炮孔底部进行装药,同时布置振动和动应变测试孔,形成弱***,诱导应力集中区岩体所积累的应变能释放,形成模拟岩爆,对试验岩爆的动力效应进行动应变和振动测试。本发明方法通过分析实测的岩体振动和动应变数据,揭示岩爆过程中能量释放速率与诱发振动大小和岩爆烈度的内在联系,为岩爆的预测及防治提供帮助;能够广泛应用于水利水电工程、交通、矿山、国家战略防护和深部基础物理实验等领域,对岩爆的预测及防治,保证地下洞室安全施工具有重大意义。

Description

弱***诱导的应变型岩爆现场模拟试验方法
技术领域
一种弱***诱导的应变型岩爆现场模拟试验方法,可广泛应用于水利水电工程、交通、矿山、国家战略防护和深部基础物理实验等领域深埋地下工程应变型岩爆现场模拟。
背景技术
我国是世界第一能源消费国,一次能源的80%煤炭提供。为保证国家能源和环境安全,十三五期间,我国将新增常规水电装机6000万kw,我国西部陆续开工建设一批采用深埋引水隧洞和地下厂房的大型水电枢纽。大埋深、高地应力是我国西南地区深埋工程的最大特点。例如已建成投产的锦屏二级水电站4条引水隧洞最大埋深2525m,实测最大主应力约42MPa,预测隧洞轴线上的最大主应力达72MPa;地处雅鲁藏布江大拐弯的墨脱水电站,引水隧洞埋深达4000m,地应力超过100MPa;同时,我国交通隧道建设、矿藏资源开采也进入到了1000~2000m的开挖深度。这些工程均需在复杂地质和高地应力条件下进行岩石高边坡、大跨度地下洞室群或超长深埋隧洞的大规模、高强度岩石开挖。
高应力岩体的开挖将导致围岩应变能持续耗散与释放,可能诱发岩爆、突发大变形等动力地质灾害,严重威胁深埋隧洞工程的施工安全。岩爆是地层中高地应力区地下洞室开挖中应变能突然释放时围岩脆性破坏形成的一种动力失稳现象。当地下洞室的硬质脆性岩体由于高地应力的作用积累了大量弹性应变能,由于开挖洞室和巷道,岩体内的应力发生重分布且洞壁附近产生应力集中,当集中的应力超过岩石的强度时,应变能就会突然释放,岩体发生猛烈的脆性失稳破坏,破坏后的围岩发生爆裂松脱、剥落,岩块发生猛烈地弹射甚至抛射,直接威胁施工人员、设备的安全。
由于影响岩爆的因素众多,除了受岩性条件和应力条件控制外,开采条件对岩爆的发生有很大影响。目前对岩爆的发生破坏机制和岩爆的预测还不够准确,为揭示岩爆的机理,才能够实现岩爆的预测和防治。而试验手段是揭示岩爆机制研究的重要基础。目前国内外针对岩爆的模拟试验大致分为室内试验和现场试验。室内试验方面,国外学者Cook发明了刚性试验机,并获得了第一条岩石全过程应力应变曲线,用于解释岩石峰后承载能力,并提出了岩爆预测的刚性理论。S.H.Cho、T. J. A. Wang、H. D. Park提出用单轴循环加、卸载实验结果预测岩爆发生的可能性。M.N.Bagde和V.Petorša则是用单轴动循环加、卸载实验结果来评价有岩爆倾向性的岩石在开采过程中的稳定性问题。国内学者进行了许多加载、卸载和各种不同应力状态下的岩爆力学试验,为岩爆的刚度理论、强度理论、能量理论、冲击倾向性理论及断裂理论等提供了试验依据。室内三轴试均表明卸荷速率对岩爆的发生及规模有重要影响;何满潮利用自行设计的深部岩爆过程实验***对花岗岩岩爆全过程进行了动力试验;李夕兵研制出中高应变率段岩石动静组合加载试验***,进行动静组合加载条件下的岩爆试验;殷志强进一步从动静组合加载下岩石破坏过程中能量储存和释放特征出发,充分借鉴现有岩爆倾向性指标的合理之处,提出动静组合加载下的岩爆的倾向性指标;苏国韶等利用自主研发的真三轴岩爆试验***,在实现低频周期扰动荷载与静载联合作用下岩爆过程模拟的前提下,开展了不同加载速率的应变型岩爆的室内模拟试验。
在现场试验方面,Šilený和A. Milev在南非Kopanang金矿开采现场进行了岩爆模拟实验,在该金矿一废弃隧洞外岩体内布置五个与该洞室平行的=炮孔,利用***的***能来模拟围岩中的应变能,在洞室内设计若干次可控***模拟微震源,并用高速摄影分析岩爆时弹射块体的弹射速度。在震源附近布置微震组,在远区布置微震监测设备,岩爆前后运用映射和探地雷达对岩体条件(断裂、接缝、岩石强度等)进行考察以确定损伤的程度和类型,利用地震波监测原理分析岩爆预测的准确性。
虽然国内外学者进行了大量的岩爆实验工作,但是主要以室内试验为主,通过单轴或者三轴加卸载试验在室内模拟岩爆,分析产生岩爆的机理。但是在试验条件下很难再现岩爆整个过程,室内试验通常很难模拟实际工程开挖条件,岩石试样的形式和尺寸也和实际岩体有较大差异,岩爆室内试验方面还存在一定的不足。
发明内容
针对岩爆室内试验的不足,本发明提出一种弱***诱导的应变型岩爆现场模拟试验方法,通过在围岩应力集中区进行弱***,诱导岩体发生应变型岩爆,测试岩爆发生过程的振动和应变数据,进而对岩爆的动力效应作出评价,进而为应变型岩爆预测预报和支护设计提供理论支撑。
本发明采用的技术方案如下:
一种弱***诱导的应变型岩爆现场模拟试验方法,包括以下步骤:
步骤一,在深埋隧洞最大埋深段开挖试验支洞和监测支洞;
步骤二,通过数值模拟确定试验支洞的围岩应力集中区,并通过岩爆判据确定围岩应力集中区内可能发生岩爆的区域;
步骤三,通过试验支洞向可能发生岩爆的围岩应力集中区钻设若干炮孔,炮孔钻设到试验支洞围岩应力集中区的内部;通过监测支洞向岩体内钻设若干振动测试孔,通过试验支洞向岩体内钻设若干振动测试孔和若干动应变测试孔,并且振动测试孔和动应变测试孔布置在围岩应力集中区的四周;
步骤四,在振动测试孔内布置振动测试传感器,在动应变测试孔内布置动应变片,现场布置振动测试***和动应变测试***,振动测试传感器与振动测试***电连接,动应变片与动应变测试***电连接;在炮孔底部进行装药,堵塞炮孔;待测试***调试完毕,起爆孔底药卷,形成模拟岩爆,从而对岩爆的动力效应做出评价。
上述步骤一中,深埋隧洞最小埋深为800m。
上述步骤一中,试验支洞和监测支洞洞轴线均垂直于隧洞主洞轴线。
上述步骤一中,试验支洞和监测支洞的间距为24-26m。
上述步骤一中,试验支洞和监测支洞的间距为25m。
监测支洞的洞型从洞口向洞内依次为:城门洞型、城门洞型、圆形,三种洞型对应的长度依次为14—16m,9-11m、9-11m,三种洞型的洞径依次为4-6m、2.5-3.5m,2.5-3.5m,试验支洞的洞型为城门洞型,长度为32-38m。
上述步骤一中,监测支洞的洞型从洞口向洞内依次为:城门洞型、城门洞型、圆形,三种洞型对应的长度依次为15m、10m、10m,三种洞型的洞径依次为5m、3m、3m;试验支洞的洞型为城门洞型,长度为35m。
上述步骤二中,数值模拟采用有限元或离散元方法。
上述步骤四中,只在围岩应力集中区内的炮孔段进行装药,围岩应力集中区外的炮孔段不进行装药。
需要说明的是,孔底装药段的长度视围岩应力集中区的范围而定;
需要说明的是,炮孔钻设到试验支洞围岩应力集中区的内部,其目的是***时诱导应力集中区的应变能充分释放;
需要说明的是,为了尽可能获取有效的实验数据,对岩爆的动力效应进行动应变和诱发振动测试,振动测试孔和动应变测试孔布置在围岩应力集中区的四周;为了消除面波的影响,提高现场检测精度,***振动和动应变监测测点布置在试验支洞和监测支洞之间的岩体内,通过预埋振动测试传感器和动应变片来进行监测。
需要说明的是,试验支洞与监测支洞均与隧道主洞垂直,且监测支洞和试验支洞间距为20m,若间距太短,会破坏试验支洞围岩应力集中区,间距太长,会影响振动和动应变数据的采集,并且会延长钻设炮孔深度,增加试验费用。
需要说明的是,在利用振动传感器获得实测振动信号之后,需要对实测振动信号进行解耦分离,分别获得地应力瞬态卸载诱发振动信号和***荷载激发振动信号。
与现有技术相比,本发明具有如下特点和有益效果:
1、实验条件良好。目前西南山区大量深埋地下工程的建设,提高了本发明的可操作性。振动和动应变测试等相关技术已经日趋成熟,提高了试验成功的可能。
2、通过在施工现场弱***诱发应变型岩爆,可以在深部地下洞室内直接记录岩爆过程中,伴随着能量瞬态释放诱发的振动和动应变数据,这些数据是研究岩爆动力效应最直接的手段。
3、通过岩爆现场试验,可以为岩爆的数值试验提供现场验证,提高数值试验结果的说服性。
4、通过岩爆的现场试验,可以为揭示岩爆过程中能量释放速率与诱发振动大小和岩爆烈度的内在联系,为岩爆的预测和防治提供一种新的思路。
5. 本发明方法为一种基于应变型岩爆诱发围岩振动特性的岩爆烈度预测方法,通过采集并且处理由测试***实测的振动数据和动应变数据,得到岩体振动和动应变曲线,对这些曲线进行分析,获取岩爆诱发围岩振动的时能密度曲线,同时研究应变型岩爆诱发围岩振动特性,从而对岩爆的动力效应做出评价。
附图说明
图1本发明实施例现场试验平面布置图;
图2 本发明图1中的A-A截面纵剖面图;
图3 本发明图2中的B-B截面纵剖面图;
图4 本发明实施例实测振动信号地应力瞬态诱发振动波形图;
图5本发明实施例实测振动信号***荷载激发振动波形图。
图中,1为隧洞主洞,2为监测支洞,3为城门洞型监测支洞,4为圆形监测支洞,5为试验支洞,6为炮孔,7为振动测试孔,8为动应变测试孔,9为应力集中区,10为炮孔装药段。
具体实施方式
某深部隧洞主洞长63.43Km,直径为8.4m,最大埋深1412m,本现场试验依托该隧洞工程的施工开展。
1、开挖试验支洞和监测支洞
在该深部隧洞的最大埋深段(1000~1300m)选择较为岩性较为均匀的部位,分别开挖试验支洞与监测支洞,试验支洞与监测支洞的相对位置如图1所示。试验支洞与监测支洞轴线均与主洞轴线正交。试验支洞长度为35m,洞型从洞口依次为城门洞型、城门洞型、圆形,长度依次为15m、10m、10m。洞径分别为5m、3m、3m。监测支洞长35m,全段均为城门洞型。
2、确定应力集中区
通过数值模拟,确定试验支洞的围岩应力集中区,并通过岩爆判据确定围岩应力集中区内可能发生岩爆的区域。
3、钻孔、布置监测设备和装药
从试验支洞的边墙向围岩的应力集中区钻设炮孔,炮孔直径为70mm,在应力集中区内的炮孔段进行连续装药,药卷直径ɸ32mm。分别从试验支洞的边墙向应力集中区下部围岩中钻设振动测试孔和动应变测试孔,从试验支洞的顶拱向应力集中区的右上方钻设振动测试孔,从监测支洞向应力集中区的左上方钻设振动测试孔,如图2-3所示。所有的振动和监测测试孔均围绕着应力集中区的布置,并且与应力集中区保持一定距离,防止起爆时对测试孔造成损坏,影响试验数据采集。
4、布置监测设备和起爆***
分别在振动测试孔和动应变测试孔内布置振动测试传感器和动应变片,现场布置振动测试***和动应变测试***,振动测试传感器与振动测试***电连接,动应变片与动应变测试***电连接;在炮孔装药段布置起爆***,堵塞炮孔。
5、起爆
待整个试验***布置完成后,检查无误,起爆,形成模拟岩爆。
6、实验数据的采集和处理
弱***起爆诱发岩爆的过程中,可以收集振动测试数据和动应变数据,对实测振动信号进行解耦分离,获得地应力瞬态卸载诱发振动信号和***荷载激发振动信号,分析岩爆诱发围岩振动特性,从而对岩爆的动力效应做出评价。

Claims (9)

1.一种弱***诱导的应变型岩爆现场模拟试验方法,其特征在于包括以下步骤:
步骤一,在深埋隧洞最大埋深段开挖试验支洞和监测支洞;
步骤二,通过数值模拟确定试验支洞的围岩应力集中区,并通过岩爆判据确定围岩应力集中区内可能发生岩爆的区域;
步骤三,通过试验支洞向可能发生岩爆的围岩应力集中区钻设若干炮孔,炮孔钻设到试验支洞围岩应力集中区的内部;通过监测支洞向岩体内钻设若干振动测试孔,通过试验支洞向岩体内钻设若干振动测试孔和若干动应变测试孔,并且振动测试孔和动应变测试孔布置在围岩应力集中区的四周;
步骤四,在振动测试孔内布置振动测试传感器,在动应变测试孔内布置动应变片,现场布置振动测试***和动应变测试***,振动测试传感器与振动测试***电连接,动应变片与动应变测试***电连接;在炮孔底部进行装药,堵塞炮孔;待测试***调试完毕,起爆孔底药卷,形成模拟岩爆,从而对岩爆的动力效应做出评价。
2.根据权利要求1所述的弱***诱导的应变型岩爆现场模拟试验方法,其特征在于:
上述步骤一中,深埋隧洞最小埋深为800m。
3.根据权利要求1所述的弱***诱导的应变型岩爆现场模拟试验方法,其特征在于:
上述步骤一中,试验支洞和监测支洞轴线均垂直于隧洞主洞轴线。
4.根据权利要求3所述的弱***诱导的应变型岩爆现场模拟试验方法,其特征在于:上述步骤一中,试验支洞和监测支洞的间距为24-26m。
5.根据权利要求3所述的弱***诱导的应变型岩爆现场模拟试验方法,其特征在于:
上述步骤一中,试验支洞和监测支洞的间距为25m。
6.根据权利要求1所述的弱***诱导的应变型岩爆现场模拟试验方法,其特征在于:
监测支洞的洞型从洞口向洞内依次为:城门洞型、城门洞型、圆形,三种洞型对应的长度依次为14—16m,9-11m、9-11m,三种洞型的洞径依次为4-6m、2.5-3.5m,2.5-3.5m,试验支洞的洞型为城门洞型,长度为32-38m。
7.根据权利要求1所述的弱***诱导的应变型岩爆现场模拟试验方法,其特征在于:
上述步骤一中,监测支洞的洞型从洞口向洞内依次为:城门洞型、城门洞型、圆形,三种洞型对应的长度依次为15m、10m、10m,三种洞型的洞径依次为5m、3m、3m;试验支洞的洞型为城门洞型,长度为35m。
8.根据权利要求1所述的弱***诱导的应变型岩爆现场模拟试验方法,其特征在于:
上述步骤二中,数值模拟采用有限元或离散元方法。
9.根据权利要求1所述的弱***诱导的应变型岩爆现场模拟试验方法,其特征在于:
上述步骤四中,只在围岩应力集中区内的炮孔段进行装药,围岩应力集中区外的炮孔段不进行装药。
CN201710390981.9A 2017-05-27 2017-05-27 弱***诱导的应变型岩爆现场模拟试验方法 Active CN107238538B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710390981.9A CN107238538B (zh) 2017-05-27 2017-05-27 弱***诱导的应变型岩爆现场模拟试验方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710390981.9A CN107238538B (zh) 2017-05-27 2017-05-27 弱***诱导的应变型岩爆现场模拟试验方法

Publications (2)

Publication Number Publication Date
CN107238538A CN107238538A (zh) 2017-10-10
CN107238538B true CN107238538B (zh) 2020-03-10

Family

ID=59984640

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710390981.9A Active CN107238538B (zh) 2017-05-27 2017-05-27 弱***诱导的应变型岩爆现场模拟试验方法

Country Status (1)

Country Link
CN (1) CN107238538B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112630060A (zh) * 2019-10-08 2021-04-09 四川大学 一种用于评价含裂纹巷道围岩动态稳定性的新构型
CN113532209B (zh) * 2021-07-30 2022-04-29 武汉大学 瞬态卸荷振动测量方法
CN113685231B (zh) * 2021-08-23 2022-10-04 中国矿业大学(北京) 支护体系抗***动力冲击的试验方法
CN114964469B (zh) * 2022-04-21 2023-07-21 东北大学 一种非对称高应力隧道***振动测试方法及***
CN115164661B (zh) * 2022-06-17 2024-04-19 四川华能泸定水电有限公司 定向聚能环及隧道围岩应力解除***方法
CN115541387B (zh) * 2022-11-24 2023-03-28 中国矿业大学(北京) 冲击与岩爆倾向性岩体模拟方法
CN116663097B (zh) * 2023-04-17 2024-02-02 中国科学院武汉岩土力学研究所 深埋硬岩施工隧洞岩爆源区超前应力释放孔参数设计方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4712624A (en) * 1985-09-04 1987-12-15 Mazda Motor Corporation Rock drill with tunnel profile control system
CN101914912A (zh) * 2010-08-09 2010-12-15 中国科学院武汉岩土力学研究所 深部地下工程岩爆孕育演化过程的原位测试方法
CN102539652A (zh) * 2012-01-05 2012-07-04 浙江中科依泰斯卡岩石工程研发有限公司 深埋隧洞围岩开挖响应***性监测方法
CN103412112A (zh) * 2013-08-21 2013-11-27 中国矿业大学(北京) 一种用于模拟钻爆法施工诱发临近巷道围岩破坏的实验方法
CN104749611A (zh) * 2013-12-26 2015-07-01 中国矿业大学(北京) 一种用于模拟深部巷道***诱灾的实验方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4712624A (en) * 1985-09-04 1987-12-15 Mazda Motor Corporation Rock drill with tunnel profile control system
CN101914912A (zh) * 2010-08-09 2010-12-15 中国科学院武汉岩土力学研究所 深部地下工程岩爆孕育演化过程的原位测试方法
CN102539652A (zh) * 2012-01-05 2012-07-04 浙江中科依泰斯卡岩石工程研发有限公司 深埋隧洞围岩开挖响应***性监测方法
CN103412112A (zh) * 2013-08-21 2013-11-27 中国矿业大学(北京) 一种用于模拟钻爆法施工诱发临近巷道围岩破坏的实验方法
CN104749611A (zh) * 2013-12-26 2015-07-01 中国矿业大学(北京) 一种用于模拟深部巷道***诱灾的实验方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
弱能量***技术在地下隧洞工程岩爆治理中的应用试验;刘美山 等;《岩石力学与工程学报》;20130715;第32卷(第增2期);第3676页 *

Also Published As

Publication number Publication date
CN107238538A (zh) 2017-10-10

Similar Documents

Publication Publication Date Title
CN107238538B (zh) 弱***诱导的应变型岩爆现场模拟试验方法
Konicek et al. Stress changes and seismicity monitoring of hard coal longwall mining in high rockburst risk areas
Emsley et al. ZEDEX-A study of damage and disturbance from tunnel excavation by blasting and tunnel boring
CN105626070B (zh) 一种深孔***卸压冲击地压防治方法
CN111121575B (zh) 城镇深基坑浅层松动控制***施工方法
Zhao et al. Experimental and numerical investigation of the effect of blast-induced vibration from adjacent tunnel on existing tunnel
CN104390537A (zh) 一种基于***振动测试的边坡预裂***开挖损伤控制方法
CN106767205B (zh) 繁华市区地铁车区间隧道微振综合控制***方法
CN102829899A (zh) 一种适用于深埋圆形隧洞的围岩应力快速测算方法
CN113552629A (zh) 一种隧道围岩纵波速度确定方法、装置和计算机设备
CN110206547B (zh) 适应于深部地层及高应力区域竖井掘进与支护的方法
CN109612356B (zh) 基坑开挖***时临近混凝土管道动力响应特性的获取方法
CN110261901A (zh) 基于诱发振动的深部岩体岩爆烈度评价方法
Hua-you et al. Analysis of characteristics of compound vibration and effects to surrounding gas pipeline caused by impact and explosion
CN114964469B (zh) 一种非对称高应力隧道***振动测试方法及***
CN105807321A (zh) 岩体结构分析与电磁辐射监测相结合的岩爆预测方法
Wang et al. Blasting Vibration Law and Prediction in the Near‐Field of Tunnel
CN111413734B (zh) 一种测试井下震动波传播速度及到时时间的计算方法
CN116792102B (zh) 用于施工阶段花岗岩球状风化体高精度探测和处置方法
CN101833112A (zh) 底板灰岩岩溶布点探测方法
Khali et al. Design and planning of excavation sequence and blasting techniques for large UG caverns
Yan et al. Real-time assessment of blasting damage depth based on the induced vibration during excavation of a high rock slope
GAO et al. Analysis of wave-type and seismic component induced by rock blasting considering source characteristics
Shirzadegan Development of a Methodology for Dynamic Testing of Rock Support: Field Tests and Numerical Analysis
More et al. Effect of Repeated Blast Vibrations on Rock Mass Damage in Tunnels

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant