CN107218175B - 一种实现风力机最大化风能捕获效率的转速跟踪目标优化方法 - Google Patents

一种实现风力机最大化风能捕获效率的转速跟踪目标优化方法 Download PDF

Info

Publication number
CN107218175B
CN107218175B CN201710483691.9A CN201710483691A CN107218175B CN 107218175 B CN107218175 B CN 107218175B CN 201710483691 A CN201710483691 A CN 201710483691A CN 107218175 B CN107218175 B CN 107218175B
Authority
CN
China
Prior art keywords
wind energy
speed
conversion system
rotating
extraction efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710483691.9A
Other languages
English (en)
Other versions
CN107218175A (zh
Inventor
殷明慧
李志翔
陈载宇
李赟
李冬运
李群
刘建坤
周前
陈兵
汪成根
卜京
谢云云
邹云
陈哲
张宁宇
卫鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd
Original Assignee
Nanjing University of Science and Technology
Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology, Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd filed Critical Nanjing University of Science and Technology
Priority to CN201710483691.9A priority Critical patent/CN107218175B/zh
Publication of CN107218175A publication Critical patent/CN107218175A/zh
Application granted granted Critical
Publication of CN107218175B publication Critical patent/CN107218175B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/101Purpose of the control system to control rotational speed (n)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/304Spool rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/70Type of control algorithm
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Eletrric Generators (AREA)
  • Wind Motors (AREA)

Abstract

本发明公开了一种实现风力机最大化风能捕获效率的转速跟踪目标优化方法,通过一阶数字滤波器对最优转速进行平滑处理,并实时对滤波系数进行搜素,以此对转速跟踪目标进行优化。本发明优化了风力机的转速跟踪目标,解决了大转动惯量的风力机在有限范围的发电机电磁转矩控制作用下难以根据快变的风速信号对转速进行快速精确的调节的问题,进一步提高了风力机的风能捕获效率。

Description

一种实现风力机最大化风能捕获效率的转速跟踪目标优化 方法
技术领域
本发明属于风力机控制领域,特别是一种实现风力机最大化风能捕获效率的转速跟踪目标优化方法。
背景技术
变速风机通过改变自身的转速跟踪风速的变化,以实现最大功率点跟踪(maximumpowerpoint tracking,MPPT)。主要的MPPT控制方法分为叶尖速比法、最优转矩法和爬山法。本发明方法是基于目前已经被广泛研究的叶尖速比法。
基于叶尖速比法的MPPT控制方法在控制器设计的过程中考虑了转速跟踪目标的动态特性,从而理论上能够使风力机对变化的最优转速进行快速跟踪。这些考虑转速跟踪目标动态特性的控制方法在一定程度上提高了风力机的转速跟踪能力。
然而,这些方法在应用过程不可避免的会受到风力机本身结构特性的限制,即具有较大转动惯量的风轮在有限的发电机电磁转矩的控制作用下无法对快速变化的目标进行实时精确跟踪。如果强行对由快速波动的风速所决定的最优转速信号进行跟踪,不仅会增大风力机叶片和传动轴上的结构载荷,还会使得发电机无法响应控制器给出的参考转矩信号,进而对转速跟踪效果造成影响,降低风能捕获效率。
基于上述情况,对于具有慢动态特性的风力机以及快速波动的风速,传统的以最优转速为跟踪目标的MPPT控制已无法实现最大化风能捕获的目标,针对此问题一个切实可行的办法是设定一个与风力机慢动态特性相匹配的转速跟踪目标。但是现有技术中尚无相关描述。
发明内容
本发明所解决的技术问题在于提供一种实现风力机最大化风能捕获效率的转速跟踪目标优化方法。
实现本发明目的的技术解决方案为:一种实现风力机最大化风能捕获效率的转速跟踪目标优化方法,包括以下步骤:
步骤1、对第1、2个迭代周期的转速滤波系数进行初始化,并计算相应周期的风能捕获效率η值;
步骤2、设置迭代周期k=k+1,并进入下一个迭代周期;
步骤3、在第k周期的开始时,进入自适应搜索转速滤波系数的阶段,利用前2个迭代周期的转速滤波系数和风能捕获效率的数值,计算出前周期的转速滤波系数变化量Δα(k);
步骤4、设置当前周期的转速滤波系数α(k)=α(k-1)+Δα(k);
步骤5、利用当前周期的转速滤波系数对最优转速进行滤波,并利用基于叶尖速比法的风力机控制方法控制风力机进行第k个周期的运行;
步骤6、计算第k个周期的风力机风能捕获效率η(k);
步骤7、判断第k个周期是否运行结束,若不结束,则进入步骤2继续运行;否则,结束运行。
本发明与现有技术相比,其显著优点为:1)本发明针对使用一阶数字滤波器优化参考转速的方法设计出一种基于滤波参数自适应调整的最大化风能捕获策略,在未改变控制器的情况下提高了风力机的效率;2)本发明优化了风力机的转速跟踪目标,解决了大转动惯量的风力机在有限范围的发电机电磁转矩控制作用下难以根据快变的风速信号对转速进行快速精确的调节的问题,进一步提高了风力机的风能捕获效率。
下面结合附图对本发明作进一步详细描述。
附图说明
图1为本发明的最大化风能捕获效率的转速跟踪目标优化方法流程图。
图2为本发明在一段平均风速为7m/s的6小时风速序列下的滤波系数的变化。
具体实施方式
结合图1,本发明的一种实现风力机最大化风能捕获效率的转速跟踪目标优化方法,包括以下步骤:
步骤1、对第1、2个迭代周期的转速滤波系数进行初始化,并确定相应周期的风能捕获效率η(1),η(2);具体步骤为:
步骤1-1、第一个迭代周期即k=1时:设置初始转速滤波系数为α(1),并在运行周期结束时,确定第一个周期的风能捕获效率η(1);
第一个周期的风能捕获效率η(1)的计算公式为:
式中,n为一个运行周期内的采样次数,Tem(i)为发电机电磁转矩,ωg(i)为发电机转速,ρ为空气密度,R为风轮半径,v(i)为风速值,CP.max为最大风能利用系数;
步骤1-2、第二个迭代周期即k=2时:设置初始变化量为Δα(2),计算α(2)=α(1)+Δα(2),并在运行周期结束时,确定第二个周期的风能捕获效率η(2),其计算公式也为:
步骤2、设置迭代周期k=k+1,并进入下一个迭代周期;
步骤3、在第k周期的开始时,进入自适应转速滤波系数搜索,根据之前两个周期的转速滤波系数和风能捕获效率,确定当前周期的转速滤波系数变化量Δα(k);所用公式为:
式中,m为自适应的系数。
步骤4、设置当前周期的转速滤波系数α(k)=α(k-1)+Δα(k);
步骤5、利用当前周期的转速滤波系数对最优转速进行滤波,得到转速跟踪目标ωref(t),并利用基于叶尖速比法的风力机控制方法控制风力机进行第k个周期的运行;所述转速跟踪目标ωref(t)的计算公式为:
其中,λopt为风力机的最优叶尖速比,为估计风速,R为风轮半径。
步骤6、确定第k个周期的风力机风能捕获效率η(k);所用公式为:
式中,n为一个运行周期内的采样次数,Tem(i)为发电机电磁转矩,ωg(i)为发电机转速,ρ为空气密度,R为风轮半径,v(i)为风速值,CP.max为最大风能利用系数。
步骤7、判断第k个周期是否运行结束,若不结束,则进入步骤2继续运行;否则,结束运行。
本发明优化了风力机的转速跟踪目标,解决了大转动惯量的风力机在有限范围的发电机电磁转矩控制作用下难以根据快变的风速信号对转速进行快速精确的调节的问题,进一步提高了风力机的风能捕获效率。
下面结合实施例对本发明做进一步详细的描述:
实施例
利用美国国家能源部可再生能源实验室(National Renewable EnergyLaboratory,NREL)提供的开源的专业风力机仿真软件FAST(Fatigue,Aerodynamics,Structures,and Turbulence)来模拟控制效果。风力机模型采用NERL开发的600kW CART3试验机型,具体参数如表1所示。
表1 NREL 600kW CART3风力机主要参数
首先,使用TurbSim(NREL提供的开源的湍流风模拟软件)生成一条时长为6小时的平均风速为7m/s的风速序列(包含36个10分钟间隔)。湍流风速由Kaimal谱模型产生的,湍流分量(C等级)和数值为150m的积分尺度。
然后,仿真的迭代周期设为10分钟,初始的转速滤波系数设为0.3,α的初始扰动设为0.05。m设为0.1。
在该风速序列下不同策略的效率比较:
表2.不同策略效率比较
从上表中可以看出,采用本专利提出的滤波参数自适应调整的方法所获取的风能捕获效率在0h-6h、0h-3h、3h-6h内都比其他的采用固定滤波系数的方法更高,说明本发明提出的方法能提高风力机的风能捕获效率。
由上述实施例,可以验证本发明提出的基于滤波参数自适应调整的最大化风能捕获策略,设定了一个与风力机慢动态特性较为匹配的转速跟踪目标,在未改变控制器的情况下提高了风力机的效率。

Claims (5)

1.一种实现风力机最大化风能捕获效率的转速跟踪目标优化方法,其特征在于,包括以下步骤:
步骤1、对第1、2个迭代周期的转速滤波系数进行初始化,并确定相应周期的风能捕获效率η(1),η(2);
步骤2、设置迭代周期k=k+1,并进入下一个迭代周期;
步骤3、在第k周期的开始时,进入自适应转速滤波系数搜索,根据之前两个周期的转速滤波系数和风能捕获效率,确定当前周期的转速滤波系数变化量Δα(k);
步骤4、设置当前周期的转速滤波系数α(k)=α(k-1)+Δα(k);
步骤5、利用当前周期的转速滤波系数对最优转速进行滤波,得到转速跟踪目标ωref(t),并利用基于叶尖速比法的风力机控制方法控制风力机进行第k个周期的运行;
步骤6、确定第k个周期的风力机风能捕获效率η(k);
步骤7、判断第k个周期是否运行结束,若不结束,则进入步骤2继续运行;否则,结束运行。
2.根据权利要求1所述的实现风力机最大化风能捕获效率的转速跟踪目标优化方法,其特征在于,步骤1中对第1、2个迭代周期的转速滤波系数进行初始化的具体步骤为:
步骤1-1、第一个迭代周期即k=1时:设置初始转速滤波系数为α(1),并在运行周期结束时,确定第一个周期的风能捕获效率η(1);
第一个周期的风能捕获效率η(1)的计算公式为:
式中,n为一个运行周期内的采样次数,Tem(i)为发电机电磁转矩,ωg(i)为发电机转速,ρ为空气密度,R为风轮半径,v(i)为风速值,CP.max为最大风能利用系数;
步骤1-2、第二个迭代周期即k=2时:设置初始变化量为Δα(2),计算α(2)=α(1)+Δα(2),并在运行周期结束时,确定第二个周期的风能捕获效率η(2),其计算公式也为:
3.根据权利要求1所述的实现风力机最大化风能捕获效率的转速跟踪目标优化方法,其特征在于,步骤3中确定当前周期的转速滤波系数变化量Δα(k)的公式为:
式中,m为自适应的系数。
4.根据权利要求1所述的实现风力机最大化风能捕获效率的转速跟踪目标优化方法,其特征在于,步骤5中的转速跟踪目标ωref(t)的计算公式为:
其中,λopt为风力机的最优叶尖速比,为估计风速,R为风轮半径。
5.根据权利要求1所述的实现风力机最大化风能捕获效率的转速跟踪目标优化方法,其特征在于,步骤6中确定第k个周期的风力机风能捕获效率公式为:
式中,n为一个运行周期内的采样次数,Tem(i)为发电机电磁转矩,ωg(i)为发电机转速,ρ为空气密度,R为风轮半径,v(i)为风速值,CP.max为最大风能利用系数。
CN201710483691.9A 2017-06-23 2017-06-23 一种实现风力机最大化风能捕获效率的转速跟踪目标优化方法 Active CN107218175B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710483691.9A CN107218175B (zh) 2017-06-23 2017-06-23 一种实现风力机最大化风能捕获效率的转速跟踪目标优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710483691.9A CN107218175B (zh) 2017-06-23 2017-06-23 一种实现风力机最大化风能捕获效率的转速跟踪目标优化方法

Publications (2)

Publication Number Publication Date
CN107218175A CN107218175A (zh) 2017-09-29
CN107218175B true CN107218175B (zh) 2019-03-05

Family

ID=59950383

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710483691.9A Active CN107218175B (zh) 2017-06-23 2017-06-23 一种实现风力机最大化风能捕获效率的转速跟踪目标优化方法

Country Status (1)

Country Link
CN (1) CN107218175B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109944822B (zh) * 2018-11-11 2020-07-07 南京理工大学 基于限制参考转速变化率的转速跟踪目标优化方法
CN110867850B (zh) * 2019-10-31 2021-10-08 全球能源互联网研究院有限公司 一种发电机转速及风电机组参数计算方法、风电机组模型
CN111336062B (zh) * 2020-03-05 2021-11-09 中国大唐集团科学技术研究院有限公司华中电力试验研究院 一种基于测量风速的风力发电机组最大风能捕获方法
CN112145376B (zh) * 2020-09-29 2021-06-22 沈阳航空航天大学 一种风力机全时效率测定方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103362736A (zh) * 2012-04-05 2013-10-23 北京能高自动化技术股份有限公司 变速变桨风力发电机组基于内模控制的最大功率追踪控制方法
KR20140065945A (ko) * 2012-11-22 2014-05-30 현대중공업 주식회사 풍력 발전기 제어시스템 및 방법
CN103867387A (zh) * 2014-03-28 2014-06-18 中科恒源科技股份有限公司 基于风力发电的最大功率跟踪控制的方法
JP5656977B2 (ja) * 2011-07-06 2015-01-21 三菱重工業株式会社 エネルギー抽出装置、エネルギー抽出装置群および運転方法
CN106499581A (zh) * 2016-11-09 2017-03-15 南京理工大学 一种考虑变化湍流风况的风力机自适应转矩控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5656977B2 (ja) * 2011-07-06 2015-01-21 三菱重工業株式会社 エネルギー抽出装置、エネルギー抽出装置群および運転方法
CN103362736A (zh) * 2012-04-05 2013-10-23 北京能高自动化技术股份有限公司 变速变桨风力发电机组基于内模控制的最大功率追踪控制方法
KR20140065945A (ko) * 2012-11-22 2014-05-30 현대중공업 주식회사 풍력 발전기 제어시스템 및 방법
CN103867387A (zh) * 2014-03-28 2014-06-18 中科恒源科技股份有限公司 基于风力发电的最大功率跟踪控制的方法
CN106499581A (zh) * 2016-11-09 2017-03-15 南京理工大学 一种考虑变化湍流风况的风力机自适应转矩控制方法

Also Published As

Publication number Publication date
CN107218175A (zh) 2017-09-29

Similar Documents

Publication Publication Date Title
CN107218175B (zh) 一种实现风力机最大化风能捕获效率的转速跟踪目标优化方法
CN106499581B (zh) 一种考虑变化湍流风况的风力机自适应转矩控制方法
CN107559143B (zh) 一种大型风力机尾缘襟翼结构参数寻优及多目标襟翼优化控制方法
CN104141591B (zh) 风力发电最大功率点跟踪的改进自适应转矩控制方法
CN103758697B (zh) 一种基于风机有效跟踪区间的改进最大功率跟踪控制方法
CN105673322B (zh) 实现风力机mppt控制的变参数非线性反馈控制方法
CN107045574B (zh) 基于svr的风力发电机组低风速段有效风速估计方法
CN104675629B (zh) 一种变速风力发电机组的最大风能捕获方法
CN108280263A (zh) 一种抽水蓄能机组导叶关闭规律双目标优化方法及***
CN102748217A (zh) 一种风电机组动态最优桨距角控制方法和装置
CN106777525B (zh) 考虑设计叶尖速比风轮静、动态影响的风力机气动设计方法
CN102777318A (zh) 一种兆瓦级风力发电机组变桨距***运动控制方法
CN105626378A (zh) 基于rbf神经网络的大型风电机组独立变桨控制方法
Anjun et al. Pitch control of large scale wind turbine based on expert PID control
CN109488525B (zh) 基于提高转速下限的转速跟踪目标优化方法
CN109139363B (zh) 一种提升多机型风力机性能的最大功率点跟踪控制方法
Imran et al. LQG controller design for pitch regulated variable speed wind turbine
CN108717266A (zh) 风场风机功率基于扰动观测器的神经自适应跟踪控制方法
Bertašienė et al. Synergies of Wind Turbine control techniques
CN109707565B (zh) 一种利用大型风力机惯性的最大风能捕获控制方法
CN110030148A (zh) 基于风速提前测量的非线性预测变桨控制方法
CN104819098A (zh) 一种无速度传感器的风力发电最大功率跟踪方法
Maheswari et al. Analysis of modelling of active stall controlled and active pitch controlled variable speed wind turbines
CN105844544B (zh) 基于变系数转矩控制的风力机最大功率点跟踪控制方法
CN112211782A (zh) 基于起始转速自适应搜索的收缩跟踪区间控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant