CN107195723B - 一种雪崩光敏器件及其制备方法 - Google Patents

一种雪崩光敏器件及其制备方法 Download PDF

Info

Publication number
CN107195723B
CN107195723B CN201710523020.0A CN201710523020A CN107195723B CN 107195723 B CN107195723 B CN 107195723B CN 201710523020 A CN201710523020 A CN 201710523020A CN 107195723 B CN107195723 B CN 107195723B
Authority
CN
China
Prior art keywords
type
deep groove
deep
type deep
heavily doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710523020.0A
Other languages
English (en)
Other versions
CN107195723A (zh
Inventor
康晓旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai IC R&D Center Co Ltd
Original Assignee
Shanghai IC R&D Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai IC R&D Center Co Ltd filed Critical Shanghai IC R&D Center Co Ltd
Priority to CN201710523020.0A priority Critical patent/CN107195723B/zh
Publication of CN107195723A publication Critical patent/CN107195723A/zh
Application granted granted Critical
Publication of CN107195723B publication Critical patent/CN107195723B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明提供了一种雪崩光敏器件及其制备方法,该雪崩光敏器件包括:位于半导体衬底中的P型深沟槽和N型深沟槽;P型深沟槽侧壁和底部周围具有P型扩散过渡层;N型深沟槽侧壁和底部周围具有N型扩散过渡层,使P型深沟槽和N型深沟槽之间的以及P型深沟槽底部的、N型深沟槽底部的半导体衬底中形成过渡区,从而形成P‑I‑N结构,并且,还可以利用离子注入形成P型深沟槽和N型深沟槽。当入射光入射时,入射光在PIN结构之间的距离增大,从而增加对入射光的吸收。

Description

一种雪崩光敏器件及其制备方法
技术领域
本发明涉及半导体技术领域,具体涉及一种雪崩光敏器件及其制备方法。
背景技术
雪崩光敏器件是指在激光通信中使用的光敏元件。在以硅或折为材料制成的光电二极管的PN结上加上反向偏压后,入射光被PN结吸收后会形成光电流,加大反向偏压会产生雪崩现象,也即是光电流成倍地激增的现象,这种器件被称为雪崩光敏器件。
然而,PN结构成的雪崩光敏器件存在隧道电路倍增的过程,将产生较大的散粒噪音,因此,倍增区采用较宽禁带宽度的材料,光吸收区采用较窄禁带宽度的材料,形成突变异质结,将使光生空穴有所积累而影响到器件的相应速度,此时,采用在突变异质结的中间***一层缓变层形成PIN结构来减小上述温度。
因此,PIN结构的雪崩光敏器件在微光和单光子探测方面具有独特优势。
发明内容
为了克服以上问题,本发明旨在提供一种雪崩光敏器件及其制备方法,在硅衬底中形成交替排布的P型深沟槽和N型深沟槽,以及在P型深沟槽和N型深沟槽的底部和侧壁周围的衬底中形成过渡区,从而形成PIN结构。
为了达到上述目的,本发明提供了一种雪崩光敏器件,位于一半导体衬底上,其包括:
位于半导体衬底中的P型深沟槽和N型深沟槽;
P型深沟槽侧壁和底部周围具有P型扩散过渡层;
N型深沟槽侧壁和底部周围具有N型扩散过渡层,使P型深沟槽和N型深沟槽之间的以及P型深沟槽底部的、N型深沟槽底部的半导体衬底中形成过渡区,形成P-I-N结构。
优选地,所述P型深沟槽中填充有P型多晶硅材料,所述N型深沟槽中填充有N型多晶硅材料。
优选地,所述P型深沟槽为多个,所述N型深沟槽为多个,所述P型深沟槽和所述N型深沟槽交替排布,且所述P型深沟槽之间相电连,所述N型深沟槽之间相电连。
优选地,采用第一金属层将所述P型深沟槽电连,采用第二金属层将所述N型深沟槽电连。
优选地,多个所述P型深沟槽和所述第一金属层构成第一梳齿结构,多个所述N型深沟槽和所述第二金属层构成第二梳齿结构,所述第一梳齿结构的齿和所述第二梳齿结构的齿之间相互交替排布。
为了达到上述目的,本发明还提供了一种雪崩光敏器件的制备方法,其包括:
步骤01:在一半导体衬底中刻蚀出第一深沟槽和第二深沟槽;
步骤02:在第一深沟槽内形成P型重掺杂材料,在第二深沟槽内形成N型重掺杂材料,从而使第一深沟槽形成P型重掺杂深沟槽,第二深沟槽形成N型重掺杂深沟槽;
步骤03:采用加热处理,使P型重掺杂材料的P型杂质向第一深沟槽的侧壁和底部周围扩散,N型重掺杂材料的N型杂质向第二深沟槽的侧壁和底部周围扩散,从而在第一深沟槽底部和周围形成P型扩散过渡层,在第二深沟槽底部和周围形成N型扩散过渡层,并且使P型重掺杂深沟槽转变为P型深沟槽,N型重掺杂深沟槽转变为N型深沟槽,P型深沟槽和N型深沟槽之间及二者底部的半导体衬底形成过渡区,从而形成PIN结构。
优选地,所述步骤02具体包括:向第一深沟槽和第二深沟槽沉积填充材料,然后,向第一深沟槽的填充材料中进行P型离子注入,形成P型重掺杂沟槽,并且向第二深沟槽的填充材料中进行N型离子注入,形成N型重掺杂沟槽。
优选地,所述步骤01中,形成多个第一深沟槽和第二深沟槽,且第一深沟槽和第二深沟槽交替排布。
优选地,所述步骤03之后还包括步骤04:形成横跨所有的P型深沟槽顶部并与之接触的第一金属层,形成横跨所有的N型深沟槽顶部并与之接触的第二金属层。
优选地,步骤04具体包括:在所述P型深沟槽的部分顶部和所述N型深沟槽的部分顶部形成金属硅化物,然后,在所有的金属硅化物上形成接触孔;最后,在P型深沟槽的接触孔上形成所述第一金属层,在N型深沟槽的接触孔上形成第二金属层。
本发明的一种雪崩光敏器件及其制备方法,通过在硅衬底中形成交替排布的P型深沟槽和N型深沟槽,以及在P型深沟槽和N型深沟槽的底部和侧壁周围的衬底中利用扩散工艺形成扩散过渡区,从而形成PIN结,当入射光入射时,入射光在PIN结构之间的距离增大,从而增加对入射光的吸收。
附图说明
图1为本发明的一个较佳实施例的雪崩光敏器件的俯视结构示意图
图2为本发明的一个较佳实施例的雪崩光敏器件的截面结构示意图
图3为本发明的一个较佳实施例的雪崩光敏器件的制备方法
图4~7为图3的雪崩光敏器件的制备方法的各步骤示意图
具体实施方式
为使本发明的内容更加清楚易懂,以下结合说明书附图,对本发明的内容作进一步说明。当然本发明并不局限于该具体实施例,本领域内的技术人员所熟知的一般替换也涵盖在本发明的保护范围内。
以下结合1~7和具体实施例对本发明作进一步详细说明。需说明的是,附图均采用非常简化的形式、使用非精准的比例,且仅用以方便、清晰地达到辅助说明本实施例的目的。
请参阅图1~2,图2为图1虚线路径的截面视图示意;本实施例的一种雪崩光敏器件,包括:位于半导体衬底00中的P型深沟槽01和N型深沟槽02;本实施例中,半导体衬底00为硅衬底,P型深沟槽01中填充有P型多晶硅材料,N型深沟槽02中填充有N型多晶硅材料。需要说明的是,本发明中所称的深沟槽实质深宽比大于1的沟槽。
P型深沟槽01侧壁和底部周围具有P型扩散过渡层03;
N型深沟槽02侧壁和底部周围具有N型扩散过渡层04,使P型深沟槽01和N型深沟槽02之间的以及P型深沟槽01底部的、N型深沟槽02底部的半导体衬底00中形成过渡区,从而形成P-I-N结构。
如图1所示,P型深沟槽01为多个,N型深沟槽02为多个,P型深沟槽01和N型深沟槽02交替排布,且P型深沟槽01之间相电连,N型深沟槽02之间相电连。本实施例中,采用第一金属层06将P型深沟槽01电连,采用第二金属层08将N型深沟槽02电连。如图2所示,为了便于表达,图2沿图1的虚线进行切割。在P型深沟槽01的部分顶部和N型深沟槽02的部分顶部分别具有金属硅化物05和07,在所有的P型深沟槽01的金属硅化物05上具有接触孔T1,在所有N型深沟槽02的金属硅化物07上具有接触孔T2;在P型深沟槽01的接触孔T1上连接有第一金属层06,在N型深沟槽02的接触孔T2上连接有第二金属层08。
较佳的,多个P型深沟槽01和第一金属层06构成第一梳齿结构,多个N型深沟槽02和第二金属层08构成第二梳齿结构,第一梳齿结构的齿和第二梳齿结构的齿之间相互交替排布,从而提高入射光在PIN结构之间的距离,增加对入射光的吸收,提高探测灵敏度。
请参阅图3,本实施例的上述雪崩光敏器件的制备方法,包括:
步骤01:请参阅图4,在一半导体衬底00中刻蚀出第一深沟槽G1和第二深沟槽G2;
具体的,可以但不限于采用光刻和刻蚀工艺在硅衬底00中刻蚀出多个第一深沟槽G1和第二深沟槽G2,且第一深沟槽G1和第二深沟槽G2交替排布。
步骤02:请参阅图5,在第一深沟槽G1内形成P型重掺杂材料,在第二深沟槽G2内形成N型重掺杂材料,从而使第一深沟槽G1形成P型重掺杂深沟槽01’,第二深沟槽G2形成N型重掺杂深沟槽02’;
具体的,向第一深沟槽G1和第二深沟槽G2沉积多晶硅材料,然后,向第一深沟槽G1的多晶硅材料中进行P型离子注入,形成P型重掺杂沟槽01’,并且向第二深沟槽G2的多晶硅材料中进行N型离子注入,形成N型重掺杂沟槽02’。
步骤03:请参阅图6,采用加热处理,使P型重掺杂材料的P型杂质向第一深沟槽G1的侧壁和底部周围扩散,N型重掺杂材料的N型杂质向第二深沟槽G2的侧壁和底部周围扩散,从而在第一深沟槽G1底部和周围形成P型扩散过渡层03,在第二深沟槽G2底部和周围形成N型扩散过渡层04,并且使P型重掺杂深沟槽01’转变为P型深沟槽01,N型重掺杂深沟槽02’转变为N型深沟槽02,P型深沟槽01和N型深沟槽02之间及二者底部的半导体衬底00形成过渡区,从而形成PIN结构。
步骤04:请参阅图7,形成横跨所有的P型深沟槽01顶部并与之接触的第一金属层06,形成横跨所有的N型深沟槽02顶部并与之接触的第二金属层08。
具体的,在P型深沟槽01的部分顶部和N型深沟槽02的部分顶部分别形成金属硅化物05和07,然后,在P型深沟槽01的所有的金属硅化物05上形成接触孔T1,在N型深沟槽02的所有金属硅化物07上形成接触孔T2;最后,在P型深沟槽01的接触孔T1上形成第一金属层06,在N型深沟槽02的接触孔T2上形成第二金属层M2。
虽然本发明已以较佳实施例揭示如上,然实施例仅为了便于说明而举例而已,并非用以限定本发明,本领域的技术人员在不脱离本发明精神和范围的前提下可作若干的更动与润饰,本发明所主张的保护范围应以权利要求书为准。

Claims (4)

1.一种雪崩光敏器件,位于一半导体衬底上,其特征在于,包括位于半导体衬底中的P型深沟槽和N型深沟槽;其中,
P型深沟槽侧壁和底部周围具有P型扩散过渡层;
N型深沟槽侧壁和底部周围具有N型扩散过渡层,使P型深沟槽和N型深沟槽之间的半导体衬底、P型深沟槽底部的半导体衬底、以及N型深沟槽底部的半导体衬底中形成过渡区,形成P-I-N结构;
其中,所述P型深沟槽中填充有P型多晶硅材料,所述N型深沟槽中填充有N型多晶硅材料;所述P型深沟槽为多个,所述N型深沟槽为多个,所述P型深沟槽和所述N型深沟槽交替排布,且所述P型深沟槽之间相电连,所述N型深沟槽之间相电连;其中,
采用第一金属层将所述P型深沟槽电连,采用第二金属层将所述N型深沟槽电连;在P型深沟槽的部分顶部和N型深沟槽的部分顶部分别具有金属硅化物(05、07),在所有的P型深沟槽的金属硅化物(05)上具有接触孔T1,在所有N型深沟槽的金属硅化物(07)上具有接触孔T2;在P型深沟槽的接触孔T1上连接有第一金属层(06),在N型深沟槽的接触孔T2上连接有第二金属层(08);
其中,所述P型多晶硅材料和N型多晶硅材料为沉积多晶硅材料后,分别进行P型离子注入和N型离子注入,形成P型重掺杂材料和N型重掺杂材料,并采用加热处理形成;所述P型扩散过渡层和N型扩散过渡层为加热处理时,所述P型重掺杂材料的P型杂质和所述N型重掺杂材料的N型杂质扩散形成;
还包括:形成于所述衬底正面的MOS管以及N+层,形成于所述衬底整个背面的P+层,以及形成于所述MOS管和N+层之外的所述衬底中的通孔,所述通孔的一端连接所述MOS管的源极或漏极,另一端连接所述衬底背面的所述P+层。
2.根据权利要求1所述的雪崩光敏器件,其特征在于,多个所述P型深沟槽和所述第一金属层构成第一梳齿结构,多个所述N型深沟槽和所述第二金属层构成第二梳齿结构,所述第一梳齿结构的齿和所述第二梳齿结构的齿之间相互交替排布。
3.一种雪崩光敏器件的制备方法,其特征在于,包括:
步骤01:在一半导体衬底中刻蚀出第一深沟槽和第二深沟槽;
步骤02:在所述衬底正面形成MOS管以及形成N+层;在第一深沟槽内形成P型重掺杂材料,在第二深沟槽内形成N型重掺杂材料,从而使第一深沟槽形成P型重掺杂深沟槽,第二深沟槽形成N型重掺杂深沟槽;
步骤03:在所述衬底整个背面形成P+层;采用加热处理,使P型重掺杂材料的P型杂质向第一深沟槽的侧壁和底部周围扩散,N型重掺杂材料的N型杂质向第二深沟槽的侧壁和底部周围扩散,从而在第一深沟槽底部和周围形成P型扩散过渡层,在第二深沟槽底部和周围形成N型扩散过渡层,并且使P型重掺杂深沟槽转变为P型深沟槽,N型重掺杂深沟槽转变为N型深沟槽,P型深沟槽和N型深沟槽之间及二者底部的半导体衬底形成过渡区,从而形成PIN结构;
步骤04:在所述MOS管和N+层之外的所述衬底中形成通孔,所述通孔的一端连接所述MOS管的源极或漏极,另一端连接所述衬底背面的所述P+层;形成横跨所有的P型深沟槽顶部并与之接触的第一金属层(06),形成横跨所有的N型深沟槽顶部并与之接触的第二金属层(08);
其中,所述步骤02具体包括:向第一深沟槽和第二深沟槽沉积填充材料,然后,向第一深沟槽的填充材料中进行P型离子注入,形成P型重掺杂沟槽,并且向第二深沟槽的填充材料中进行N型离子注入,形成N型重掺杂沟槽;
其中,所述步骤04具体包括:在所述P型深沟槽的部分顶部和所述N型深沟槽的部分顶部形成金属硅化物(05、07),然后,在所有的金属硅化物(05、07)上形成接触孔;最后,在P型深沟槽的接触孔上形成所述第一金属层(06),在N型深沟槽的接触孔上形成第二金属层(08)。
4.根据权利要求3所述的雪崩光敏器件的制备方法,其特征在于,所述步骤01中,形成多个第一深沟槽和第二深沟槽,且第一深沟槽和第二深沟槽交替排布。
CN201710523020.0A 2017-06-30 2017-06-30 一种雪崩光敏器件及其制备方法 Active CN107195723B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710523020.0A CN107195723B (zh) 2017-06-30 2017-06-30 一种雪崩光敏器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710523020.0A CN107195723B (zh) 2017-06-30 2017-06-30 一种雪崩光敏器件及其制备方法

Publications (2)

Publication Number Publication Date
CN107195723A CN107195723A (zh) 2017-09-22
CN107195723B true CN107195723B (zh) 2020-05-15

Family

ID=59881112

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710523020.0A Active CN107195723B (zh) 2017-06-30 2017-06-30 一种雪崩光敏器件及其制备方法

Country Status (1)

Country Link
CN (1) CN107195723B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111048617B (zh) * 2019-11-29 2021-06-01 武汉华星光电技术有限公司 光电二极管及其制备方法
CN111785807B (zh) * 2020-08-11 2022-10-18 今上半导体(信阳)有限公司 一种pin光电器件及其制造方法
CN114335230B (zh) * 2021-12-29 2024-03-15 上海集成电路研发中心有限公司 雪崩光电二极管及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1322014A (zh) * 2000-04-29 2001-11-14 双汉科技股份有限公司 光二极管互补金属氧化物半导体图像传感器的制造方法
CN1507079A (zh) * 2002-12-10 2004-06-23 国际商业机器公司 用于制造雪崩沟槽光学检测器的方法以及检测器
CN1819280A (zh) * 2004-11-01 2006-08-16 国际商业机器公司 沟槽光测器及其形成方法
CN105448945A (zh) * 2015-12-29 2016-03-30 同方威视技术股份有限公司 同面电极光电二极管阵列及其制作方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5558916B2 (ja) * 2009-06-26 2014-07-23 キヤノン株式会社 光電変換装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1322014A (zh) * 2000-04-29 2001-11-14 双汉科技股份有限公司 光二极管互补金属氧化物半导体图像传感器的制造方法
CN1507079A (zh) * 2002-12-10 2004-06-23 国际商业机器公司 用于制造雪崩沟槽光学检测器的方法以及检测器
CN1819280A (zh) * 2004-11-01 2006-08-16 国际商业机器公司 沟槽光测器及其形成方法
CN105448945A (zh) * 2015-12-29 2016-03-30 同方威视技术股份有限公司 同面电极光电二极管阵列及其制作方法

Also Published As

Publication number Publication date
CN107195723A (zh) 2017-09-22

Similar Documents

Publication Publication Date Title
TWI675494B (zh) 單光子崩潰二極體影像感測器以及相關製造方法
TWI517374B (zh) 影像感測裝置及其製造方法
US20180108799A1 (en) Avalanche diode and method for manufacturing the same field
JP6476317B2 (ja) アバランシェフォトダイオード
CN107195723B (zh) 一种雪崩光敏器件及其制备方法
CN113745364B (zh) 光电二极管和/或pin二极管结构
US7545020B2 (en) CMOS image sensor and method for manufacturing the same
KR20070104422A (ko) 증가된 청색광 감도를 가지는 광감지 소자, 그 제조 방법및 작동 방법
KR100884976B1 (ko) 이미지 센서의 제조 방법
US11502120B2 (en) Negatively biased isolation structures for pixel devices
CN101471357A (zh) 图像传感器及其制造方法
RU2731665C1 (ru) Лавинный фотодетектор (варианты) и способ его изготовления (варианты)
JP6194524B2 (ja) ノイズ電流を抑制したフォトダイオード及びそれを形成する方法
JP7455407B2 (ja) アバランシェ光検出器(変形形態)およびこれを製造するための方法(変形形態)
KR100654056B1 (ko) 이미지 센서 및 그 제조방법
JP7421233B2 (ja) アバランシェ光検出器(変形形態)およびこれを製造するための方法(変形形態)
JPS61141176A (ja) 半導体光検出装置
CN110190149B (zh) 一种深槽半导体光探测增益结构
CN107393985B (zh) 一种背照式雪崩光敏器件及其制备方法
KR20240084449A (ko) 진성 영역 측벽을 따라 절연체 층을 갖는 포토다이오드
JPH10200145A (ja) 光電変換装置
KR20080062061A (ko) 이미지 센서 및 그 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant