CN107202571A - 用于在存储设施中执行检查的检查***和方法 - Google Patents

用于在存储设施中执行检查的检查***和方法 Download PDF

Info

Publication number
CN107202571A
CN107202571A CN201710156682.9A CN201710156682A CN107202571A CN 107202571 A CN107202571 A CN 107202571A CN 201710156682 A CN201710156682 A CN 201710156682A CN 107202571 A CN107202571 A CN 107202571A
Authority
CN
China
Prior art keywords
automated guided
guided vehicle
unmanned plane
storage facility
relative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710156682.9A
Other languages
English (en)
Other versions
CN107202571B (zh
Inventor
法比恩·巴迪内特
皮埃尔·比罗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baeryue Co
Original Assignee
Baeryue Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baeryue Co filed Critical Baeryue Co
Publication of CN107202571A publication Critical patent/CN107202571A/zh
Application granted granted Critical
Publication of CN107202571B publication Critical patent/CN107202571B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/12Target-seeking control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • G05D1/024Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/08Arrangements of cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/007Helicopter portable landing pads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/063Automatically guided
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/18Stabilised platforms, e.g. by gyroscope
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/04Control of altitude or depth
    • G05D1/042Control of altitude or depth specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/102Simultaneous control of position or course in three dimensions specially adapted for aircraft specially adapted for vertical take-off of aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Transportation (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种用于存储设施(S)的检查***(1),包括具有二维定位***的自动引导车辆(2)和具有测量传感器以获取测量数据的无人机(3)。检查***(1)还包括用于在垂直方向上使无人机维持在自动引导车上方的位置控制***、用于获取无人机与自动引导车之间相对垂直距离的高度传感器,以及将测量数据发送到远程服务器(100)的通信***。检查***(1)向远程服务器(100)发送与测量数据相关联的一组三维坐标,包括在存储设施的地板(F)上的自动引导车辆(2)的二维位置的水平坐标函数以及所述无人机(3)相对于所述自动引导车(2)的相对垂直距离的垂直坐标函数。

Description

用于在存储设施中执行检查的检查***和方法
技术领域
本发明涉及用于在存储设施中执行检查的检查***和方法。
背景技术
无人机日益增长地应用于存储设施中,用于调查和控制任务,例如设施内容的检查、存储建筑本身的检查或监视操作。
在本说明书中,术语“存储设施”被理解为旨在用于存储产品的区域,其可以是室内或室外区域。因此,此类“存储设施”通常与销售产品的商店和改造产品的工厂区分开。
调查和控制任务涉及获取关于位于设施的特定物理位置处的对象的一些信息。这些操作以前主要通过手动检查完成。然后员工将在仓库周围移动以记录这样的信息。
无人机允许提高生产率,改进物流管理并降低这些任务的成本。无人机(UAV)可以容易地通过存储设施,并获取提供关于存储在设施中的产品的信息的测量数据。
然而,在存储设施内确定UAV的三维位置可能是项困难的任务。
除了三维定位的固有复杂性之外,存储设施通常在人和自动化机械之间共享,因此已知为一种动态环境,其包括许多可移动和不可预测的元件(例如,临时存储在设施中的盒子)。
这种不可预测的元件使UAV的三维定位非常复杂,并且当前的解决方案主要涉及使用人类操作者来定位和控制无人机,或在设施中使用附加的参考目标以帮助定位UAV。
本发明旨在改善这种情况。
发明内容
为此目的,本发明的第一个目的是一种用于存储设施的检查***,所述存储设施具有沿着水平面延伸的底板,垂直于所述水平面的垂直方向,所述检查***包括:
- 自动引导车辆,其包括:
能够在所述存储设施的地板上推进所述自动引导车辆的推进单元,
能够确定所述自动引导车辆在所述存储设施的地板上的水平面中的二维位置的二维定位***,
- 无人机,其包括:
能够推进所述无人机的推进单元,
能够获取测量数据的测量传感器,
其中所述检查***还包括:
- 能够命令所述无人机的推进单元使所述无人机在垂直方向上基本保持在所述自动引导车辆上方的位置控制***,
- 能够获取相对垂直定位数据的高度传感器,所述相对垂直定位数据指示所述无人机和所述自动引导车辆之间的相对垂直距离,
- 能够将测量数据发送到远程服务器的通信***,
其中所述检查***还能够向所述远程服务器发送与所述测量数据相关联的一组三维坐标,所述一组三维坐标包括:
- 所述自动引导车辆在所述存储设施的地板上的水平面中的所述二维位置的一组水平坐标函数,以及
- 所述无人机相对于所述自动引导车辆的所述相对垂直距离的垂直坐标函数。
在一些实施例中,还可以使用以下特征中的一个或多个:
- 所述位置控制***包括:
能够获取相对水平定位数据的位置控制传感器,所述相对水平定位数据指示所述自动引导车辆相对于所述无人机在所述水平面中的相对位置,
能够从所述位置控制传感器接收所述相对水平定位数据并且命令所述无人机的推进单元使所述无人机在垂直方向上基本保持在所述自动引导车辆上方的计算机;
- 所述位置控制传感器和所述计算机在所述无人机上;
- 所述位置控制传感器包括照相机,以及
参考目标安装在所述自动引导车辆上,所述参考目标包括所述位置控制传感器可见的一组特征;
- 所述位置控制***包括所述无人机上的至少一个陀螺仪和/或加速度计,以及
所述位置控制***能够稳定所述无人机的空间定向,特别是所述无人机的侧倾、俯仰和/或偏航;
- 所述无人机的测量传感器包括光学、激光、视频或声学传感器,
特别地所述无人机的测量传感器是短程测量传感器;
- 所述自动引导车辆是叉车自动引导车辆,
特别地所述参考目标设置在安装在所述叉车自动引导车辆的至少一个叉上的平台上;
- 所述平台还是所述无人机的着陆平台;
- 所述自动引导车辆的二维定位***包括:
在所述自动引导车辆上的至少一个存储设施定位传感器,能够获取所述自动引导车辆在所述存储设施中的存储设施定位数据,以及
在所述自动引导车辆上的计算机***,其能够接收所述存储设施定位数据并且确定所述自动引导车辆在所述存储设施的地板上的水平面中的二维位置;
- 所述自动引导车辆的计算机***能够命令所述自动引导车辆的推进单元自动行进通过所述存储设施的检查区;
- 所述无人机的所述位置控制***能够命令所述无人机的推进单元自动扫描所述自动引导车辆上方的所述存储设施的所述检查区的垂直延伸。
- 所述无人机能够跟随所述自动引导车辆在所述存储设施中的移动,
特别是所述无人机不执行相对于所述存储设施的三维定位。
本发明的另一个目的是一种用于在存储设施中执行检查的方法中,所述存储设施具有沿水平面延伸的地板,垂直于水平面的垂直方向,该方法包括:
提供如上所述的检查***,
在所述存储设施的地板上推进所述自动引导车辆,
推进所述无人机并且使所述无人机在垂直方向上基本上保持在所述自动引导车辆上方,
借助于所述无人机的测量传感器采集测量数据,
确定所述自动引导车在所述存储设施的地板上的水平面中的二维位置,
获取指示所述无人机和所述自动引导车辆之间相对垂直距离的相对垂直定位数据,
向远程服务器传送所述测量数据,以及
向所述远程服务器传送与所述测量数据相关联的一组三维坐标,所述一组三维坐标包括:
所述自动引导车辆在所述存储设施的地板上的水平面中的所述二维位置的一组水平坐标函数,以及
所述无人机相对于所述自动引导车辆的所述相对垂直距离的垂直坐标函数。
根据实施例,使所述无人机在垂直方向上基本上保持在自动引导车辆上方的步骤包括:
获取指示所述自动引导车辆相对于所述无人机在所述水平面中相对位置的相对水平定位数据,以及
命令所述无人机的推进单元使所述无人机在垂直方向上基本上保持在所述自动引导车辆上方。
附图说明
通过作为非限制性示例提供的若干实施例的以下描述和附图,本发明的其它特征和优点将容易显现。
在图纸上:
- 图1是根据本发明的实施例的用于包括自动引导车辆和无人驾驶飞行器的存储设施的检查***的示意性透视图,
- 图2是图1的检查***的自动引导车辆的详细透视图,
- 图3是图1的检查***的无人驾驶飞行器的详细透视图,
- 图4是详细示出了根据本发明的实施例的用于在存储设施中执行检查的方法的流程图。
在不同的附图中,相同的附图标记表示相同或相似的元件。
具体实施方式
图1示出了根据本发明的实施例的用于存储设施S的检查***1的实施例。
图1中,示出了可以使用本发明的检查***1的存储设施S的示例。
存储设施S具有沿水平面H延伸的地板F。
垂直方向Z也可以被定义为垂直于所述水平面H。
存储设施S可以例如包含布置成多行R或多道的多个产品堆叠P。这些行可以例如布置在主过道的任一侧上,并且多个支撑柱可以位于行之间。
检查***1包括自动引导车辆2(也称为AGV)和无人驾驶飞行器3(也称为UAV)。
在图2中更详细地示出了自动引导车辆2。
自动引导车辆2包括能够将自动引导车辆2推进到存储设施S的地板F上的推进单元4。
推进单元4可以例如包括电机4a,例如热电机或电动机,以及夹持装置4b,例如轮或轨道。
自动引导车辆2还包括二维定位***5。
二维定位***5能够确定自动引导车辆2在存储设施S的地板F上的水平面H中的二维位置。
自动引导车辆2的二维定位***5例如可以包括至少一个存储设施定位传感器6和计算机***7。
存储设施定位传感器6位于自动引导车辆2上,并且能够获取自动引导车辆2在存储设施S中的存储设施定位数据。
存储设施定位传感器6可以例如是激光测距仪,例如光检测和测距(LIDAR)模块,雷达模块,超声波测距模块,声纳模块,使用三角测量的测距模块或能够获取环境的单个或多个点的距离或位置的任何其它装置。
在优选实施例中,存储设施定位传感器6发射出发射的物理信号并接收反射的物理信号。然后,传感器通过比较发射信号和反射信号,例如通过比较发射时间和接收时间,计算与从传感器到单个或多个环境点的距离相对应的范围。发射和反射的物理信号可以是例如光束,电磁波或声波。
因此,存储设施定位数据可以包括围绕自动引导车辆2的一组环境点位置。
计算机***7能够从存储设施定位传感器6接收存储设施定位数据,并且确定自动引导车辆2在存储设施S的地板F上的水平面H中的二维位置BL。计算机***7也可以位于自动引导车辆2上。
为此目的,计算机***7可以例如操作同时定位和映射(SLAM)算法。这样的算法被用于实时地构建机器人的周围环境的地图并且基于该地图计算机器人的定位。
设施的预定地图,特别是设施的地板的预定地图,可以存储在自动引导车辆2的存储器中,并且通过将重建的地图与存储在存储器中的地图进行比较,计算机***7能够计算自动引导车辆2在存储设施S中的二维位置。
应当注意的是,将自动引导车辆定位在诸如设施的地板的二维平面上的任务比将无人驾驶飞行器定位在设施内部的三维空间中的任务明显更容易。
在确定自动制导车辆2的二维位置之后,计算机***7进一步可以命令自动引导车辆2的推进单元4自动地行驶经过存储设施S的检查区I.
无人驾驶飞行器3在图3中更详细地示出,并且包括推进单元8和测量传感器9。
推进单元8能够推进无人驾驶飞行器3。无人驾驶飞行器3的推进单元8可以例如包括一个或多个转子,无人驾驶飞行器3可以是直升机或多飞行器。
测量传感器9能够获取测量数据。
无人驾驶飞行器的测量传感器9可以包括光学、激光、视频或声学传感器。因此,测量传感器9可以是照相机或记录设备,可以捕获或记录图像,例如照片,视频和/或数字图像,或者检测条形码或以其他方式接收信息的传感器,例如,检测射频信号和/或其中包含的信息。
在本发明的实施例中,测量传感器9是短程测量传感器,例如具有小于三米的范围。
测量传感器9可以可操作地连接到无人驾驶飞行器3上的控制单元10。
控制单元10可以包括计算机11,存储器12和通信模块13,如图3所示。
存储器12可以是或可以不是计算机11的一部分。存储器12可以存储由计算机11使用或执行的编程,指令或其他信息。
存储器12能够存储由测量传感器9获取的测量数据。合适的存储器12包括但不限于永久存储器,RAM,ROM或硬盘驱动器等。
通信模块13可以是无线通信单元。
计算机11可以用于操作测量传感器9以及无人驾驶飞行器3。
特别地,无人驾驶飞行器3可以包括位置控制***14,位置控制***14能够命令推进单元8无人驾驶飞行器3。
无人驾驶飞行器3的位置控制***14能够命令无人驾驶飞行器3的推进单元8自动扫描自动引导车辆2上方的存储设施S的检查区I的垂直延伸。
为此目的,位置控制***14可以控制推进单元8以使得无人驾驶飞行器3相对于自动引导车辆2沿着垂直方向Z重复上下移动,同时垂直地停留在自动引导车辆2的上方。
位置控制***14可以特别地能够将所述无人驾驶飞行器3在垂直方向Z上基本上保持在自动引导车辆2的上方。
通过“将无人驾驶飞行器在垂直方向Z上基本上保持在自动引导车辆的上方”意味着无人驾驶飞行器停留在自动引导车辆的上方,但也可以略微偏离自动引导车辆的垂直方向,特别是作为无人驾驶飞行器3或自动引导车辆2的运动的结果,其可能需要一些时间由位置控制***14补偿。
特别地,无人驾驶飞行器3能够跟踪自动引导车辆2在存储设施S中的移动,特别是在存储设施S的地板上的移动。如上所述,无人驾驶飞行器3可以采取一些延迟跟随自动引导车辆2。
为此目的,位置控制***14包括位置控制传感器15和计算机11。位置控制传感器15和计算机11可以特别地位于无人驾驶飞行器3上。
位置控制传感器15能够获取指示自动引导车辆2相对于无人驾驶飞行器3在水平面H中的相对位置的相对水平定位数据。
在本发明的一个实施例中,位置控制传感器15可以包括照相机。
然后,参考目标16可以安装在自动引导车辆2上。
参考目标16可以包括对于位置控制传感器15可见的一组特征16a。该组特征16a可以例如是在平台19上绘制的一系列线,如下文详细描述的。
计算机11能够从位置控制传感器15接收相对水平定位数据。计算机11然后能够命令无人驾驶飞行器3的推进单元8将所述无人驾驶飞行器3在垂直方向Z上大致保持在自动引导车辆2的上方。
为此目的,计算机11可以确定无人驾驶飞行车辆3相对于自动引导车辆2的水平相对位置。
计算机11然后可以实现反馈回路,以便根据水平相对位置命令无人驾驶飞行器3的推进单元8,为了将无人驾驶飞行器3保持在自动引导车辆2的上方。
位置控制***14包括无人驾驶飞行器3上的方向检测装置17,例如至少一个陀螺仪和/或加速度计。
位置控制***14然后能够稳定无人驾驶飞行器3的空间定向,特别是无人驾驶飞行器3的侧倾,俯仰和/或偏航。
这样,可以提高无人驾驶飞行器3相对于自动引导车辆2的水平相对位置的确定精度。
在一个实施例中,自动引导车辆2可以是包括至少一个叉18的叉车自动引导车辆。
在该实施例中,参考目标16可以设置在平台19上,平台19安装在所述叉车式自动引导车辆2的所述叉18上。
平台19进一步可以是用于无人驾驶飞行器3的着陆平台。
检查***1还包括高度传感器20,其能够获取指示无人驾驶飞行器3和自动引导车辆2之间的相对垂直距离的相对垂直定位数据。
高度传感器20可以例如是距离测量传感器,例如激光测距仪,例如光检测和测距(LIDAR)模块,雷达模块,超声波测距模块,声纳模块,使用三角测量的测距模块或者能够获取环境的单个或多个点的相对距离的任何其他设备。
高度传感器20可以安装在自动引导车辆2上或无人驾驶飞行器3上。
检查***1还包括能够将测量数据发送到远程服务器100的通信***21。
远程服务器100例如是位于存储设施S中的基于地面的不可移动服务器。
通信***21可以特别地是无线通信单元,例如射频通信单元。
通信***21可以安装在自动引导车辆2上或无人驾驶飞行器3上。
如果通信***21安装在无人驾驶飞行器3上,则通信***21例如可以是无人驾驶飞行器3的通信模块13的一部分。
自动引导车辆2和无人驾驶飞行器3可以能够与远程服务器100一起通信。
特别地,自动引导车辆2可以包括通信模块22,通信模块22能够与无人驾驶飞行器3的通信模块13通信。
通信模块22可以是无线通信单元。
在本发明的一个实施例中,自动引导车辆2和无人驾驶飞行器3中的一个可以是控制自动引导车辆2和无人驾驶飞行器3中的另一个的主车辆。
在另一个实施例中,检查***1的操作可以是分散的,并且自动引导车辆2和无人驾驶飞行器3都可以独立地操作。
如果通信***21安装在自动引导车辆2上,则通信***21例如可以是自动引导车辆2的通信模块22的一部分。
通信***21还可以集成在无人驾驶飞行器3的通信模块13和自动引导车辆2的通信模块22中。自动引导车辆2和无人驾驶飞行器3中的每一个可以发送一些远程服务器100的数据。
检查***1进一步能够经由通信***21向远程服务器100发送一组三维坐标,一组三维坐标与测量数据相关联。
该组三维坐标包括:
- 自动引导车辆2在存储设施S的地板F上的水平面H中的二维位置的一组水平坐标函数,以及
- 无人驾驶飞行器3相对于自动引导车辆2的相对垂直距离的垂直坐标函数。
因此,该组三维坐标表示与测量数据相关联的设施S的特定物理位置。
在本发明中,无人驾驶飞行器3因此不需要执行相对于存储设施S的三维定位。
通信***21还可以用于在检查***上接收来自远程服务器100的信息或指令,例如用于检查存储设施S的特定检查区的指令。

Claims (14)

1.一种用于存储设施(S)的检查***(1),所述存储设施具有沿着水平面延伸的地板(F),垂直于所述水平面的垂直方向,所述检查***包括:
- 自动引导车辆(2),其包括:
能够在所述存储设施的地板上推进所述自动引导车辆的推进单元(4),
能够确定所述自动引导车辆在所述存储设施的地板上的水平面中的二维位置的二维定位***(5),
- 无人机(3),其包括:
能够推进所述无人机的推进单元(8),
能够获取测量数据的测量传感器(9),
所述检查***(1)还包括:
- 能够命令所述无人机(3)的推进单元(8)使所述无人机在垂直方向上基本保持在所述自动引导车辆(2)上方的位置控制***(14),
- 能够获取相对垂直定位数据的高度传感器(20),所述相对垂直定位数据指示所述无人机(3)和所述自动引导车辆(2)之间的相对垂直距离,
- 能够将测量数据发送到远程服务器(100)的通信***(21),
所述检查***(1)还能够向所述远程服务器(100)发送与所述测量数据相关联的一组三维坐标,所述一组三维坐标包括:
- 所述自动引导车辆(2)在所述存储设施的地板(F)上的水平面中的所述二维位置的一组水平坐标函数,以及
- 所述无人机(3)相对于所述自动引导车辆(2)的所述相对垂直距离的垂直坐标函数。
2.根据权利要求1所述的***,其特征在于,所述位置控制***(14)包括:
- 能够获取相对水平定位数据的位置控制传感器(15),所述相对水平定位数据指示所述自动引导车辆(2)相对于所述无人机(3)在所述水平面中的相对位置,
- 能够从所述位置控制传感器(14)接收所述相对水平定位数据并且命令所述无人机(3)的推进单元(8)使所述无人机(3)在垂直方向上基本保持在所述自动引导车辆(2)上方的计算机(11)。
3.根据权利要求2所述的***,其特征在于,所述位置控制传感器(15)和所述计算机(11)在所述无人机(3)上。
4.根据权利要求2或3所述的***,其特征在于,所述位置控制传感器(15)包括照相机,以及
其中参考目标(16)安装在所述自动引导车辆(2)上,所述参考目标包括所述位置控制传感器(15)可见的一组特征(16a)。
5.根据权利要求1至4中任一项所述的***,其特征在于,所述位置控制***(14)包括所述无人机上的至少一个陀螺仪和/或加速度计,以及
其中所述位置控制***(14)能够稳定所述无人机(3)的空间定向,特别是所述无人机的侧倾、俯仰和/或偏航。
6.根据权利要求1至5中任一项所述的***,其特征在于,所述无人机(3)的测量传感器(9)包括光学、激光、视频或声学传感器,
特别地其中所述无人机的测量传感器(9)是短程测量传感器。
7.根据权利要求1至7中任一项所述的***,其特征在于,所述自动引导车辆(2)是叉车自动引导车辆,
特别地其中所述参考目标(16)设置在安装在所述叉车自动引导车辆的至少一个叉(18)上的平台(19)上。
8.根据权利要求8所述的***,其特征在于,所述平台(19)还是所述无人飞行器(3)的着陆平台。
9.根据权利要求1至9中任一项所述的***,其特征在于,所述自动引导车辆(2)的二维定位***(5)包括:
- 在所述自动引导车辆(2)上的至少一个存储设施定位传感器(6),能够获取所述自动引导车辆在所述存储设施中的存储设施定位数据,以及
- 在所述自动引导车辆上的计算机***(7),其能够接收所述存储设施定位数据并且确定所述自动引导车辆在所述存储设施的地板上的水平面中的二维位置。
10.根据权利要求10所述的***,其特征在于,所述自动引导车辆(2)的计算机***(7)能够命令所述自动引导车辆的推进单元(4)自动行进通过所述存储设施的检查区(I)。
11.根据权利要求11所述的***,其特征在于,所述无人机(3)的所述位置控制***(14)能够命令所述无人机(3)的推进单元(8)自动扫描所述自动引导车辆上方的所述存储设施的所述检查区(I)的垂直延伸。
12.根据权利要求1至11中任一项所述的***,其特征在于,所述无人机(3)能够跟随所述自动引导车辆(2)在所述存储设施中的移动,
特别是其中所述无人机(3)不执行相对于所述存储设施的三维定位。
13.一种用于在存储设施中执行检查的方法,所述存储设施(S)具有沿着水平面延伸的地板(F),垂直于所述水平面的垂直方向,所述方法包括:
- 提供根据权利要求1至13中任一项所述的检查***(1),
- 在所述存储设施的地板上推进所述自动引导车辆(2),
- 推进所述无人机(3)并且使所述无人机在垂直方向上基本上保持在所述自动引导车辆上方,
- 借助于所述无人机的测量传感器(9)采集测量数据,
- 确定所述自动引导车(2)在所述存储设施的地板上的水平面中的二维位置,
- 获取指示所述无人机(3)和所述自动引导车辆(2)之间相对垂直距离的相对垂直定位数据,
- 向远程服务器(100)传送所述测量数据,以及
- 向所述远程服务器(100)传送与所述测量数据相关联的一组三维坐标,所述一组三维坐标包括:
所述自动引导车辆(2)在所述存储设施的地板上的水平面中的所述二维位置的一组水平坐标函数,以及
所述无人机(3)相对于所述自动引导车辆(2)的所述相对垂直距离的垂直坐标函数。
14.根据权利要求14所述的方法,其特征在于,使所述无人机(3)在垂直方向上基本上保持在所述自动引导车辆(2)上方的步骤包括:
- 获取指示所述自动引导车辆(2)相对于所述无人机(3)在所述水平面中相对位置的相对水平定位数据,以及
- 命令所述无人机(3)的推进单元(8)使所述无人机(3)在垂直方向上基本上保持在所述自动引导车辆(2)上方。
CN201710156682.9A 2016-03-18 2017-03-16 用于在存储设施中执行检查的检查***和方法 Expired - Fee Related CN107202571B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16161062.1A EP3220227B1 (en) 2016-03-18 2016-03-18 Inspection system and method for performing inspections in a storage facility
EP16161062.1 2016-03-18

Publications (2)

Publication Number Publication Date
CN107202571A true CN107202571A (zh) 2017-09-26
CN107202571B CN107202571B (zh) 2019-11-05

Family

ID=55628774

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710156682.9A Expired - Fee Related CN107202571B (zh) 2016-03-18 2017-03-16 用于在存储设施中执行检查的检查***和方法

Country Status (7)

Country Link
US (1) US10222808B2 (zh)
EP (1) EP3220227B1 (zh)
CN (1) CN107202571B (zh)
AU (1) AU2017201641A1 (zh)
DK (1) DK3220227T3 (zh)
ES (1) ES2717794T3 (zh)
SG (1) SG10201702186TA (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2717794T3 (es) * 2016-03-18 2019-06-25 Balyo Sistema y método de inspección para realizar inspecciones en una instalación de almacenamiento
USD870638S1 (en) * 2017-05-19 2019-12-24 Hg Robotics Company Limited Unmanned aerial vehicle
USD862285S1 (en) * 2017-08-25 2019-10-08 MerchSource, LLC Drone
USD864083S1 (en) * 2017-10-09 2019-10-22 Guangdong Shiji Technology Co., Ltd Quadcopter
USD864082S1 (en) * 2017-10-09 2019-10-22 Guangdong Shiji Technology Co., Ltd Quadcopter
USD858352S1 (en) * 2017-10-30 2019-09-03 Shenzhen Valuelink E-Commerce Co., Ltd. Drone
USD858353S1 (en) * 2017-10-30 2019-09-03 Shenzhen Valuelink E-Commerce Co., Ltd. Drone
USD864022S1 (en) * 2018-03-30 2019-10-22 Shenzhen Valuelink E-Commerce Co., Ltd. Unmanned aerial vehicle
USD860047S1 (en) * 2018-04-08 2019-09-17 Shenzhen Valuelink E-Commerce Co., Ltd. Unmanned aerial vehicle
USD873175S1 (en) * 2018-05-23 2020-01-21 Shenzhen Hubsan Technology Co., Ltd. Drone
EP3588404A1 (de) * 2018-06-26 2020-01-01 doks. innovation GmbH Mobile vorrichtung zum inventarisieren von lagerbeständen
US11052909B1 (en) * 2018-09-11 2021-07-06 ARIN Technologies, Inc. Object zone identification
CN109703750B (zh) * 2019-01-21 2023-12-15 福州大学 基于二维码导航式智能搬运机器人的无人机载物流***
JP6680450B1 (ja) * 2019-02-22 2020-04-15 三菱ロジスネクスト株式会社 無人飛行体用給電システムおよび無人給電車両
CN110554704B (zh) * 2019-08-15 2022-04-29 成都优艾维智能科技有限责任公司 一种基于无人机的风机叶片自主巡检方法
CN110868534B (zh) * 2019-10-22 2021-09-03 北京京东振世信息技术有限公司 一种控制方法和装置
EP3836054B1 (de) * 2019-12-13 2022-05-11 SMS Group GmbH Verwendung einer ferngesteuerten drohne
JP2024500642A (ja) * 2020-11-24 2024-01-10 ベリティ アーゲー 材料取り扱い機器の経路の予測および無障害物経路の決定
US20230191857A1 (en) * 2021-12-17 2023-06-22 Hall Labs, Llc Self-Docking Cart

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101479622A (zh) * 2006-04-28 2009-07-08 卢克卓尼克斯有限公司 用于在配置环境中定位的***和方法
CN103149893A (zh) * 2013-01-29 2013-06-12 中国人民解放军装备学院 机动自组织态势监测***
US20140277854A1 (en) * 2013-03-15 2014-09-18 Azure Sky Group Llc Modular drone and methods for use
US20140277691A1 (en) * 2013-03-15 2014-09-18 Cybernet Systems Corporation Automated warehousing using robotic forklifts
CN104699102A (zh) * 2015-02-06 2015-06-10 东北大学 一种无人机与智能车协同导航与侦查监控***及方法
CN204802088U (zh) * 2015-07-03 2015-11-25 新疆思迪信息技术有限公司 应用于火灾预警的无人机
CN204822072U (zh) * 2015-07-09 2015-12-02 湖北省机电研究设计院股份公司 具有消防侦察功能的多旋翼无人机飞行器
CN105722770A (zh) * 2013-09-23 2016-06-29 亚马逊技术股份有限公司 库存管理和履行***中的设施间运输

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2936325B1 (fr) * 2008-09-23 2015-09-04 Balyo Systems Sarl Systeme et procede de navigation.
WO2015035428A2 (en) * 2013-07-02 2015-03-12 Pons Jasper Mason Airborne scanning system and method
US9613538B1 (en) * 2015-12-31 2017-04-04 Unmanned Innovation, Inc. Unmanned aerial vehicle rooftop inspection system
ES2717794T3 (es) * 2016-03-18 2019-06-25 Balyo Sistema y método de inspección para realizar inspecciones en una instalación de almacenamiento
WO2018005882A1 (en) * 2016-06-30 2018-01-04 Unmanned Innovation, Inc. Unmanned aerial vehicle wind turbine inspection systems and methods
US11203425B2 (en) * 2016-06-30 2021-12-21 Skydio, Inc. Unmanned aerial vehicle inspection system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101479622A (zh) * 2006-04-28 2009-07-08 卢克卓尼克斯有限公司 用于在配置环境中定位的***和方法
CN103149893A (zh) * 2013-01-29 2013-06-12 中国人民解放军装备学院 机动自组织态势监测***
US20140277854A1 (en) * 2013-03-15 2014-09-18 Azure Sky Group Llc Modular drone and methods for use
US20140277691A1 (en) * 2013-03-15 2014-09-18 Cybernet Systems Corporation Automated warehousing using robotic forklifts
CN105722770A (zh) * 2013-09-23 2016-06-29 亚马逊技术股份有限公司 库存管理和履行***中的设施间运输
CN104699102A (zh) * 2015-02-06 2015-06-10 东北大学 一种无人机与智能车协同导航与侦查监控***及方法
CN204802088U (zh) * 2015-07-03 2015-11-25 新疆思迪信息技术有限公司 应用于火灾预警的无人机
CN204822072U (zh) * 2015-07-09 2015-12-02 湖北省机电研究设计院股份公司 具有消防侦察功能的多旋翼无人机飞行器

Also Published As

Publication number Publication date
EP3220227B1 (en) 2018-12-26
EP3220227A1 (en) 2017-09-20
US20170269613A1 (en) 2017-09-21
CN107202571B (zh) 2019-11-05
SG10201702186TA (en) 2017-10-30
AU2017201641A1 (en) 2017-10-05
ES2717794T3 (es) 2019-06-25
US10222808B2 (en) 2019-03-05
DK3220227T3 (en) 2019-04-08

Similar Documents

Publication Publication Date Title
CN107202571B (zh) 用于在存储设施中执行检查的检查***和方法
US20210064024A1 (en) Scanning environments and tracking unmanned aerial vehicles
US9487356B1 (en) Managing low-frequency inventory items in a fulfillment center
EP3792722B1 (en) Method and apparatus for using unique landmarks to locate industrial vehicles at start-up
EP2385435A1 (en) A method and a system for gathering data
US20170261977A1 (en) Unmanned aircraft systems and methods to interact with specifically intended objects
US10330480B1 (en) Deployable sensors
US20160247115A1 (en) Airborne scanning system and method
CN110062919A (zh) 递送车辆的放下地点规划
US10649446B2 (en) Techniques for conveyance device control
CN109074082A (zh) 用于交通工具的传感器轨迹规划
US9881276B2 (en) Ultrasonic bracelet and receiver for detecting position in 2D plane
US10480953B2 (en) Semi-autonomous monitoring system
US10322802B1 (en) Deployable sensors
Hrabar An evaluation of stereo and laser‐based range sensing for rotorcraft unmanned aerial vehicle obstacle avoidance
US20210216948A1 (en) Autonomous vehicles performing inventory management
TW201832147A (zh) 物品巡檢方法及相關設備
KR20210040216A (ko) 재고 관리를 위한 무인 비행체 및 그의 동작 방법
JP7393185B2 (ja) 自律移動装置への地図情報提供システムおよび自律移動装置
US20240150159A1 (en) System and method for definition of a zone of dynamic behavior with a continuum of possible actions and locations within the same
CN116761978A (zh) 测量和分析包裹用于存储的方法
Typiak et al. Map Building System for Unmanned Ground Vehicle
Balula et al. Drone-based Volume Estimation in Indoor Environments

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191105

Termination date: 20210316

CF01 Termination of patent right due to non-payment of annual fee