CN107222146A - The Direct Torque Control of double three-phase permanent-magnetic synchronous motor high load capability - Google Patents

The Direct Torque Control of double three-phase permanent-magnetic synchronous motor high load capability Download PDF

Info

Publication number
CN107222146A
CN107222146A CN201710635749.7A CN201710635749A CN107222146A CN 107222146 A CN107222146 A CN 107222146A CN 201710635749 A CN201710635749 A CN 201710635749A CN 107222146 A CN107222146 A CN 107222146A
Authority
CN
China
Prior art keywords
mtd
mrow
msub
mtr
mfrac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710635749.7A
Other languages
Chinese (zh)
Other versions
CN107222146B (en
Inventor
周扬忠
王祖靖
钟天云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201710635749.7A priority Critical patent/CN107222146B/en
Publication of CN107222146A publication Critical patent/CN107222146A/en
Application granted granted Critical
Publication of CN107222146B publication Critical patent/CN107222146B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • H02P21/28Stator flux based control
    • H02P21/30Direct torque control [DTC] or field acceleration method [FAM]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

The present invention proposes a kind of Direct Torque Control of double three-phase permanent-magnetic synchronous motor high load capability, the double winding central point of double three-phase permanent-magnetic synchronous motor is linked together, and three times containing higher proportion and quintuple harmonics in winding counter electromotive force, build the direct control method of double electromagnetic torques, stator magnetic linkage in fundamental wave plane and quintuple harmonics plane simultaneously using six phase inverter output voltage vectors, strengthen the load capacity of motor using the electromagnetic torque in quintuple harmonics plane.Present invention decreases stator winding current peak value, two sets of three-phase windings central points are linked together, and load capacity during intensifying current machine winding failure is flowed through using remaining healthy phase winding.

Description

The Direct Torque Control of double three-phase permanent-magnetic synchronous motor high load capability
Technical field
The invention belongs to motor control technology field, and in particular to double three-phase permanent-magnetic synchronous motor high load capability it is direct Method for controlling torque.
Background technology
Multiphase permanent magnet synchronous motor drive system has multifreedom controlling advantage, so its drive system operational reliability Height, even if because of machine winding phase shortage or inverter bridge leg failure, the appearance of motor still can be realized by remaining control freedom degree Wrong Shipment row.Due to using permanent magnet excitation, flowing into can be with all active component, so as to realize motor in the electric current of stator winding Stator side High Power Factor is run.So, it is only that multiphase permanent magnet synchronous motor requires that occasion has in high reliability, High Power Factor Special application advantage.
Wherein double three-phase permanent-magnetic synchronous motor (double three-phase PMSM) is typical polyphase machine.The motor have two sets of three-phases around 120 degree of electrical angles of three-phase mutual deviation in group, each three-phase windings, two sets of three-phase windings offset 30 degree of electrical angles, two sets of three-phases around Group respectively has a central point.In Traditional control strategy, the central point of two sets of three-phase windings is not attached to together, using two completely Identical frequency converter is independently-powered to two sets of three-phase windings.When wherein a set of winding or correspondence frequency converter failure, correspondence three Phase winding is stopped completely, and remaining trouble-free three-phase windings independently undertake the function of driving load.But this double winding The unconnected driving method of central point is the disadvantage is that, faulty three-phase system may wherein have one mutually or two-phase still can be with work Make, if flowing through electric current still can export electromagnetic torque, driving load;If but do not work, it is clear that whole drive system output turns Square ability is reduced.
Moreover, traditional double three-phase permanent-magnetic synchronous motor does not have magnetic circuit salient pole phenomenon, motor electromagnetic torque is only by stator Electric current is produced with permanent magnet magnetic field interactions, and motor load ability decreases.
The content of the invention
In view of the above-mentioned problems of the prior art, the present invention provides a kind of double three-phase permanent-magnetic synchronous motor high load capability Direct Torque Control, it is therefore an objective to improve the direct torque ability of double three-phase permanent-magnetic Synchromous machine drive system.The present invention In double three-phase double winding central points link together, and three times and five times in winding counter electromotive force containing higher proportion are humorous Ripple, builds double electromagnetic torques using six phase inverter output voltage vectors in fundamental wave plane and quintuple harmonics plane, determines simultaneously The direct control method of sub- magnetic linkage, strengthens the load capacity of motor using the electromagnetic torque in five secondary flats.
To achieve the above object, the technical scheme is that:A kind of double three-phase permanent-magnetic synchronous motor high load capability Direct Torque Control, comprises the following steps:
Step S1:If motor has three in two three-phase windings, respectively ACE windings and BDF windings, each three-phase windings 120 degree of electrical angles of phase mutual deviation, two sets of three-phase windings offset 30 degree electrical angles, two sets of three-phase windings respectively have a central point O point with O ' points, by the central point O-O ' connections of two windings, using orthogonal transform matrix T6 by six phase input current i of motorsA~isF It is converted into α1β15β53β3In rest frame, fundamental current i is obtainedα1And iβ1, quintuple harmonics electric current iα5And iβ5, three times it is humorous Ripple electric current iα3And iβ3, α1β1、α5β5And α3β3Respectively fundamental wave, quintuple harmonics and triple-frequency harmonics rest frame;
Step S2:Triple harmonic current i is solved according to step S1α3, it is compared with given zero current, after feeding comparator Output variable i;
Step S3:Calculate fundamental wave flat stator magnetic linkage ψsα1ψsβ1With quintuple harmonics flat stator magnetic linkage ψsα5ψsβ5
Step S4:According to fundamental wave flat stator magnetic linkage ψsα1ψsβ1, calculate vector ψs1Argument ∠ θ ψs1, judge vector institute Locate α1β1Plane sector number θsi;According to quintuple harmonics flat stator magnetic linkage ψsα5ψsβ5, calculate vector ψs5Argument ∠ θ ψs2, Judge α residing for vector5β5Plane sector number θxi
Step S5:According to fundamental wave flat stator magnetic linkage ψsα1ψsβ1And stator magnetic linkage amplitude set-pointThrough the first magnetic linkage Hysteresis comparator, the variable of output control fundamental wave flat stator magnetic linkage amplitude
According to quintuple harmonics flat stator magnetic linkage ψsα5ψsβ5And stator magnetic linkage amplitude set-pointThrough the stagnant ring of the second magnetic linkage Comparator, the variable of output control quintuple harmonics flat stator magnetic linkage amplitude
Step S6:Calculate fundamental wave plane electromagnetic torque Te1With quintuple harmonics plane electromagnetic torque Te5
Step S7:By fundamental wave plane electromagnetic torque Te1And its set-pointThe first torque hysteresis comparator is inputted, is exported Control fundamental wave plane electromagnetic torque variable τ1,
By quintuple harmonics plane electromagnetic torque Te5And its set-pointInput the second torque hysteresis comparator, output control Quintuple harmonics plane electromagnetic torque variable τ2
Step S8:Optimized switching vector table is built, by variable i, τ1、τ2θsi、θxiInput optimized switching vector Table, obtains one group of six phase inverter bridge optimized switching combination, double three-phase permanent-magnetic synchronous machine drives is acted on by six phase inverters System, realizes the control targe for suppressing that triple harmonic current, stator flux of motor amplitude error and electromagnetic torque error are 0.
Further, the step S3 fundamental waves flat stator magnetic linkage ψsα1ψsβ1With quintuple harmonics flat stator magnetic linkage ψsα5ψsβ5 Computational methods are as follows:
Wherein, Lsm1=0.5 (Ldm1+Lqm1), Lrs1=0.5 (Ldm1-Lqm1), Ldm1And Lqm1The respectively d-axis inductance and quadrature axis of double three-phase permanent-magnetic synchronous motor phase winding main magnetic circuit Inductance, Lsσ1For double three-phase permanent-magnetic synchronous motor phase winding leakage inductance, θrFor double three-phase permanent-magnetic synchronous motor rotor position angle, ψf1、 ψf5The respectively rotor flux fundamental wave and quintuple harmonics peak value of double three-phase permanent-magnetic synchronous motor.
Further, the step S3 fundamental waves flat stator magnetic linkage ψsα1ψsβ1With quintuple harmonics flat stator magnetic linkage ψsα5ψsβ5 Another computational methods are as follows:
Using orthogonal transform matrix by six phase input voltage u of motorSA~uSFIt is converted into α1β15β53β3Static coordinate In system,
According to α1β1、α5β5Voltage balance equation in coordinate system,
Obtain
Wherein, usα1And usβ1For fundamental wave stator voltage, usα5And usβ5For quintuple harmonics stator voltage, RsFor motor phase windings Resistance.
Further, the specific steps of the step S4 include:
If Sa~Sf is the corresponding on off state of the every phase bridge arm of six phase inverters, its value is the upper bridge arm conducting of 1 representative, lower bridge Arm is turned off, and its value is the lower bridge arm conducting of 0 representative, upper bridge arm shut-off;Then
usA~usFFor double three-phase windings inversion bridge voltages, UDCFor six phase inverter DC bus-bar voltages, uNoFor machine winding Voltage between neutral point and ground,
Double three-phase windings are met:
usA+usB+usC+usD+usE+usF=0 (10)
Obtain:
Fundamental wave stator voltage u is obtained using orthogonal transform matrix T6 premultiplications formula (9), then by formula (11) calculatingsα1And usβ1, five Subharmonic stator voltage usα5And usβ5, triple-frequency harmonics stator voltage usα3And usβ3,
According to formula (12), different switch combination Sa~Sf are taken to obtain α1β1Plane, α5β5Plane, α3β3The switch of plane Vector;By α1β1Plane and α5β5The neighboring voltage vector of plane is border, is respectively divided into 24 sectors, θ is used respectivelysi、θxiTable Show, i=1,2 ..., 24, the angle that each sector is included is 15 °;
According to fundamental wave flat stator magnetic linkage ψsα1ψsβ1, calculate vector ψs1Argument ∠ θ ψs1, judge α residing for vector1β1It is flat Face sector number θsi;According to quintuple harmonics flat stator magnetic linkage ψsα5ψsβ5, calculate vector ψs5Argument ∠ θ ψs2, judge vector Residing α5β5Plane sector number θxi
Further, the first and second flux linkage hysteresis comparator device output variables are as follows in the step S5:
Further, fundamental wave plane electromagnetic torque Te1 and quintuple harmonics plane electromagnetic torque T in the step S6e5Meter Calculation method is as follows:
Te1=p (ψsα1iβ1sβ1iα1) (15)
Te5=p (ψsα5iβ5sβ5iα5) (16)
Wherein, p is double three-phase permanent-magnetic synchronous motor magnetic pole logarithm.
Further, the first and second torque hysteresis comparator output variables are as follows in the step S7:
Wherein, ε1For the stagnant ring ring width of motor fundamental wave torque, ε2For the stagnant ring ring width of motor quintuple harmonics torque, ε1And ε2Value Needed to set according to real electrical machinery direct torque error.
Further, in the step S8, electromagnetic torque set-pointWithIt is by double three-phase permanent-magnetic synchronous motor electromagnetism Torque referenceBy harmonic injection pro rate.
Further, the construction method of optimized switching vector table is as follows in the step S8:
Step S81:Different switch combinations according to six phase inverters per phase bridge arm obtain α1β1Plane, α5β5Plane, α3β3 The switching vector selector of plane, α3β3The voltage vector of plane is in straight line, according to harmonic current in α3The size of axial projection is selected Take α3β3The voltage vector of plane, chooses opposite polarity voltage vector;
Step S82:Chosen according to step S81 after voltage vector, in α1β1Corresponding voltage vector is found out in plane, according to Sector where fundamental wave magnetic linkage, analyzes α1β1Various switch combination effects cause stator magnetic linkage and electricity in corresponding voltage vector in plane The control effect of magnetic torque, that is, increase or reduce, and voltage vector is divided into four groups according to action effect;
Step S83:Assuming that quintuple harmonics flat stator magnetic linkage takes one group of electricity of gained in step S82 in the first sector successively Vector is pressed, then analyzes effect of each voltage vector to quintuple harmonics flat stator magnetic linkage and quintuple harmonics plane electromagnetic torque and is imitated Really, that is, increase or reduce, and four optimal switching vector selector tables are chosen according to action effect in every group of voltage vector;
Step S84:Assuming that quintuple harmonics flat stator magnetic linkage second, third, the 4th the 24th Sector, repeat step S83 chooses;
Step S85:Assuming that fundamental wave flat stator magnetic linkage second, third, the 4th the 24th sector, Repeat step S83 chooses;
Step S86:The switching vector selector chosen more than, lists optimized switching vector table.
Compared with prior art, the invention has the advantages that:
(1) using six phase inverters is built in fundamental wave and quintuple harmonics plane pair electromagnetic torques, stator magnetic linkage it is direct Control, so as to strengthen motor load ability by quintuple harmonics planar torque, reduces stator winding current peak value;
(2) two sets of three-phase windings central points link together, using remaining healthy phase winding flow through intensifying current motor around Load capacity during group failure;
(3) because motor has salient pole phenomenon, reluctance torque can be produced, so as to further enhance motor load ability.
Brief description of the drawings
Fig. 1 is double three-phase permanent-magnetic synchronous motor Direct Torque Control structure chart of the present invention;
Fig. 2 is drive system hardware configuration of the embodiment of the present invention;
Fig. 3 is double three-phase permanent-magnetic synchronous motor winding connection of the embodiment of the present invention;
Fig. 4 is α of the embodiment of the present invention1β1The switching vector selector figure of plane;
Fig. 5 is α of the embodiment of the present invention5β5The switching vector selector figure of plane;
Fig. 6 is α of the embodiment of the present invention3β3The switching vector selector figure of plane.
Embodiment
The present invention is described in further detail with reference to the accompanying drawings and examples.
As shown in figure 1, a kind of Direct Torque Control of double three-phase permanent-magnetic synchronous motor high load capability, including it is as follows Step:Step S1:If motor has the three-phase in two three-phase windings, respectively ACE windings and BDF windings, each three-phase windings 120 degree of electrical angles of mutual deviation, two sets of three-phase windings offset 30 degree of electrical angles, and two sets of three-phase windings respectively have a central point O point and O ' Point, by the central point O-O ' connections of two windings, using orthogonal transform matrix T6 by six phase input current i of motorsA~isFBecome Shift to α1β15β53β3In rest frame, fundamental current i is obtainedα1And iβ1, quintuple harmonics electric current iα5And iβ5, triple-frequency harmonics Electric current iα3And iβ3, α1β1、α5β5And α3β3Respectively fundamental wave, quintuple harmonics and triple-frequency harmonics rest frame;
Two sets of three-phase windings central points link together, and having five frees degree can control, in fundamental wave and quintuple harmonics Plane is to electromagnetic torque, stator magnetic linkage double-closed-loop control, occupies four frees degree, and α3β3Plane can not produce rotary magnetic and move Gesture, is not involved in energy converting between mechanical, so being zero by three secondary flat current controls.
Step S2:Triple harmonic current i is solved according to step S1α3, it is compared with given zero current, after feeding comparator Output variable i.
Step S3:Calculate fundamental wave flat stator magnetic linkage ψsα1ψsβ1With quintuple harmonics flat stator magnetic linkage ψsα5ψsβ5
In the present embodiment, i is utilizedα1iβ1、iα5iβ5Double three-phase machine rotor flux ψ f1、ψf5And motor rotor position angle θr Calculate stator magnetic linkage ψsα1ψsβ1、ψsα5ψsβ5
Wherein, Lsm1=0.5 (Ldm1+Lqm1), Lrs1=0.5 (Ldm1-Lqm1), Ldm1And Lqm1The respectively d-axis inductance of double three-phase permanent-magnetic synchronous motor phase winding main magnetic circuit and friendship Axle inductance, Lsσ1For double three-phase permanent-magnetic synchronous motor phase winding leakage inductance, these inductance values can be obtained from six-phase motor nameplate Arrive;θrFor double three-phase permanent-magnetic synchronous motor rotor position angle, ψf1、ψf5The respectively rotor flux base of double three-phase permanent-magnetic synchronous motor Ripple and quintuple harmonics peak value.
Fundamental wave flat stator magnetic linkage ψsα1ψsβ1With quintuple harmonics flat stator magnetic linkage ψsα5ψsβ5Another computational methods It is to be calculated using the voltage model of stator magnetic linkage, method is as follows:
Using orthogonal transform matrix by six phase input voltage u of motorSA~uSFIt is converted into α1β15β53β3Static coordinate In system,
According to α1β1、α5β5Voltage balance equation in coordinate system,
Obtain
Wherein, usα1And usβ1For fundamental wave stator voltage, usα5And usβ5For quintuple harmonics stator voltage, RsFor motor phase windings Resistance.
Step S4:If Sa~Sf is the corresponding on off state of the every phase bridge arm of six phase inverters, its value is that the upper bridge arm of 1 representative is led Logical, lower bridge arm shut-off, its value is the lower bridge arm conducting of 0 representative, upper bridge arm shut-off;Then
usA~usFFor double three-phase windings inversion bridge voltages, UDCFor six phase inverter DC bus-bar voltages, uNoFor machine winding Voltage between neutral point and ground,
Double three-phase windings are met:
usA+usB+usC+usD+usE+usF=0 (10)
Obtain:
Fundamental wave stator voltage u is obtained using orthogonal transform matrix T6 premultiplications formula (9), then by formula (11) calculatingsα1And usβ1, five Subharmonic stator voltage usα5And usβ5, triple-frequency harmonics stator voltage usα3And usβ3,
According to formula (12), different switch combination Sa~Sf are taken to obtain α1β1Plane, α5β5Plane, α3β3The switch of plane Vector;By α1β1Plane and α5β5The neighboring voltage vector of plane is border, is respectively divided into 24 sectors, θ is used respectivelysi、θxiTable Show, i=1,2 ..., 24, the angle that each sector is included is 15 °;
According to fundamental wave flat stator magnetic linkage ψsα1ψsβ1, calculate vector ψs1Argument ∠ θψs1, judge α residing for vector1β1It is flat Face sector number θsi;According to quintuple harmonics flat stator magnetic linkage ψsα5ψsβ5, calculate vector ψs5Argument ∠ θψs2, judge vector Residing α5β5Plane sector number θxi
Step S5:According to fundamental wave flat stator magnetic linkage ψsα1ψsβ1And stator magnetic linkage amplitude set-pointThrough the first magnetic linkage Hysteresis comparator, the variable of output control fundamental wave flat stator magnetic linkage amplitude
According to quintuple harmonics flat stator magnetic linkage ψsα5ψsβ5And stator magnetic linkage amplitude set-pointThrough the stagnant ring of the second magnetic linkage Comparator, the variable of output control quintuple harmonics flat stator magnetic linkage amplitude
Step S6:Calculate fundamental wave plane electromagnetic torque Te1With quintuple harmonics plane electromagnetic torque Te5
Te1=p (ψsα1iβ1sβ1iα1) (15)
Te5=p (ψsα5iβ5sβ5iα5) (16) wherein, p be double three-phase permanent-magnetic synchronous motor magnetic pole logarithm, can be from electricity Obtained on machine nameplate.
Step S7:By fundamental wave plane electromagnetic torque Te1And its set-pointThe first torque hysteresis comparator is inputted, is exported Control fundamental wave plane electromagnetic torque variable τ1
By quintuple harmonics plane electromagnetic torque Te5And its set-pointInput the second torque hysteresis comparator, output control Quintuple harmonics plane electromagnetic torque variable τ2
Wherein, ε1For the stagnant ring ring width of motor fundamental wave torque, ε2For the stagnant ring ring width of motor quintuple harmonics torque, ε1And ε2Value Needed to set according to real electrical machinery direct torque error.
Electromagnetic torque set-pointWithIt is to be given by double three-phase permanent-magnetic synchronous motor electromagnetic torqueBy harmonic injection ratio Example distribution, depending on specific motor control variable, if control is electromagnetic torqueThen system directly gives the value;If control System is motor speed, then by spinner velocity sensor picking rate signal, through electric motor speed controller (such as PI controllers) Output torque gives respectivelyIf control is rotor position angle, motor position controller output is torque reference
Step S8:Optimized switching vector table is built, by variable i, τ1、τ2θsi、θxiInput optimized switching vector Table, obtains one group of six phase inverter bridge optimized switching combination, double three-phase permanent-magnetic synchronous machine drives is acted on by six phase inverters System, realizes the control targe for suppressing that triple harmonic current, stator flux of motor amplitude error and electromagnetic torque error are 0.
As shown in Fig. 2 drive system hardware configuration of the embodiment of the present invention includes:Rectification circuit, filter capacitor, six phase inversions Device, double Three-phase asymmetrical winding permagnetic synchronous motors, six phase winding current collection circuits, motor rotor position angle Acquisition Circuit, Isolation drive, central controller, man-machine interface etc., it would however also be possible to employ suitable dc source provides six phase inverter dc bus Voltage.Power tube uses IGBT or MOFET in inverter, and central controller uses DSP or single-chip microcomputer.Winding current Acquisition Circuit Mode is combined using Hall current sensor with operational amplifier to constitute, it would however also be possible to employ winding string power resistor is followed by difference Operational amplifier is combined mode and constituted.Control loop and the electrical isolation of major loop can effectively be realized using Hall scheme, Drive system cost can be reduced using winding string power resistor scheme.Rotor position angle Acquisition Circuit can use rotary coding Device is followed by level shifting circuit composition, it would however also be possible to employ rotary transformer is followed by decoding circuit composition, and wherein the former cost is relatively low, But position angle sampling precision is limited by encoder line number, and the latter's cost is higher, but position angle sampling precision is higher.Winding current Acquisition Circuit and the weak voltage signal of rotor position angle Acquisition Circuit are sent to central controller A/D modular converters.According to the letter of acquirement Number and the Strategy of Direct Torque Control of high load capability of the present invention calculate the control signal that should be sent, gone via isolation drive Control the switch motion of the power switch pipe in inverter.
Double three-phase permanent-magnetic synchronous motor winding connection of the embodiment of the present invention as shown in figure 3, ABCDEF be double three-phases forever Six phase windings of magnetic-synchro motor, the motor has ACE windings and BDF windings in two sets of three-phase windings, as Fig. 3;Each 120 degree of electrical angles of three-phase mutual deviation in three-phase windings, two sets of three-phase windings offset 30 degree of electrical angles, and two sets of three-phase windings respectively have one Individual central point O points and O ' points, by the central point O-O ' connections of two windings.
According to formula (12), different switch combination S are takena~SfObtain α1β1Plane, α5β5Plane, α3β3The switch of plane Polar plot is as shown in Fig. 4, Fig. 5, Fig. 6.
In the present embodiment, it is necessary in α1β1Plane, α5β5Plane chooses vector and controls electromagnetic torque and stator magnet simultaneously Chain.Voltage vector space choose optimized switching vector table, realize fundamental wave torque, magnetic linkage and quintuple harmonics torque, magnetic linkage it is same When control.Turn because triple-frequency harmonics plane is not involved in electromechanical energy, and α3β3The voltage vector of plane be in straight line, it is necessary to Triple harmonic current is suppressed to zero, realizes that triple harmonic current control is zero, while controlling the control method of three dimensions Realize that fundamental wave torque, magnetic linkage and quintuple harmonics torque, the control of magnetic linkage and triple harmonic current are suppressed to zero control method.α3 β3The voltage vector of plane is in straight line, can be according to harmonic current in α3The size of axial projection chooses α3β3Plane Voltage vector.α is chosen again1β1Plane (or α5β5Plane) vector control fundamental wave torque, magnetic linkage.In α1β1Plane (or α5β5It is flat Face) control fundamental wave torque, on the basis of the vector of magnetic linkage, then in α5β5Plane (or α1β1Plane) vector is chosen while controlling electricity Magnetic torque and stator magnetic linkage.
The optimized switching vector table method of the present embodiment is as follows:
(1) by α in Fig. 41β1α in plane, Fig. 55β5The voltage vector of plane is respectively divided into 24 sectors, and θ is used respectivelysi、 θxiRepresent, i=1,2,3 ... 24, the angle that each sector is included is 15 °;
(2) α in Fig. 63β3The voltage vector of plane is in straight line, can be according to harmonic current in α3Axial projection it is big It is small to choose α3β3The voltage vector of plane.iα3During more than or equal to zero, opposite polarity voltage vector, such as Fig. 6 dotted lines circle are chosen The vector risen.Conversely, the vector for selecting solid line to enclose;
(3) i is assumedα3More than or equal to zero (iα3Less than zero), have chosen the vector (arrow for selecting solid line to enclose that Fig. 6 dotted lines are enclosed Amount), and in α1β1Corresponding voltage vector is found out in plane as shown in figure 4, again assuming that fundamental wave magnetic linkage in the first sector θs1, analysis Various switch combination effects cause the control effect of stator magnetic linkage and electromagnetic torque in Fig. 4, that is, increase or reduce, and according to work Voltage vector is divided into four groups with effect;
(4) assume five magnetic linkages in the first sector θs1Take successively one group of voltage vector of gained in (3), i.e. torque increase with The increased one group of voltage vector of magnetic linkage as shown in figure 5, analyze each voltage vector to five magnetic linkages and the effect of five torques again Effect, that is, increase or reduce, and four optimal switching vector selector tables are chosen according to action effect in every group of voltage vector;
(5) again assume five magnetic linkages second, third, the 4th the 24th sector, repeat step (4) choose;
(6) assume again fundamental wave magnetic linkage second, the three, the 4th the 24th sectors, repeat step (3) choose;
(7) switching vector selector chosen more than, lists optimized switching vector table as shown in table 1.
Table 1
Table 1 is the vector table that fundamental wave plane magnetic linkage is respectively at the first sector with quintuple harmonics plane magnetic linkage, τ1=1 represents Fundamental wave torque increases, τ1=-1 represents fundamental wave torque reduction;τ2=1 represents quintuple harmonics torque increase, τ2=-1 represent five times it is humorous Ripple torque reduces.Ф1=1 represents the magnetic linkage increase of fundamental wave plane, Ф1=0 magnetic linkage for representing fundamental wave plane reduces;Ф2=1 generation Table quintuple harmonics plane magnetic linkage increases, Ф2=0 represents the reduction of quintuple harmonics plane magnetic linkage.
Although the present invention is disclosed as above with preferred embodiment, it is not for limiting the present invention, any this area Technical staff without departing from the spirit and scope of the present invention, may be by the methods and techniques content of the disclosure above to this hair Bright technical scheme makes possible variation and modification, therefore, every content without departing from technical solution of the present invention, according to the present invention Technical spirit to any simple modifications, equivalents, and modifications made for any of the above embodiments, belong to technical solution of the present invention Protection domain.It the foregoing is only presently preferred embodiments of the present invention, all impartial changes done according to scope of the present invention patent Change and modify, should all belong to the covering scope of the present invention.

Claims (9)

1. a kind of Direct Torque Control of double three-phase permanent-magnetic synchronous motor high load capability, it is characterised in that including as follows Step:Step S1:If motor has the three-phase in two three-phase windings, respectively ACE windings and BDF windings, each three-phase windings 120 degree of electrical angles of mutual deviation, two sets of three-phase windings offset 30 degree of electrical angles, and two sets of three-phase windings respectively have a central point O point and O ' Point, by the central point O-O ' connections of two windings, using orthogonal transform matrix T6 by six phase input current i of motorsA~isFBecome Shift to α1β15β53β3In rest frame, fundamental current i is obtainedα1And iβ1, quintuple harmonics electric current iα5And iβ5, triple-frequency harmonics Electric current iα3And iβ3, α1β1、α5β5And α3β3Respectively fundamental wave, quintuple harmonics and triple-frequency harmonics rest frame;
<mrow> <msub> <mi>T</mi> <mn>6</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <msqrt> <mn>3</mn> </msqrt> </mfrac> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mtd> <mtd> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> </mtd> <mtd> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mtd> <mtd> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> </mtd> <mtd> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>i</mi> <mrow> <mi>&amp;alpha;</mi> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mrow> <mi>&amp;beta;</mi> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mrow> <mi>&amp;alpha;</mi> <mn>5</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mrow> <mi>&amp;beta;</mi> <mn>5</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mrow> <mi>&amp;alpha;</mi> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mrow> <mi>&amp;beta;</mi> <mn>3</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfrac> <mn>1</mn> <msqrt> <mn>3</mn> </msqrt> </mfrac> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mtd> <mtd> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> </mtd> <mtd> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mtd> <mtd> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> </mtd> <mtd> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>i</mi> <mrow> <mi>s</mi> <mi>A</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mrow> <mi>s</mi> <mi>B</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mrow> <mi>s</mi> <mi>C</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mrow> <mi>s</mi> <mi>D</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mrow> <mi>s</mi> <mi>E</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mrow> <mi>s</mi> <mi>F</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
Step S2:Triple harmonic current i is solved according to step S1α3, it is compared, is exported after feeding comparator with given zero current Variable i;
Step S3:Calculate fundamental wave flat stator magnetic linkage ψsα1ψsβ1With quintuple harmonics flat stator magnetic linkage ψsα5ψsβ5
Step S4:According to fundamental wave flat stator magnetic linkage ψsα1ψsβ1, calculate vector ψs1ArgumentJudge α residing for vector1β1 Plane sector number θsi;According to quintuple harmonics flat stator magnetic linkage ψsα5ψsβ5, calculate vector ψs5ArgumentJudge arrow The residing α of amount5β5Plane sector number θxi
Step S5:According to fundamental wave flat stator magnetic linkage ψsα1ψsβ1And stator magnetic linkage amplitude set-pointThrough the stagnant ring ratio of the first magnetic linkage Compared with device, the variable of output control fundamental wave flat stator magnetic linkage amplitude
According to quintuple harmonics flat stator magnetic linkage ψsα5ψsβ5And stator magnetic linkage amplitude set-pointThrough the second flux linkage hysteresis comparator Device, the variable of output control quintuple harmonics flat stator magnetic linkage amplitude
Step S6:Calculate fundamental wave plane electromagnetic torque Te1With quintuple harmonics plane electromagnetic torque Te5
Step S7:By fundamental wave plane electromagnetic torque Te1And its set-pointInput the first torque hysteresis comparator, output control base Popin face electromagnetic torque variable τ1,
By quintuple harmonics plane electromagnetic torque Te5And its set-pointInput the second torque hysteresis comparator, output control five times Harmonic wave plane electromagnetic torque variable τ2
Step S8:Optimized switching vector table is built, by variable i, τ1、τ2θsi、θxiOptimized switching vector table is inputted, is obtained To one group of six phase inverter bridge optimized switching combination, double three-phase permanent-magnetic Synchromous machine drive system is acted on by six phase inverters, Realize the control targe for suppressing that triple harmonic current, stator flux of motor amplitude error and electromagnetic torque error are 0.
2. a kind of Direct Torque Control of double three-phase permanent-magnetic synchronous motor high load capability according to claim 1, Characterized in that, the step S3 fundamental waves flat stator magnetic linkage ψsα1ψsβ1With quintuple harmonics flat stator magnetic linkage ψsα5ψsβ5Calculating side Method is as follows:
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>&amp;psi;</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;psi;</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;psi;</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> <mn>5</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;psi;</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> <mn>5</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>L</mi> <mrow> <mi>s</mi> <mi>&amp;sigma;</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mn>3</mn> <msub> <mi>L</mi> <mrow> <mi>s</mi> <mi>m</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mn>3</mn> <msub> <mi>L</mi> <mrow> <mi>r</mi> <mi>s</mi> <mn>1</mn> </mrow> </msub> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <msub> <mi>&amp;theta;</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mn>3</mn> <msub> <mi>L</mi> <mrow> <mi>r</mi> <mi>s</mi> <mn>1</mn> </mrow> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <msub> <mi>&amp;theta;</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>3</mn> <msub> <mi>L</mi> <mrow> <mi>r</mi> <mi>s</mi> <mn>1</mn> </mrow> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <msub> <mi>&amp;theta;</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msub> <mi>L</mi> <mrow> <mi>s</mi> <mi>&amp;sigma;</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mn>3</mn> <msub> <mi>L</mi> <mrow> <mi>s</mi> <mi>m</mi> <mn>1</mn> </mrow> </msub> <mo>-</mo> <mn>3</mn> <msub> <mi>L</mi> <mrow> <mi>r</mi> <mi>s</mi> <mn>1</mn> </mrow> </msub> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <msub> <mi>&amp;theta;</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <msub> <mi>L</mi> <mrow> <mi>s</mi> <mi>&amp;sigma;</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mn>3</mn> <msub> <mi>L</mi> <mrow> <mi>s</mi> <mi>m</mi> <mn>5</mn> </mrow> </msub> <mo>+</mo> <mn>3</mn> <msub> <mi>L</mi> <mrow> <mi>r</mi> <mi>s</mi> <mn>5</mn> </mrow> </msub> <mi>cos</mi> <mrow> <mo>(</mo> <mn>10</mn> <msub> <mi>&amp;theta;</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mn>3</mn> <msub> <mi>L</mi> <mrow> <mi>r</mi> <mi>s</mi> <mn>5</mn> </mrow> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <mn>10</mn> <msub> <mi>&amp;theta;</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mn>3</mn> <msub> <mi>L</mi> <mrow> <mi>r</mi> <mi>s</mi> <mn>5</mn> </mrow> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <mn>10</mn> <msub> <mi>&amp;theta;</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msub> <mi>L</mi> <mrow> <mi>s</mi> <mi>&amp;sigma;</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mn>3</mn> <msub> <mi>L</mi> <mrow> <mi>s</mi> <mi>m</mi> <mn>5</mn> </mrow> </msub> <mo>-</mo> <mn>3</mn> <msub> <mi>L</mi> <mrow> <mi>r</mi> <mi>s</mi> <mn>5</mn> </mrow> </msub> <mi>cos</mi> <mrow> <mo>(</mo> <mn>10</mn> <msub> <mi>&amp;theta;</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>i</mi> <mrow> <mi>&amp;alpha;</mi> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mrow> <mi>&amp;beta;</mi> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mrow> <mi>&amp;alpha;</mi> <mn>5</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mrow> <mi>&amp;beta;</mi> <mn>5</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <msqrt> <mn>3</mn> </msqrt> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;psi;</mi> <mrow> <mi>f</mi> <mn>1</mn> </mrow> </msub> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;psi;</mi> <mrow> <mi>f</mi> <mn>1</mn> </mrow> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;psi;</mi> <mrow> <mi>f</mi> <mn>5</mn> </mrow> </msub> <mi>cos</mi> <mrow> <mo>(</mo> <mn>5</mn> <msub> <mi>&amp;theta;</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;psi;</mi> <mrow> <mi>f</mi> <mn>5</mn> </mrow> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <mn>5</mn> <msub> <mi>&amp;theta;</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
Wherein, Lsm1=0.5 (Ldm1+Lqm1), Lrs1=0.5 (Ldm1-Lqm1), Ldm1And Lqm1The respectively d-axis inductance and quadrature axis of double three-phase permanent-magnetic synchronous motor phase winding main magnetic circuit Inductance, Lsσ1For double three-phase permanent-magnetic synchronous motor phase winding leakage inductance, θrFor double three-phase permanent-magnetic synchronous motor rotor position angle, ψf1、 ψf5The respectively rotor flux fundamental wave and quintuple harmonics peak value of double three-phase permanent-magnetic synchronous motor.
3. a kind of Direct Torque Control of double three-phase permanent-magnetic synchronous motor high load capability according to claim 1, Characterized in that, the step S3 fundamental waves flat stator magnetic linkage ψsα1ψsβ1With quintuple harmonics flat stator magnetic linkage ψsα5ψsβ5It is another Computational methods are as follows:
Using orthogonal transform matrix by six phase input voltage u of motorSA~uSFIt is converted into α1β15β53β3In rest frame,
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> <mn>5</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> <mn>5</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> <mn>3</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfrac> <mn>1</mn> <msqrt> <mn>3</mn> </msqrt> </mfrac> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mtd> <mtd> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> </mtd> <mtd> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mtd> <mtd> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> </mtd> <mtd> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>i</mi> <mrow> <mi>s</mi> <mi>A</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mrow> <mi>s</mi> <mi>B</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mrow> <mi>s</mi> <mi>C</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mrow> <mi>s</mi> <mi>D</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mrow> <mi>s</mi> <mi>E</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mrow> <mi>s</mi> <mi>F</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
According to α1β1、α5β5Voltage balance equation in coordinate system,
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> <mn>1</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>i</mi> <mrow> <mi>&amp;alpha;</mi> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>i</mi> <mrow> <mi>&amp;beta;</mi> <mn>1</mn> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>&amp;psi;</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;psi;</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> <mn>1</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> <mn>5</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> <mn>5</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>i</mi> <mrow> <mi>&amp;alpha;</mi> <mn>5</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>i</mi> <mrow> <mi>&amp;beta;</mi> <mn>5</mn> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>&amp;psi;</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> <mn>5</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;psi;</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> <mn>5</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
Obtain
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;psi;</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo>&amp;Integral;</mo> <mrow> <mo>(</mo> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>i</mi> <mrow> <mi>&amp;alpha;</mi> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>d</mi> <mi>t</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;psi;</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo>&amp;Integral;</mo> <mrow> <mo>(</mo> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>i</mi> <mrow> <mi>&amp;beta;</mi> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>d</mi> <mi>t</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;psi;</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> <mn>5</mn> </mrow> </msub> <mo>=</mo> <mo>&amp;Integral;</mo> <mrow> <mo>(</mo> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> <mn>5</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>i</mi> <mrow> <mi>&amp;alpha;</mi> <mn>5</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>d</mi> <mi>t</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;psi;</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> <mn>5</mn> </mrow> </msub> <mo>=</mo> <mo>&amp;Integral;</mo> <mrow> <mo>(</mo> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> <mn>5</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>i</mi> <mrow> <mi>&amp;beta;</mi> <mn>5</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>d</mi> <mi>t</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
Wherein, usα1And usβ1For fundamental wave stator voltage, usα5And usβ5For quintuple harmonics stator voltage, RsFor motor phase windings resistance.
4. a kind of Direct Torque Control of double three-phase permanent-magnetic synchronous motor high load capability according to claim 1, Characterized in that, the specific steps of the step S4 include:
If Sa~Sf is the corresponding on off state of the every phase bridge arm of six phase inverters, its value is the upper bridge arm conducting of 1 representative, lower bridge arm pass Disconnected, its value is the lower bridge arm conducting of 0 representative, upper bridge arm shut-off;Then
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>A</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>B</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>C</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>D</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>E</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>F</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <msub> <mi>U</mi> <mrow> <mi>D</mi> <mi>C</mi> </mrow> </msub> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>S</mi> <mi>a</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>S</mi> <mi>b</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>S</mi> <mi>c</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>S</mi> <mi>d</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>S</mi> <mi>e</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>S</mi> <mi>f</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <msub> <mi>u</mi> <mrow> <mi>N</mi> <mi>o</mi> </mrow> </msub> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
usA~usFFor double three-phase windings inversion bridge voltages, UDCFor six phase inverter DC bus-bar voltages, uNoIt is neutral for machine winding Voltage between point and ground,
Double three-phase windings are met:
usA+usB+usC+usD+usE+usF=0 (10)
Obtain:
<mrow> <msub> <mi>u</mi> <mrow> <mi>N</mi> <mi>o</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> <msub> <mi>U</mi> <mrow> <mi>D</mi> <mi>C</mi> </mrow> </msub> <mo>&amp;lsqb;</mo> <msub> <mi>S</mi> <mi>a</mi> </msub> <mo>+</mo> <msub> <mi>S</mi> <mi>b</mi> </msub> <mo>+</mo> <msub> <mi>S</mi> <mi>c</mi> </msub> <mo>+</mo> <msub> <mi>S</mi> <mi>d</mi> </msub> <mo>+</mo> <msub> <mi>S</mi> <mi>e</mi> </msub> <mo>+</mo> <msub> <mi>S</mi> <mi>f</mi> </msub> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
Fundamental wave stator voltage u is obtained using orthogonal transform matrix T6 premultiplications formula (9), then by formula (11) calculatingsα1And usβ1, five times it is humorous Ripple stator voltage usα5And usβ5, triple-frequency harmonics stator voltage usα3And usβ3,
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> <mn>5</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> <mn>5</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> <mn>3</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <msub> <mi>T</mi> <mn>6</mn> </msub> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>A</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>B</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>C</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>D</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>E</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>F</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfrac> <msub> <mi>U</mi> <mrow> <mi>D</mi> <mi>C</mi> </mrow> </msub> <msqrt> <mn>3</mn> </msqrt> </mfrac> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>S</mi> <mi>a</mi> </msub> <mo>+</mo> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> <msub> <mi>S</mi> <mi>b</mi> </msub> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>S</mi> <mi>c</mi> </msub> <mo>-</mo> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> <msub> <mi>S</mi> <mi>b</mi> </msub> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>S</mi> <mi>e</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>S</mi> <mi>b</mi> </msub> <mo>+</mo> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> <msub> <mi>S</mi> <mi>c</mi> </msub> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>S</mi> <mi>d</mi> </msub> <mo>-</mo> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> <msub> <mi>S</mi> <mi>e</mi> </msub> <mo>-</mo> <msub> <mi>S</mi> <mi>f</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>S</mi> <mi>a</mi> </msub> <mo>-</mo> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> <msub> <mi>S</mi> <mi>b</mi> </msub> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>S</mi> <mi>c</mi> </msub> <mo>+</mo> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> <msub> <mi>S</mi> <mi>d</mi> </msub> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>S</mi> <mi>e</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>S</mi> <mi>b</mi> </msub> <mo>-</mo> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> <msub> <mi>S</mi> <mi>c</mi> </msub> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>S</mi> <mi>d</mi> </msub> <mo>+</mo> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> <msub> <mi>S</mi> <mi>e</mi> </msub> <mo>-</mo> <msub> <mi>S</mi> <mi>f</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>S</mi> <mi>a</mi> </msub> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>S</mi> <mi>b</mi> </msub> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>S</mi> <mi>c</mi> </msub> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>S</mi> <mi>d</mi> </msub> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>S</mi> <mi>e</mi> </msub> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>S</mi> <mi>f</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>S</mi> <mi>a</mi> </msub> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>S</mi> <mi>b</mi> </msub> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>S</mi> <mi>c</mi> </msub> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>S</mi> <mi>d</mi> </msub> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>S</mi> <mi>e</mi> </msub> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>S</mi> <mi>f</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
According to formula (12), different switch combination Sa~Sf are taken to obtain α1β1Plane, α5β5Plane, α3β3The switch arrow of plane Amount;By α1β1Plane and α5β5The neighboring voltage vector of plane is border, is respectively divided into 24 sectors, θ is used respectivelysi、θxiTable Show, i=1,2 ..., 24, the angle that each sector is included is 15 °;
According to fundamental wave flat stator magnetic linkage ψsα1ψsβ1, calculate vector ψs1ArgumentJudge α residing for vector1β1Plane is fanned Area numbering θsi;According to quintuple harmonics flat stator magnetic linkage ψsα5ψsβ5, calculate vector ψs5ArgumentJudge residing for vector α5β5Plane sector number θxi
5. a kind of Direct Torque Control of double three-phase permanent-magnetic synchronous motor high load capability according to claim 1, Characterized in that, the first and second flux linkage hysteresis comparator device output variables difference is as follows in the step S5:
6. a kind of Direct Torque Control of double three-phase permanent-magnetic synchronous motor high load capability according to claim 1, Characterized in that, fundamental wave plane electromagnetic torque T in the step S6e1With quintuple harmonics plane electromagnetic torque Te5Computational methods It is as follows:
Te1=p (ψsα1iβ1sβ1iα1) (15)
Te5=p (ψsα5iβ5sβ5iα5) (16)
Wherein, p is double three-phase permanent-magnetic synchronous motor magnetic pole logarithm.
7. a kind of Direct Torque Control of double three-phase permanent-magnetic synchronous motor high load capability according to claim 1, Characterized in that, the first and second torque hysteresis comparator output variables difference is as follows in the step S7:
<mrow> <msub> <mi>&amp;tau;</mi> <mn>1</mn> </msub> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <msubsup> <mi>T</mi> <mrow> <mi>e</mi> <mn>1</mn> </mrow> <mo>*</mo> </msubsup> <mo>-</mo> <msub> <mi>T</mi> <mrow> <mi>e</mi> <mn>1</mn> </mrow> </msub> <mo>&amp;GreaterEqual;</mo> <mo>+</mo> <msub> <mi>&amp;epsiv;</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>T</mi> <mrow> <mi>e</mi> <mn>1</mn> </mrow> <mo>*</mo> </msubsup> <mo>-</mo> <msub> <mi>T</mi> <mrow> <mi>e</mi> <mn>1</mn> </mrow> </msub> <mo>&amp;le;</mo> <mo>-</mo> <msub> <mi>&amp;epsiv;</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>&amp;tau;</mi> <mn>2</mn> </msub> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <msubsup> <mi>T</mi> <mrow> <mi>e</mi> <mn>5</mn> </mrow> <mo>*</mo> </msubsup> <mo>-</mo> <msub> <mi>T</mi> <mrow> <mi>e</mi> <mn>5</mn> </mrow> </msub> <mo>&amp;GreaterEqual;</mo> <mo>+</mo> <msub> <mi>&amp;epsiv;</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>T</mi> <mrow> <mi>e</mi> <mn>5</mn> </mrow> <mo>*</mo> </msubsup> <mo>-</mo> <msub> <mi>T</mi> <mrow> <mi>e</mi> <mn>5</mn> </mrow> </msub> <mo>&amp;le;</mo> <mo>-</mo> <msub> <mi>&amp;epsiv;</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow>
Wherein, ε1For the stagnant ring ring width of motor fundamental wave torque, ε2For the stagnant ring ring width of motor quintuple harmonics torque, ε1And ε2Value according to reality Border motor torque control error needs to set.
8. a kind of Direct Torque Control of double three-phase permanent-magnetic synchronous motor high load capability according to claim 1, Characterized in that, in the step S7, electromagnetic torque set-pointWithBe by double three-phase permanent-magnetic synchronous motor electromagnetic torque to It is fixedBy harmonic injection pro rate.
9. a kind of Direct Torque Control of double three-phase permanent-magnetic synchronous motor high load capability according to claim 1, Characterized in that, the construction method of optimized switching vector table is as follows in the step S8:
Step S81:Different switch combinations according to six phase inverters per phase bridge arm obtain α1β1Plane, α5β5Plane, α3β3Plane Switching vector selector, α3β3The voltage vector of plane is in straight line, according to harmonic current in α3The size of axial projection chooses α3 β3The voltage vector of plane, chooses opposite polarity voltage vector;
Step S82:Chosen according to step S81 after voltage vector, in α1β1Corresponding voltage vector is found out in plane, according to fundamental wave Sector where magnetic linkage, analyzes α1β1Various switch combination effects cause stator magnetic linkage and electromagnetism to turn in corresponding voltage vector in plane The control effect of square, that is, increase or reduce, and voltage vector is divided into four groups according to action effect;
Step S83:Assuming that quintuple harmonics flat stator magnetic linkage takes one group of voltage arrow of gained in step S82 in the first sector successively Amount, then each voltage vector is analyzed to quintuple harmonics flat stator magnetic linkage and the action effect of quintuple harmonics plane electromagnetic torque, Increase or reduce, and four optimal switching vector selector tables are chosen according to action effect in every group of voltage vector;
Step S84:Assuming that quintuple harmonics flat stator magnetic linkage second, third, the 4th the 24th sector, repeat walk Rapid S83 chooses;
Step S85:Assuming that fundamental wave flat stator magnetic linkage second, third, the 4th the 24th sector, repeat step S83 chooses;
Step S86:The switching vector selector chosen more than, lists optimized switching vector table.
CN201710635749.7A 2017-07-31 2017-07-31 The Direct Torque Control of double three-phase permanent-magnetic synchronous motor high load capability Active CN107222146B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710635749.7A CN107222146B (en) 2017-07-31 2017-07-31 The Direct Torque Control of double three-phase permanent-magnetic synchronous motor high load capability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710635749.7A CN107222146B (en) 2017-07-31 2017-07-31 The Direct Torque Control of double three-phase permanent-magnetic synchronous motor high load capability

Publications (2)

Publication Number Publication Date
CN107222146A true CN107222146A (en) 2017-09-29
CN107222146B CN107222146B (en) 2019-06-07

Family

ID=59954272

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710635749.7A Active CN107222146B (en) 2017-07-31 2017-07-31 The Direct Torque Control of double three-phase permanent-magnetic synchronous motor high load capability

Country Status (1)

Country Link
CN (1) CN107222146B (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108233783A (en) * 2018-01-19 2018-06-29 长安大学 A kind of bi-motor three-leg inverter and its control method
CN108336932A (en) * 2018-01-15 2018-07-27 西安理工大学 Double three-phase machine minimum harmonic injection Over-modulation and its carrier wave implementation method
CN108377119A (en) * 2018-03-23 2018-08-07 哈尔滨工业大学 A kind of maximum four-vector SVPWM methods inhibiting double three-phase permanent-magnetic synchronous motor high-frequency harmonic
CN108574442A (en) * 2018-05-08 2018-09-25 长安大学 A kind of six-phase motor direct Torque Control and its control method
CN110350836A (en) * 2019-06-28 2019-10-18 浙江大学 Common DC bus type opens the improvement Direct Torque Control of winding permanent magnet synchronous motor system
CN110429887A (en) * 2019-08-09 2019-11-08 大连海事大学 A kind of the Position Tracking Control device and control method of permasyn morot
CN110912468A (en) * 2019-12-06 2020-03-24 沈阳工业大学 Fault-tolerant control method for one-phase open circuit of six-phase permanent magnet synchronous motor
CN110995089A (en) * 2019-12-30 2020-04-10 江苏航迅飞信息科技有限公司 Intelligent control method of multiphase permanent magnet fault-tolerant motor driving system
CN111669091A (en) * 2019-03-08 2020-09-15 株洲中车时代电气股份有限公司 Direct torque control method for motor
CN113255281A (en) * 2021-05-19 2021-08-13 江苏大学 Fault-tolerant low-short-circuit-current double-three-phase permanent magnet motor winding design method
CN113785486A (en) * 2019-03-27 2021-12-10 博格华纳卢森堡汽车***公司 Six-phase motor torque measurement and control system
CN114257134A (en) * 2021-12-07 2022-03-29 江苏大学 Direct torque control method for harmonic suppression of double three-phase synchronous reluctance motor
CN114400932A (en) * 2021-12-24 2022-04-26 江苏大学 Fault-tolerant direct torque control system and method for double three-phase motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101931352A (en) * 2010-07-14 2010-12-29 中国人民解放军海军航空工程学院 Double-motor cascade system of double Y-shift 30-degree six-phase permanent magnet synchronous motors driven by single inverter and control method thereof
CN103973192A (en) * 2014-04-25 2014-08-06 中国矿业大学 Method for optimizing DTC system of six-phase asynchronous motor
CN104270063A (en) * 2014-09-30 2015-01-07 福州大学 Fault-tolerant direct torque control method for six-phase permanent magnet synchronous motor lacking any two phases of windings
CN104333284A (en) * 2014-11-03 2015-02-04 东南大学 Direct torque control method for six-phase synchronous motor with zero-sequence current self-correction

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101931352A (en) * 2010-07-14 2010-12-29 中国人民解放军海军航空工程学院 Double-motor cascade system of double Y-shift 30-degree six-phase permanent magnet synchronous motors driven by single inverter and control method thereof
CN103973192A (en) * 2014-04-25 2014-08-06 中国矿业大学 Method for optimizing DTC system of six-phase asynchronous motor
CN104270063A (en) * 2014-09-30 2015-01-07 福州大学 Fault-tolerant direct torque control method for six-phase permanent magnet synchronous motor lacking any two phases of windings
CN104333284A (en) * 2014-11-03 2015-02-04 东南大学 Direct torque control method for six-phase synchronous motor with zero-sequence current self-correction

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YUAN REN ET AL.: "Reduction of Both Harmonic Current and Torque Ripple for Dual Three-Phase Permanent-Magnet Synchronous Machine Using Modified Switching-Table-Based Direct Torque Control", 《IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 》 *
周长攀 等: "双三相永磁同步电机直接转矩控制谐波电流抑制研究", 《电机与控制学报》 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108336932A (en) * 2018-01-15 2018-07-27 西安理工大学 Double three-phase machine minimum harmonic injection Over-modulation and its carrier wave implementation method
CN108233783A (en) * 2018-01-19 2018-06-29 长安大学 A kind of bi-motor three-leg inverter and its control method
CN108233783B (en) * 2018-01-19 2021-08-13 长安大学 Double-motor three-bridge-arm inverter and control method thereof
CN108377119A (en) * 2018-03-23 2018-08-07 哈尔滨工业大学 A kind of maximum four-vector SVPWM methods inhibiting double three-phase permanent-magnetic synchronous motor high-frequency harmonic
CN108574442A (en) * 2018-05-08 2018-09-25 长安大学 A kind of six-phase motor direct Torque Control and its control method
CN111669091A (en) * 2019-03-08 2020-09-15 株洲中车时代电气股份有限公司 Direct torque control method for motor
CN111669091B (en) * 2019-03-08 2022-04-29 株洲中车时代半导体有限公司 Direct torque control method for motor
CN113785486B (en) * 2019-03-27 2024-03-15 博格华纳卢森堡汽车***公司 Method for measuring torque in a six-phase motor, controller for a six-phase motor
US11953393B2 (en) 2019-03-27 2024-04-09 Borgwarner Luxembourg Automotive Systems Sa 6 phase motor torque measurement and control system
CN113785486A (en) * 2019-03-27 2021-12-10 博格华纳卢森堡汽车***公司 Six-phase motor torque measurement and control system
CN110350836B (en) * 2019-06-28 2020-11-17 浙江大学 Direct torque control method of common direct current bus type open winding permanent magnet synchronous motor system
CN110350836A (en) * 2019-06-28 2019-10-18 浙江大学 Common DC bus type opens the improvement Direct Torque Control of winding permanent magnet synchronous motor system
CN110429887B (en) * 2019-08-09 2021-01-15 大连海事大学 Position tracking controller and control method of permanent magnet synchronous motor
CN110429887A (en) * 2019-08-09 2019-11-08 大连海事大学 A kind of the Position Tracking Control device and control method of permasyn morot
CN110912468B (en) * 2019-12-06 2020-12-29 沈阳工业大学 Fault-tolerant control method for one-phase open circuit of six-phase permanent magnet synchronous motor
CN110912468A (en) * 2019-12-06 2020-03-24 沈阳工业大学 Fault-tolerant control method for one-phase open circuit of six-phase permanent magnet synchronous motor
CN110995089B (en) * 2019-12-30 2022-05-06 南京煜茂兮电子科技有限公司 Intelligent control method of multiphase permanent magnet fault-tolerant motor driving system
CN110995089A (en) * 2019-12-30 2020-04-10 江苏航迅飞信息科技有限公司 Intelligent control method of multiphase permanent magnet fault-tolerant motor driving system
CN113255281A (en) * 2021-05-19 2021-08-13 江苏大学 Fault-tolerant low-short-circuit-current double-three-phase permanent magnet motor winding design method
CN113255281B (en) * 2021-05-19 2024-04-09 江苏大学 Fault-tolerant type low short-circuit current double-three-phase permanent magnet motor winding design method
CN114257134A (en) * 2021-12-07 2022-03-29 江苏大学 Direct torque control method for harmonic suppression of double three-phase synchronous reluctance motor
CN114257134B (en) * 2021-12-07 2023-08-22 江苏大学 Direct torque control method for harmonic suppression of double three-phase synchronous reluctance motor
CN114400932A (en) * 2021-12-24 2022-04-26 江苏大学 Fault-tolerant direct torque control system and method for double three-phase motor
CN114400932B (en) * 2021-12-24 2023-08-22 江苏大学 Double three-phase motor fault-tolerant direct torque control system and method thereof

Also Published As

Publication number Publication date
CN107222146B (en) 2019-06-07

Similar Documents

Publication Publication Date Title
CN107222146B (en) The Direct Torque Control of double three-phase permanent-magnetic synchronous motor high load capability
Shivakumar et al. Space vector PWM control of dual inverter fed open-end winding induction motor drive
CN107231111A (en) The Direct Torque Control of five-phase PMSM high load capability
CN106487308B (en) Series electric motor drive system, which inputs, lacks a phase error-tolerance type Direct Torque Control
WO2022160828A1 (en) Electric vehicle driving and charging integrated circuit and torque elimination control method thereof
CN104184380B (en) Bias 60 degree of six phase permanent-magnet synchronous motors and lack a phase error-tolerance type method for controlling torque
CN104270063B (en) Six phase permanent-magnet synchronous motor lacks any biphase error-tolerance type Direct Torque Control
CN107005194A (en) Multi-winding motor drive dynamic control device
CN107196571A (en) A kind of bi-motor series connection forecasting type Direct Torque Control
CN103107761B (en) Three-dimensional space vector pulse width modulation (SVPWM) method based on four-phrase five-wire topology
CN103117668B (en) Vector control method of simplified five-phase and three-level voltage source inverter
CN103973191A (en) Default phase fault-tolerant control method of nine-phase flux-switching permanent magnetic motor
Azeez et al. A medium-voltage inverter-fed IM drive using multilevel 12-sided polygonal vectors, with nearly constant switching frequency current hysteresis controller
Yu et al. A simplified PWM strategy for open-winding flux modulated doubly-salient reluctance motor drives with switching action minimization
CN106533310A (en) Direct current bias sinusoidal current motor controller
CN107154716A (en) Bimorph transducer circumferential misalignment angle electrical excitation direct current generator and its control method
US20190229668A1 (en) Open-winding motor drive topology and modulation method thereof
Mathew et al. Medium voltage drive for induction motors using multilevel octadecagonal voltage space vectors
Park et al. Comparison of fault characteristics according to winding configurations for dual three-phase synchronous reluctance motor
CN106301102B (en) A kind of multiphase permanent magnet synchronous motor drive system and its control method
CN108054973A (en) Reduce the simplex winding stator permanent magnetic type flux switch motor driving method of levitating current
CN104883115B (en) One kind opens winding permanent magnet synchronous motor hybrid multilevel inverter and control system
CN107947685B (en) A kind of fault-tolerant operation method of direct current biasing type current transformer
CN102064726B (en) Controllable double-power supply series connection asymmetric inverter for single-phase induction motor
Liu et al. A novel four-leg inverter topology for dual three-phase PMSM

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant