CN107204953A - A kind of blind frequency-offset estimating method in CP FBMC communication systems - Google Patents

A kind of blind frequency-offset estimating method in CP FBMC communication systems Download PDF

Info

Publication number
CN107204953A
CN107204953A CN201710295165.XA CN201710295165A CN107204953A CN 107204953 A CN107204953 A CN 107204953A CN 201710295165 A CN201710295165 A CN 201710295165A CN 107204953 A CN107204953 A CN 107204953A
Authority
CN
China
Prior art keywords
mrow
msub
msup
mover
mtd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710295165.XA
Other languages
Chinese (zh)
Other versions
CN107204953B (en
Inventor
王慧明
史珂
郑修鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201710295165.XA priority Critical patent/CN107204953B/en
Publication of CN107204953A publication Critical patent/CN107204953A/en
Application granted granted Critical
Publication of CN107204953B publication Critical patent/CN107204953B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/264Pulse-shaped multi-carrier, i.e. not using rectangular window
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2669Details of algorithms characterised by the domain of operation
    • H04L27/2672Frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2676Blind, i.e. without using known symbols
    • H04L27/2678Blind, i.e. without using known symbols using cyclostationarities, e.g. cyclic prefix or postfix
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0024Carrier regulation at the receiver end
    • H04L2027/0026Correction of carrier offset

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

The invention discloses the blind frequency-offset estimating method in a kind of CP FBMC communication systems, it is therefore intended that, by virtual sub-carrier distribution manner reasonable in design, while spectrum efficiency is ensured, improve estimation performance, the technical scheme used for:Cross the virtual subcarrier in transmitting terminal distribution continuous three and the above of CP FBMC systems, system receiving terminal utilize with the non-conterminous virtual subcarrier calculation cost function of data subcarrier, the corresponding frequency deviation exploration value of cost function minimum value is the estimate of frequency deviation.

Description

A kind of blind frequency-offset estimating method in CP-FBMC communication systems
Technical field
The present invention relates to the frequency deviation estimating method of FBMC systems in wireless communication field, and in particular to a kind of CP-FBMC leads to Blind frequency-offset estimating method in letter system.
Background technology
Because multicarrier modulation system can not only provide the data transfer of high speed, lifting system capacity at double, simultaneously The frequency selective fading of channel can be effective against, therefore receives extensive concern and the research of academia and industrial quarters. However, too high with external leakage is always the big disadvantage for arriving multicarrier modulation system.FBMC (recursive filter group multicarrier) technology By using the ptototype filter with good time-frequency focus characteristics, the band external leakage of signal can be effectively reduced.In addition, FBMC Technology introduces the operation such as multiphase filter and Fast Fourier Transform (FFT), greatly reduces the complexity and operand of itself, applies Have a extensive future.In order to improve FBMC spectrum efficiency, recursive filter group multicarrier Cyclic-FBMC is suggested, while in order to Contrary frequency Selective intensity, CP is added based on Cyclic-FBMC, constitutes CP-FBMC systems, and derive preferably quick real Existing structure.
As other multicarrier systems, FBMC is equally very sensitive for synchronous distortion, and Time and Frequency Synchronization all the time It is FBMC study hotspot.The method of current FBMC Time and Frequency Synchronizations mainly includes being based on data-aided algorithm for estimating and blind estimate Algorithm.The method of calculating is synchronized, it is necessary to many using the related operation of replicator based on data-aided method of estimation Synchronizing symbol and protection symbol could offset the plyability of FBMC systems, and spectrum efficiency is relatively low.Such method is set forth at first Tilde Fusco, Angelo Petrella, Mario Tanda are in IEEE Transactions on Wireless Communications,2009,8(5):" the Data-aided symbol timing and CFO delivered on 2705-2715 synchronization for filter bank multicarrier systems”.In Chinese patent 201110215577.0《A kind of OFDM/OQAM systems and its Time and Frequency Synchronization mode》In, selection and maximum by related operation Posterior probability criterion is improved to the estimation performance in the above method, but spectrum efficiency is still very low.The blind estimate of early stage Algorithm mainly make use of the second-order cyclostationary of FBMC multicarrier systems, and complexity is high.Davide Mattera, Mario Tanda is in IEEE Transactions on Wireless Communications, 2013,12 (1):Delivered on 268-277 " Blind Symbol Timing and CFO Estimation for OFDM/OQAM Systems " propose utilize FBMC Conjugate symmetry, greatly reduce complexity, but performance decreases.So the compromise spectrum efficiency considered in FBMC and estimating Performance is counted, is urgently to be resolved hurrily at present.Simultaneously in view of needing to be based on Cyclic- under the serious channel condition of frequency selectivity FBMC systems add CP, so the offset estimation and compensation problem under CP-FBMC systems are equally urgently to be resolved hurrily.
The content of the invention
In order to solve the problems of the prior art, present invention proposition is a kind of to pass through virtual subcarrier distribution side reasonable in design Formula, while spectrum efficiency is ensured, improves the blind frequency-offset estimating method in the CP-FBMC communication systems of estimation performance.
In order to realize the above object the technical solution adopted in the present invention is:Comprise the following steps:
1) transmitting terminal distributes virtual subcarrier using random continuous mode, and the virtual subnet for distributing continuous three and the above is carried Ripple;
2) according to step 1) the message bit stream of sub-carrier distribution manner sub-carrier be modulated;
3) using Cyclic-FBMC systems to step 2) subcarrier data carry out piecemeal obtain some data blocks;
4) to step 3) each data block be modulated, i.e., the data symbol on different frequency time point is multiplied by corresponding Basic function, then transmitting terminal send signal sl
Wherein,Represent normalized LcThe DFT transform of point;Frequency-domain transmission processing is represented, Λm=diag (λm), For broad sense DFT,
5) receiving terminal is based on Cyclic-FBMC addition CP composition CP-FBMC systems, sends end signal slBelieve by multipath Road, obtains receiving signal r in the skew of receiving terminal occurrence frequencyl, the frequency offset signals that receiving terminal is received are expressed as:
Wherein φ is frequency deviation actual value, nlIt is 0 to represent average, and variance is σ2Additive white Gaussian noise;
6) CFO exploration values are assumedDock collection of letters rlCarry out frequency deviation and sound out compensation:
Demodulation is obtained:
7) using continuously and virtually subcarrier virtual subcarrier calculation cost function not adjacent with data subcarrier:
It is rightTraveled through and distinguish calculation cost function, then the estimate of the frequency deviation minimization problem following by solving Obtain:
The corresponding frequency deviation exploration value of minimum resultThe as estimate of frequency deviationBlind frequency deviation is completed to estimate Meter.
The step 1) middle selection virtual subnet carrier wave set number P, wherein every group of continuously and virtually subcarrier number Q, Q >=3, note is often The serial number m of first virtual subcarrier of groupi,1, i=1,2 ... P, mi,1∈ [0, M-1], remaining virtual subcarrier sequence number of each group For mi,1+j=((mi,1+j))M, ((mi,1+j))MRepresent mi,1+ j is using M as the result of circulation, i=1,2 ... P, j=0,1 ... Q- 1, mi,1+jRemaining is data subcarrier in addition to virtual subcarrier in ∈ [0, M-1], M subcarrier, and note and data subcarrier are not Adjacent virtual subcarrier is that P × (Q-2) is individual, for set Mused-null
The step 2) in modulation include:According to step 1) sub-carrier distribution manner sub-carrier distribution QPSK symbols, Symbolic information is not carried on virtual subcarrier, and carries out serioparallel exchange, OQAM pretreatments are then carried out, complex data symbols are turned Change real data symbol into.
The step 3) sub-carriers deblocking includes:On subcarrier m, data symbol sequence am[n] is divided into comprising Nc Individual complex symbol, size is 2NcData block, length is Lc=MNc, make am,l[n] represents upper l-th of the data symbols of subcarrier m Number block, am,l[n]=am[2lNc+ n], n=0,1 ..., 2Nc-1。
The step 4) modulated process be:
4.1) transmitting terminal modulated signal to be sent is:
Wherein, gm,n[k] is am,l[n] corresponding basic function:
Wherein,It is the initial phase added to real data symbol to be sent,RepresentWith LcFor the result of circulation, pc[k'] be Cyclic-FBMC systems in adopt Ptototype filter p [k'] in ptototype filter, with FBMC systems has following relation:
4.2) l-th of modulated signal is expressed as in Cyclic-FBMC:
Wherein,
For the centre frequency on m-th of subcarrier;
Do variable replacementWherein δ0≤m0< Nc0It is an integer, works as NcDuring for even number, δ0=0.5, Otherwise, δ0=0, and makeThen sl[k] and pc,m[k'] is write as:
4.3) by sl[k] matrixing, sl=[sl[0] sl[1] … sl[Lc-1]]TFor slThe matrix representation forms of [k], point A is not madem,l=[am,l[0] am,l[1] … am,l[2Nc-1]]T, pc,m=[pc,m[0] pc,m[1] … pc,m[Lc-1]]T
By deriving, transmitting terminal sends signal slFinally write as following form:
The step 6) in for each m0=m,The elements in a main diagonal is 1+0j, and remaining element is Pure imaginary number or real part are infinitely small, then
For each m0=m, In each element by To the influence of time domain adjacent element;
For each m0≠ m, | m-m0| when=1, thenIt can not ignore;|m-m0| during > 1, Only consider adjacent sub-carrier pairInfluence.
The step 7) according to the estimate of frequency deviationThe docking collection of letters number carries out a frequency deviation compensation, in receiving terminal to each piece Data block carries out pointwise equilibrium, and demodulation is obtainedWillOQAM postpositive disposals are carried out, plural symbol is changed back to from real number symbol Number, carry out after parallel-serial conversion, carry out QPSK demodulation, finally recover the bit data flow of transmission.
Compared with prior art, the present invention passes through continuous three of the transmitting terminal distribution in CP-FBMC systems and the void of the above Intend subcarrier, utilized and the non-conterminous virtual subcarrier calculation cost function of data subcarrier, cost function in system receiving terminal The corresponding frequency deviation exploration value of minimum value is the estimate of frequency deviation, and the present invention passes through virtual subcarrier distribution side reasonable in design Formula, while spectrum efficiency is ensured, improves estimation performance, and by verification experimental verification, the inventive method is a small amount of virtual by insertion Subcarrier, estimation performance is lifted, and increasing with virtual number of subcarriers, and available information amount increases, and estimates performance Can further it improve.
Brief description of the drawings
Fig. 1 is the schematic diagram of the virtual sub-carrier distribution manner of transmitting terminal of the present invention;
Fig. 2 is flow chart of the method for the present invention;
Fig. 3 is bent using bit signal to noise ratio when comparative example and blind offset estimation of the invention and the relation of estimation root-mean-square error Abscissa represents bit signal to noise ratio E in line comparison diagram, figureb/N0, unit decibel (dB), scope 0-30dB, ordinate represent correspondence Estimation root-mean-square error.
Embodiment
The present invention is further explained with reference to specific embodiment and Figure of description.
Referring to Fig. 2, the present invention comprises the following steps:
1st, transmitting terminal:
(1) referring to Fig. 1, M subcarrier of transmitting terminal, subcarrier sequence number m=0,1 ..., M-1, subcarrier sequence number difference 1 Then represent that subcarrier is adjacent, using the virtual subcarrier distribution scheme of random continuous:Select virtual subnet carrier wave set number P, every group of company Continuous virtual subnet variable number Q, wherein Q >=3, remember the serial number m of every group first virtual subcarrieri,1, i=1,2 ... P, mi,1∈ [0,M-1];The cyclicity of the Cyclic-FBMC systems before CP, remaining virtual subcarrier sequence number of each group are added in view of CP-FBMC For((mi,1+j))MRepresent mi,1Results of+the j using M as circulation, mi,1+jRemaining is data subcarrier in addition to virtual subcarrier in ∈ [0, M-1], M subcarrier, note and data subcarrier not phase Adjacent virtual subcarrier P × (Q-2) is individual, for set Mused-null
(2) QPSK modulation is carried out to message bit stream, distributes QPSK symbols according to (1) sub-carriers method of salary distribution, virtually Symbolic information is not carried on subcarrier, serioparallel exchange is carried out, OQAM pretreatments is then carried out, complex data symbols is converted into reality Number data symbol;
(3) deblocking is sent using Cyclic-FBMC systems, on subcarrier m, data symbol sequence am[n] point Into including NcIndividual complex symbol, size is 2NcData block, length is Lc=MNc, make am,l[n] represents the upper l of subcarrier m Individual data symbol block, am,l[n]=am[2lNc+ n], n=0,1 ..., 2Nc-1;
(4) each data block is modulated, i.e., the data symbol on different frequency time point is multiplied by corresponding basic function, Transmitting terminal modulated signal to be sent is:
Wherein, gm,n[k] is am,l[n] corresponding basic function:
Here,It is the initial phase added to real data symbol to be sent,RepresentWith LcFor the result of circulation, pc[k'] be Cyclic-FBMC systems in adopt Ptototype filter p [k'] in ptototype filter, with FBMC systems has following relation:
2nd, quick way of realization:
(1) l-th of modulated signal can be further represented as in Cyclic-FBMC:
Wherein,
For the centre frequency on m-th of subcarrier;
Do variable replacementWherein δ0≤m0< Nc0It is an integer, works as NcDuring for even number, δ0=0.5, Otherwise, δ0=0, and makesl[k] and pc,m[k] can be write as again:
(2) by sl[k] matrixing, sl=[sl[0] sl[1] … sl[Lc-1]]TFor slThe matrix representation forms of [k], point A is not madem,l=[am,l[0] am,l[1] … am,l[2Nc-1]]T, pc,m=[pc,m[0] pc,m[1] … pc,m[Lc-1]]T
By deriving, slIt may finally be write as following form:
Wherein,Represent normalized LcThe DFT transform of point;Represent frequency-domain transmission processing (frequency domain transmit processing, abbreviation FDTP), Λm=diag (λm), Referred to as broad sense DFT (generalized DFT, abbreviation GDFT),
3rd, receiving terminal:
(1) based on Cyclic-FBMC addition CP composition CP-FBMC systems, end signal s is sentlBy multipath channel, connecing The skew of receiving end occurrence frequency obtains receiving signal rl, due to the effect of cyclic prefix, the frequency offset signals that receiving terminal is received It can be expressed as:
Wherein φ is frequency deviation actual value, nlIt is 0 to represent average, and variance is σ2Additive white Gaussian noise;
(2) CFO exploration values are assumedDock collection of letters rlCarry out frequency deviation and sound out compensation:
Demodulation is obtained:
For each m0=m,The elements in a main diagonal is 1+0j, remaining element or for pure imaginary number, Or real part is very small, so
For each m0=m, In each element master To be influenceed by time domain adjacent element;
For each m0≠ m, | m-m0| when=1,It can not ignore.|m-m0| during > 1,It is very small, so only needing to consider adjacent sub-carrier pairInfluence;
(3) with continuously and virtually subcarrier virtual subcarrier calculation cost function not adjacent with data subcarrier:
It is rightTraveled through and distinguish calculation cost function, then the estimate of frequency deviation can be asked by solving following minimum Topic is obtained:
The corresponding frequency deviation exploration value of minimum resultThe as estimate of frequency deviation
(4) a frequency deviation compensation is carried out according to the frequency deviation value docking collection of letters number estimated, each piece of data block entered in receiving terminal Row pointwise is balanced, and demodulation is obtainedWillOQAM postpositive disposals are carried out, complex symbol is changed back to from real number symbol, are carried out After parallel-serial conversion, QPSK demodulation is carried out, the bit data flow of transmission is finally recovered, algorithm terminates.
The CP-FBMC systems used in the present embodiment are modulated using QPSK constellations, system bandwidth B=1/Ts=11.2MHz, Subcarrier number is M=1024, the complex symbol N that each symbolic blocks are includedc=5, ptototype filter is PHYDYAS, it is overlapping because Sub- K=4, cyclic prefix CP length is G=M/8, virtual subnet carrier wave set number P=1, continuously and virtually subcarrier length Q=3, multipath Fading channel model uses ITU Vehicular A channel models, and channel delay is [00.31 0.71 1.09 1.73 2.51] (unit is μ s), path gain is [0-1-9-10-15-20] (unit is dB).Due to CP-FBMC each data block All it is by NcIndividual small data block composition, so the estimation range of frequency deviation of the present invention is
Bit signal to noise ratio and the pass of estimation root-mean-square error when Fig. 3 gives Application way 1 and blind offset estimation of the invention It is curve, and by Davide Mattera, Mario Tanda are in IEEE Transactions on Wireless Communications, 2013,12 (1):" the Blind Symbol Timing and CFO delivered on 268-277 Estimation for OFDM/OQAM Systems " methods are compared as a comparison case, and method is designated as in contrast illustration 1.Continuously and virtually subcarrier length Q=3 in the inventive method figure, P represent virtual subnet carrier wave set number, select P=1 and P=30 two The situation of kind, the virtual subcarrier of expression bigger P is more, and the information content for calculation cost function is bigger.As seen from the figure, originally Inventive method estimation performance is better than method 1, and increasing with virtual number of subcarriers, and available information content increases, and estimates Performance gets a promotion.The inventive method significantly improves estimation performance by a small amount of virtual subcarrier of insertion.

Claims (7)

1. the blind frequency-offset estimating method in a kind of CP-FBMC communication systems, it is characterised in that comprise the following steps:
1) transmitting terminal distributes virtual subcarrier using random continuous mode, distributes the virtual subcarrier of continuous three and the above;
2) according to step 1) the message bit stream of sub-carrier distribution manner sub-carrier be modulated;
3) using Cyclic-FBMC systems to step 2) subcarrier data carry out piecemeal obtain some data blocks;
4) to step 3) each data block be modulated, i.e., the data symbol on different frequency time point is multiplied by corresponding base letter Count, then transmitting terminal sends signal sl
<mrow> <msub> <mi>s</mi> <mi>l</mi> </msub> <mo>=</mo> <msubsup> <mi>W</mi> <msub> <mi>L</mi> <mi>c</mi> </msub> <mi>H</mi> </msubsup> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>P</mi> <mi>m</mi> </msub> <msub> <mover> <mi>W</mi> <mo>~</mo> </mover> <mrow> <mn>2</mn> <msub> <mi>N</mi> <mi>c</mi> </msub> </mrow> </msub> <msub> <mi>a</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </mrow>
Wherein,Represent normalized LcThe DFT transform of point;Represent frequency-domain transmission processing, Λm =diag (λm), For broad sense DFT,
5) receiving terminal is based on Cyclic-FBMC addition CP composition CP-FBMC systems, sends end signal slBy multipath channel, connecing The skew of receiving end occurrence frequency obtains receiving signal rl, the frequency offset signals that receiving terminal is received are expressed as:
<mrow> <msub> <mi>r</mi> <mi>l</mi> </msub> <mo>=</mo> <msub> <mi>E</mi> <msub> <mi>L</mi> <mi>c</mi> </msub> </msub> <mrow> <mo>(</mo> <mi>&amp;phi;</mi> <mo>)</mo> </mrow> <msubsup> <mi>W</mi> <msub> <mi>L</mi> <mi>c</mi> </msub> <mi>H</mi> </msubsup> <mi>H</mi> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>P</mi> <mi>m</mi> </msub> <msub> <mover> <mi>W</mi> <mo>~</mo> </mover> <mrow> <mn>2</mn> <msub> <mi>N</mi> <mi>c</mi> </msub> </mrow> </msub> <msub> <mover> <mi>a</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>m</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>n</mi> <mi>l</mi> </msub> </mrow>
Wherein φ is frequency deviation actual value, nlIt is 0 to represent average, and variance is σ2Additive white Gaussian noise;
6) CFO exploration values are assumedDock collection of letters rlCarry out frequency deviation and sound out compensation:
<mrow> <msub> <mi>R</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mover> <mi>&amp;phi;</mi> <mo>~</mo> </mover> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>E</mi> <msub> <mi>L</mi> <mi>c</mi> </msub> </msub> <mrow> <mo>(</mo> <mi>&amp;phi;</mi> <mo>-</mo> <mover> <mi>&amp;phi;</mi> <mo>~</mo> </mover> <mo>)</mo> </mrow> <msubsup> <mi>W</mi> <msub> <mi>L</mi> <mi>c</mi> </msub> <mi>H</mi> </msubsup> <mi>H</mi> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>P</mi> <mi>m</mi> </msub> <msub> <mover> <mi>W</mi> <mo>~</mo> </mover> <mrow> <mn>2</mn> <msub> <mi>N</mi> <mi>c</mi> </msub> </mrow> </msub> <msub> <mover> <mi>a</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>m</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </mrow>
Demodulation is obtained:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mrow> <msub> <mi>m</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mrow> <mo>(</mo> <mover> <mi>&amp;phi;</mi> <mo>~</mo> </mover> <mo>)</mo> </mrow> <mo>=</mo> <mi>Re</mi> <mo>{</mo> <msubsup> <mover> <mi>W</mi> <mo>~</mo> </mover> <mrow> <mn>2</mn> <msub> <mi>N</mi> <mi>c</mi> </msub> </mrow> <mi>H</mi> </msubsup> <msubsup> <mi>P</mi> <msub> <mi>m</mi> <mn>0</mn> </msub> <mi>H</mi> </msubsup> <msub> <mi>W</mi> <msub> <mi>L</mi> <mi>c</mi> </msub> </msub> <msub> <mi>E</mi> <msub> <mi>L</mi> <mi>c</mi> </msub> </msub> <mrow> <mo>(</mo> <mi>&amp;phi;</mi> <mo>-</mo> <mover> <mi>&amp;phi;</mi> <mo>~</mo> </mover> <mo>)</mo> </mrow> <msubsup> <mi>W</mi> <msub> <mi>L</mi> <mi>c</mi> </msub> <mi>H</mi> </msubsup> <mi>H</mi> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>P</mi> <mi>m</mi> </msub> <msub> <mover> <mi>W</mi> <mo>~</mo> </mover> <mrow> <mn>2</mn> <msub> <mi>N</mi> <mi>c</mi> </msub> </mrow> </msub> <msub> <mover> <mi>a</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>m</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mo>}</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mi>Re</mi> <mrow> <mo>{</mo> <mrow> <msubsup> <mover> <mi>W</mi> <mo>~</mo> </mover> <mrow> <mn>2</mn> <msub> <mi>N</mi> <mi>c</mi> </msub> </mrow> <mi>H</mi> </msubsup> <msubsup> <mi>P</mi> <msub> <mi>m</mi> <mn>0</mn> </msub> <mi>H</mi> </msubsup> <msub> <mi>E</mi> <msub> <mi>L</mi> <mi>c</mi> </msub> </msub> <mrow> <mo>(</mo> <mrow> <mi>&amp;phi;</mi> <mo>-</mo> <mover> <mi>&amp;phi;</mi> <mo>~</mo> </mover> </mrow> <mo>)</mo> </mrow> <mi>H</mi> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>P</mi> <mi>m</mi> </msub> <msub> <mover> <mi>W</mi> <mo>~</mo> </mover> <mrow> <mn>2</mn> <msub> <mi>N</mi> <mi>c</mi> </msub> </mrow> </msub> <msub> <mover> <mi>a</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>m</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> </mrow> <mo>}</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
7) using continuously and virtually subcarrier virtual subcarrier calculation cost function not adjacent with data subcarrier:
<mrow> <mi>M</mi> <mi>U</mi> <mi>S</mi> <mi>I</mi> <mi>C</mi> <mrow> <mo>(</mo> <mover> <mi>&amp;phi;</mi> <mo>~</mo> </mover> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mo>&amp;Sigma;</mo> <mi>l</mi> </munder> <munder> <mo>&amp;Sigma;</mo> <mrow> <msub> <mi>m</mi> <mn>0</mn> </msub> <mo>&amp;Element;</mo> <msub> <mi>M</mi> <mrow> <mi>u</mi> <mi>s</mi> <mi>e</mi> <mi>d</mi> <mo>-</mo> <mi>n</mi> <mi>u</mi> <mi>l</mi> <mi>l</mi> </mrow> </msub> </mrow> </munder> <munderover> <mo>&amp;Sigma;</mo> <mrow> <msub> <mi>n</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <msub> <mi>N</mi> <mi>c</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mo>|</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mrow> <msub> <mi>m</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mo>&amp;lsqb;</mo> <msub> <mi>n</mi> <mn>0</mn> </msub> <mo>&amp;rsqb;</mo> <mrow> <mo>(</mo> <mover> <mi>&amp;phi;</mi> <mo>~</mo> </mover> <mo>)</mo> </mrow> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow>
It is rightTraveled through and distinguish calculation cost function, then the estimate of the frequency deviation minimization problem following by solving is obtained:
<mrow> <mover> <mi>&amp;phi;</mi> <mo>^</mo> </mover> <mo>=</mo> <mi>arg</mi> <munder> <mi>min</mi> <mover> <mi>&amp;phi;</mi> <mo>~</mo> </mover> </munder> <mi>M</mi> <mi>U</mi> <mi>S</mi> <mi>I</mi> <mi>C</mi> <mrow> <mo>{</mo> <mover> <mi>&amp;phi;</mi> <mo>~</mo> </mover> <mo>}</mo> </mrow> </mrow>
The corresponding frequency deviation exploration value of minimum resultThe as estimate of frequency deviationComplete blind offset estimation.
2. the blind frequency-offset estimating method in a kind of CP-FBMC communication systems according to claim 1, it is characterised in that institute State step 1) middle selection virtual subnet carrier wave set number P, wherein every group of continuously and virtually subcarrier number Q, Q >=3, remember every group of first void Intend the serial number m of subcarrieri,1, i=1,2 ... P, mi,1∈ [0, M-1], remaining virtual subcarrier serial number m of each groupi,1+j= ((mi,1+j))M, ((mi,1+j))MRepresent mi,1+ j is using M as the result of circulation, i=1,2 ... P, j=0,1 ... Q-1, mi,1+j∈ Remaining is data subcarrier in addition to virtual subcarrier in [0, M-1], M subcarrier, note and the non-conterminous void of data subcarrier Plan subcarrier is that P × (Q-2) is individual, for set Mused-null
3. the blind frequency-offset estimating method in a kind of CP-FBMC communication systems according to claim 1, it is characterised in that institute State step 2) in modulation include:According to step 1) sub-carrier distribution manner sub-carrier distribution QPSK symbols, virtual subcarrier On do not carry symbolic information, and carry out serioparallel exchange, then carry out OQAM pretreatments, complex data symbols are converted into real number number According to symbol.
4. the blind frequency-offset estimating method in a kind of CP-FBMC communication systems according to claim 1, it is characterised in that institute State step 3) sub-carriers deblocking includes:On subcarrier m, data symbol sequence am[n] is divided into comprising NcIndividual plural number symbol Number, size is 2NcData block, length is Lc=MNc, make am,l[n] represents upper l-th of the data symbol block of subcarrier m, am,l [n]=am[2lNc+ n], n=0,1 ..., 2Nc-1。
5. the blind frequency-offset estimating method in a kind of CP-FBMC communication systems according to claim 1, it is characterised in that institute State step 4) modulated process be:
4.1) transmitting terminal modulated signal to be sent is:
<mrow> <msub> <mi>s</mi> <mi>l</mi> </msub> <mo>&amp;lsqb;</mo> <mi>k</mi> <mo>&amp;rsqb;</mo> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <msub> <mi>N</mi> <mi>c</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>a</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mo>&amp;lsqb;</mo> <mi>n</mi> <mo>&amp;rsqb;</mo> <msub> <mi>g</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo>&amp;lsqb;</mo> <mi>k</mi> <mo>&amp;rsqb;</mo> </mrow>
Wherein, gm,n[k] is am,l[n] corresponding basic function:
<mrow> <msub> <mi>g</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo>&amp;lsqb;</mo> <mi>k</mi> <mo>&amp;rsqb;</mo> <mo>=</mo> <msub> <mi>p</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <msub> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mi>n</mi> <mfrac> <mi>M</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <msub> <mi>L</mi> <mi>c</mi> </msub> </msub> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> <msub> <mi>&amp;pi;f</mi> <mi>m</mi> </msub> <mi>k</mi> </mrow> </msup> <msup> <mi>e</mi> <mrow> <msub> <mi>j&amp;phi;</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> </mrow> </msup> </mrow>
Wherein,It is the initial phase added to real data symbol to be sent,Table ShowWith LcFor the result of circulation, pc[k'] is the ptototype filter that uses in Cyclic-FBMC systems, with Ptototype filter p [k'] in FBMC systems has following relation:
<mrow> <msub> <mi>p</mi> <mi>c</mi> </msub> <mrow> <mo>&amp;lsqb;</mo> <msup> <mi>k</mi> <mo>&amp;prime;</mo> </msup> <mo>&amp;rsqb;</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>p</mi> <mrow> <mo>&amp;lsqb;</mo> <msup> <mi>k</mi> <mo>&amp;prime;</mo> </msup> <mo>&amp;rsqb;</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mn>0</mn> <mo>&amp;le;</mo> <msup> <mi>k</mi> <mo>&amp;prime;</mo> </msup> <mo>&amp;le;</mo> <mfrac> <mrow> <mi>K</mi> <mi>M</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mfrac> <mrow> <mi>K</mi> <mi>M</mi> </mrow> <mn>2</mn> </mfrac> <mo>+</mo> <mn>1</mn> <mo>&amp;le;</mo> <msup> <mi>k</mi> <mo>&amp;prime;</mo> </msup> <mo>&amp;le;</mo> <msub> <mi>L</mi> <mi>c</mi> </msub> <mo>-</mo> <mfrac> <mrow> <mi>K</mi> <mi>M</mi> </mrow> <mn>2</mn> </mfrac> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>p</mi> <mrow> <mo>&amp;lsqb;</mo> <mrow> <msup> <mi>k</mi> <mo>&amp;prime;</mo> </msup> <mo>-</mo> <msub> <mi>L</mi> <mi>c</mi> </msub> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>L</mi> <mi>c</mi> </msub> <mo>-</mo> <mfrac> <mrow> <mi>K</mi> <mi>M</mi> </mrow> <mn>2</mn> </mfrac> <mo>&amp;le;</mo> <msup> <mi>k</mi> <mo>&amp;prime;</mo> </msup> <mo>&amp;le;</mo> <msub> <mi>L</mi> <mi>c</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
4.2) l-th of modulated signal is expressed as in Cyclic-FBMC:
<mrow> <msub> <mi>s</mi> <mi>l</mi> </msub> <mo>&amp;lsqb;</mo> <mi>k</mi> <mo>&amp;rsqb;</mo> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mo>-</mo> <mi>&amp;infin;</mi> </mrow> <mrow> <mo>+</mo> <mi>&amp;infin;</mi> </mrow> </munderover> <msup> <mi>j</mi> <mrow> <mi>m</mi> <mo>+</mo> <mi>n</mi> </mrow> </msup> <msup> <mi>e</mi> <mrow> <msub> <mi>j&amp;pi;f</mi> <mi>m</mi> </msub> <mi>n</mi> <mi>M</mi> </mrow> </msup> <msub> <mi>a</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mo>&amp;lsqb;</mo> <mi>n</mi> <mo>&amp;rsqb;</mo> <msub> <mi>p</mi> <mrow> <mi>c</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mi>n</mi> <mfrac> <mi>M</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <msub> <mi>L</mi> <mi>c</mi> </msub> </msub> <mo>)</mo> </mrow> </mrow>
Wherein,
<mrow> <msub> <mi>p</mi> <mrow> <mi>c</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mrow> <mo>&amp;lsqb;</mo> <msup> <mi>k</mi> <mo>&amp;prime;</mo> </msup> <mo>&amp;rsqb;</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>p</mi> <mi>m</mi> </msub> <mrow> <mo>&amp;lsqb;</mo> <msup> <mi>k</mi> <mo>&amp;prime;</mo> </msup> <mo>&amp;rsqb;</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mn>0</mn> <mo>&amp;le;</mo> <msup> <mi>k</mi> <mo>&amp;prime;</mo> </msup> <mo>&amp;le;</mo> <mfrac> <mrow> <mi>K</mi> <mi>M</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mfrac> <mrow> <mi>K</mi> <mi>M</mi> </mrow> <mn>2</mn> </mfrac> <mo>+</mo> <mn>1</mn> <mo>&amp;le;</mo> <msup> <mi>k</mi> <mo>&amp;prime;</mo> </msup> <mo>&amp;le;</mo> <msub> <mi>L</mi> <mi>c</mi> </msub> <mo>-</mo> <mfrac> <mrow> <mi>K</mi> <mi>M</mi> </mrow> <mn>2</mn> </mfrac> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>p</mi> <mi>m</mi> </msub> <mrow> <mo>&amp;lsqb;</mo> <mrow> <msup> <mi>k</mi> <mo>&amp;prime;</mo> </msup> <mo>-</mo> <msub> <mi>L</mi> <mi>c</mi> </msub> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>L</mi> <mi>c</mi> </msub> <mo>-</mo> <mfrac> <mrow> <mi>K</mi> <mi>M</mi> </mrow> <mn>2</mn> </mfrac> <mo>&amp;le;</mo> <msup> <mi>k</mi> <mo>&amp;prime;</mo> </msup> <mo>&amp;le;</mo> <msub> <mi>L</mi> <mi>c</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
For the centre frequency on m-th of subcarrier;
Do variable replacementWherein δ0≤m0< Nc0It is an integer, works as NcDuring for even number, δ0=0.5, it is no Then, δ0=0, and makeThen sl[k] and pc,m[k'] is write as:
<mrow> <msub> <mi>s</mi> <mi>l</mi> </msub> <mo>&amp;lsqb;</mo> <mi>k</mi> <mo>&amp;rsqb;</mo> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <msub> <mi>N</mi> <mi>c</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msup> <mi>j</mi> <mi>m</mi> </msup> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mi>&amp;pi;</mi> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>mN</mi> <mi>c</mi> </msub> <mo>+</mo> <msubsup> <mi>m</mi> <mn>0</mn> <mo>&amp;prime;</mo> </msubsup> <mo>-</mo> <mn>0.5</mn> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>N</mi> <mi>c</mi> </msub> </mrow> </msup> <msub> <mi>a</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mrow> <mo>&amp;lsqb;</mo> <mi>n</mi> <mo>&amp;rsqb;</mo> </mrow> <msub> <mi>p</mi> <mrow> <mi>c</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mi>n</mi> <mfrac> <mi>M</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <msub> <mi>L</mi> <mi>c</mi> </msub> </msub> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>p</mi> <mrow> <mi>c</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mrow> <mo>&amp;lsqb;</mo> <msup> <mi>k</mi> <mo>&amp;prime;</mo> </msup> <mo>&amp;rsqb;</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>p</mi> <mrow> <mo>&amp;lsqb;</mo> <msup> <mi>k</mi> <mo>&amp;prime;</mo> </msup> <mo>&amp;rsqb;</mo> </mrow> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> <mi>&amp;pi;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>mN</mi> <mi>c</mi> </msub> <mo>+</mo> <msub> <mi>m</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>&amp;delta;</mi> <mn>0</mn> </msub> </mrow> <mo>)</mo> </mrow> <msup> <mi>k</mi> <mo>&amp;prime;</mo> </msup> <mo>/</mo> <msub> <mi>L</mi> <mi>c</mi> </msub> </mrow> </msup> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mn>0</mn> <mo>&amp;le;</mo> <msup> <mi>k</mi> <mo>&amp;prime;</mo> </msup> <mo>&amp;le;</mo> <mfrac> <mrow> <mi>K</mi> <mi>M</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mfrac> <mrow> <mi>K</mi> <mi>M</mi> </mrow> <mn>2</mn> </mfrac> <mo>+</mo> <mn>1</mn> <mo>&amp;le;</mo> <msup> <mi>k</mi> <mo>&amp;prime;</mo> </msup> <mo>&amp;le;</mo> <msub> <mi>L</mi> <mi>c</mi> </msub> <mo>-</mo> <mfrac> <mrow> <mi>K</mi> <mi>M</mi> </mrow> <mn>2</mn> </mfrac> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>p</mi> <mrow> <mo>&amp;lsqb;</mo> <mrow> <msup> <mi>k</mi> <mo>&amp;prime;</mo> </msup> <mo>-</mo> <msub> <mi>L</mi> <mi>c</mi> </msub> </mrow> <mo>&amp;rsqb;</mo> </mrow> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> <mi>&amp;pi;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>mN</mi> <mi>c</mi> </msub> <mo>+</mo> <msub> <mi>m</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>&amp;delta;</mi> <mn>0</mn> </msub> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>k</mi> <mo>&amp;prime;</mo> </msup> <mo>-</mo> <msub> <mi>L</mi> <mi>c</mi> </msub> </mrow> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>L</mi> <mi>c</mi> </msub> </mrow> </msup> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>L</mi> <mi>c</mi> </msub> <mo>-</mo> <mfrac> <mrow> <mi>K</mi> <mi>M</mi> </mrow> <mn>2</mn> </mfrac> <mo>&amp;le;</mo> <msup> <mi>k</mi> <mo>&amp;prime;</mo> </msup> <mo>&amp;le;</mo> <msub> <mi>L</mi> <mi>c</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
4.3) by sl[k] matrixing, sl=[sl[0] sl[1] … sl[Lc-1]]TFor slThe matrix representation forms of [k], make respectively am,l=[am,l[0] am,l[1] … am,l[2Nc-1]]T, pc,m=[pc,m[0] pc,m[1] … pc,m[Lc-1]]T
By deriving, transmitting terminal sends signal slFinally write as following form:
<mrow> <msub> <mi>s</mi> <mi>l</mi> </msub> <mo>=</mo> <msubsup> <mi>W</mi> <msub> <mi>L</mi> <mi>c</mi> </msub> <mi>H</mi> </msubsup> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>P</mi> <mi>m</mi> </msub> <msub> <mover> <mi>W</mi> <mo>~</mo> </mover> <mrow> <mn>2</mn> <msub> <mi>N</mi> <mi>c</mi> </msub> </mrow> </msub> <msub> <mi>a</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mo>.</mo> </mrow>
6. the blind frequency-offset estimating method in a kind of CP-FBMC communication systems according to claim 1, it is characterised in that institute State step 6) in for each m0=m,The elements in a main diagonal is 1+0j, and remaining element is pure imaginary number or reality Portion is infinitely small, then
For each m0=m,In each element by The influence of time domain adjacent element;
For each m0≠ m, | m-m0| when=1, thenIt can not ignore;|m-m0| during > 1, only examine Consider adjacent sub-carrier pairInfluence.
7. the blind frequency-offset estimating method in a kind of CP-FBMC communication systems according to claim 1, it is characterised in that institute State step 7) according to the estimate of frequency deviationThe docking collection of letters number carries out a frequency deviation compensation, and each piece of data block is carried out in receiving terminal Pointwise is balanced, and demodulation is obtainedWillOQAM postpositive disposals are carried out, complex symbol is changed back to from real number symbol, are carried out simultaneously After string conversion, QPSK demodulation is carried out, the bit data flow of transmission is finally recovered.
CN201710295165.XA 2017-04-28 2017-04-28 Blind frequency offset estimation method in CP-FBMC communication system Active CN107204953B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710295165.XA CN107204953B (en) 2017-04-28 2017-04-28 Blind frequency offset estimation method in CP-FBMC communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710295165.XA CN107204953B (en) 2017-04-28 2017-04-28 Blind frequency offset estimation method in CP-FBMC communication system

Publications (2)

Publication Number Publication Date
CN107204953A true CN107204953A (en) 2017-09-26
CN107204953B CN107204953B (en) 2019-12-27

Family

ID=59905144

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710295165.XA Active CN107204953B (en) 2017-04-28 2017-04-28 Blind frequency offset estimation method in CP-FBMC communication system

Country Status (1)

Country Link
CN (1) CN107204953B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110691055A (en) * 2019-10-18 2020-01-14 中国人民解放军空军工程大学 Time-frequency offset joint estimation method in OQAM/OFDM

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1949754A (en) * 2006-11-09 2007-04-18 上海交通大学 Method for estimating OFDM integer frequency shift based on virtual subcarrier and frequency domain differential sequence
CN101022441A (en) * 2007-01-11 2007-08-22 西安交通大学 OFDM communication system carrier blind frequency-offset estimating method
CN101867548A (en) * 2010-05-24 2010-10-20 北京科技大学 Blind frequency tracking algorithm based on multi-carrier of filter bank
US20110255572A1 (en) * 2003-05-21 2011-10-20 Giannakis Georgios B Estimating frequency-offsets and multi-antenna channels in mimo ofdm systems
US8781008B2 (en) * 2012-06-20 2014-07-15 MagnaCom Ltd. Highly-spectrally-efficient transmission using orthogonal frequency division multiplexing
CN105187345A (en) * 2015-09-23 2015-12-23 浙江工业大学 Non-iterative blind phase noise compensation method suitable for CO-OFDM system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110255572A1 (en) * 2003-05-21 2011-10-20 Giannakis Georgios B Estimating frequency-offsets and multi-antenna channels in mimo ofdm systems
CN1949754A (en) * 2006-11-09 2007-04-18 上海交通大学 Method for estimating OFDM integer frequency shift based on virtual subcarrier and frequency domain differential sequence
CN101022441A (en) * 2007-01-11 2007-08-22 西安交通大学 OFDM communication system carrier blind frequency-offset estimating method
CN101867548A (en) * 2010-05-24 2010-10-20 北京科技大学 Blind frequency tracking algorithm based on multi-carrier of filter bank
US8781008B2 (en) * 2012-06-20 2014-07-15 MagnaCom Ltd. Highly-spectrally-efficient transmission using orthogonal frequency division multiplexing
CN105187345A (en) * 2015-09-23 2015-12-23 浙江工业大学 Non-iterative blind phase noise compensation method suitable for CO-OFDM system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110691055A (en) * 2019-10-18 2020-01-14 中国人民解放军空军工程大学 Time-frequency offset joint estimation method in OQAM/OFDM

Also Published As

Publication number Publication date
CN107204953B (en) 2019-12-27

Similar Documents

Publication Publication Date Title
CN101808056B (en) Training sequence reconstruction-based channel estimation method and system
CN107438038A (en) A kind of FBMC/OQAM pilot design and synchronization channel estimation method
CN110493156B (en) Frequency offset estimation method based on constellation point diversity in 5G mobile communication system
Lin et al. An advanced multi-carrier modulation for future radio systems
CN102185822A (en) OFDM/OQAM (Orthogonal Frequency Division Multiplexing/Offset Quadrature Amplitude Modulation) system and time frequency synchronization method thereof
CN105007146A (en) Method for generating precursor symbol in physical frame
CN102932289A (en) Cyclic shifting-based method for estimating shifting number and channel response in orthogonal frequency division multiplexing (OFDM) system
CN102546485B (en) Frequency deviation estimating method and device
CN105007145A (en) Method for generating preamble symbol and method for generating frequency domain OFDM symbol
CN102215204A (en) Feedback-iteration-based OFDM/OQAM (orthogonal frequency division multiplexing/offset quadrature amplitude modulation) system as well as time-frequency synchronization method thereof
CN105791182A (en) IQ imbalance and channel combined estimation method for MIMO-OFDM system
CN103441769B (en) PTS method for reducing PAPR of OFDM system
CN104253772B (en) The channel estimation methods of ofdm system
CN101119350A (en) OFDM system, fast synchronous method and sending terminal equipment
CN104519006B (en) A kind of ofdm system phase noise elimination method transmitted based on cross polarization
CN103401825B (en) Based on the low complex degree single carrier frequency domain equalization method of Block-type pilot
CN101729479A (en) Blind channel estimation method based on cyclostationarity of OFDM signals
WO2013155908A1 (en) Re detection method and device
WO2024021814A1 (en) Multiple access method for constant envelope orthogonal frequency division multiplexing system
WO2011015119A1 (en) Method and device for suppressing out-of-band power
CN107204953A (en) A kind of blind frequency-offset estimating method in CP FBMC communication systems
CN101783782B (en) Uplink multiple access method capable of automatically adapting to channel characteristic variation
CN105610539A (en) Combined suppression method of ISI and phase noise in TDS-OFDM communication system
CN102857466A (en) Orthogonal frequency division multiplexing (OFDM) system common phase error compensation method and device
CN101227697B (en) Pilot frequency design method based on pilot signal assistance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant