CN107177874B - 一种超高密度有序银纳米球阵列及其应用 - Google Patents

一种超高密度有序银纳米球阵列及其应用 Download PDF

Info

Publication number
CN107177874B
CN107177874B CN201710188407.5A CN201710188407A CN107177874B CN 107177874 B CN107177874 B CN 107177874B CN 201710188407 A CN201710188407 A CN 201710188407A CN 107177874 B CN107177874 B CN 107177874B
Authority
CN
China
Prior art keywords
superhigh
silver nanoparticle
sample
array
density ordered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710188407.5A
Other languages
English (en)
Other versions
CN107177874A (zh
Inventor
曾志强
张璋
王新
汤丹
苏绍强
程鹏飞
林晓姿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhaoqing South China Normal University Optoelectronics Industry Research Institute
Original Assignee
Zhaoqing South China Normal University Optoelectronics Industry Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhaoqing South China Normal University Optoelectronics Industry Research Institute filed Critical Zhaoqing South China Normal University Optoelectronics Industry Research Institute
Priority to CN201710188407.5A priority Critical patent/CN107177874B/zh
Publication of CN107177874A publication Critical patent/CN107177874A/zh
Application granted granted Critical
Publication of CN107177874B publication Critical patent/CN107177874B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/045Anodisation of aluminium or alloys based thereon for forming AAO templates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/08Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing inorganic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/12Anodising more than once, e.g. in different baths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Nanotechnology (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Thermal Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种超高密度有序银纳米球阵列,采用如下方法制备得到:S1.制备超高密度有序铝纳米洞AAO阵列模板样品;S2.在所述AAO阵列模板样品的表面热蒸镀10nm厚的银膜;S3.将热镀了银膜后的所述样品在150℃氮气氛围中退火3h,获得超高密度有序银纳米球阵列。本发明无需将AAO模板转移到其它基底,也无需除去多余的金属铝,因此可大面积制备有序的Ag纳米球阵列,而且制备工艺简单。所制备的超高密度有序银纳米球阵列可作为表面拉曼增强活性(SERS)基底材料,并用于检测酚类污染物,检测灵敏度高。同时制备过程温度低,能耗小,应用前景佳。

Description

一种超高密度有序银纳米球阵列及其应用
技术领域
本发明属于纳米材料制备技术领域,更具体地,涉及一种超高密度有序银纳米球阵列及其应用。
背景技术
拉曼散射光谱由于其对分子和化学键振动峰的特异性,成为一个功能强大的分子检测技术。表面增强拉曼散射(SERS,Surface Enhanced Raman Scattering)因其具有灵敏度高,快速检测,可以获得常规拉曼光谱所不易得到的结构信息,被广泛应用于表面研究、生物表面科学,食品安全等领域。SERS效应主要存在于金属纳米结构间的间隙,即“热点”(hot spot),由于金属表面等离子共振效应,“热点”附近的电磁场得到极大的增强。最近的研究表明“热点”对SERS信号有很大的增强,对待检测物质有很高的灵敏度,甚至可以实现单分子检测。
由于贵金属纳米结构在光电,传感器和催化应用等领域具有独特的性质,因此被广泛研究。尤其,被排成有序的周期性阵列,它们的一些性能将大幅度提高。例如,通过自下而上的方法,贵金属纳米粒子自组装可以形成热点。热点的随机分布通常会导致SERS信号不均匀。有序的周期性贵金属阵列(如金,银,铂)赋予了基底具有很好的SERS均匀性。
为了获得具有良好的重现性和高灵敏度的SERS基底,制备小尺寸(<100nm),高密度有序的热点阵列是关键。
发明内容
本发明的目的在于提供了一种超高密度有序银纳米球阵列。
本发明的另一目的在于提供上述超高密度有序银纳米球作为表面拉曼增强活性基底材料,在检测酚类污染物中的应用。
本发明的目的通过以下技术方案实现:
本发明提供了一种超高密度有序银纳米球阵列,采用如下方法制备得到:
S1.制备超高密度有序铝纳米洞AAO阵列模板样品;
S2.在所述AAO阵列模板样品的表面热蒸镀10nm厚的银膜;
S3.将热镀了银膜后的所述样品在150℃氮气氛围中退火3h,获得超高密度有序银纳米球阵列。
优选地,S1中利用二次氧化的方法制备超高密度有序铝纳米洞AAO阵列模板样品;所述利用二次氧化的方法制备超高密度有序氧化铝纳米洞AAO阵列模板样品包括一次氧化和二次氧化,
所述一次氧化是将铝片样品在0.3wt.%H2SO4,温度为0.6℃,24V的电化学条件下,氧化24h后,然后将铝片样品转移至1.8wt.%铬酸和6wt.%H3PO4、温度为43℃的混合溶液中去除所获得的氧化层;
所述二次氧化是在0.3wt.%H2SO4,温度为0.6℃,24V的电化学条件下,继续氧化180s,即得到所述AAO阵列模板样品。
优选地,铝片样品在进行一次氧化之前,在400℃氮气氛围下退火4h,然后在电化学条件下抛光;所述铝片样品纯度为99.999%。
优选地,S2中利用热蒸发镀膜***的热蒸镀腔,在所述AAO阵列模板样品的表面热蒸镀一层预置厚度的银薄膜;所述热蒸镀腔内压强抽至6×10-4Pa以得到真空度,热蒸镀的速率为0.1Å/S,所述AAO阵列模板样品所在的样品托盘转动速度为20r/min。
优选地,S3中具体包括如下步骤:将所述AAO阵列模板样品转移至快速退火炉中,然后先通氮气5mins,保证样品在氮气氛围中退火,避免样品被氧化,然后开始升温至150℃,保温3h,获得超高密度有序银纳米球阵列。
本发明同时保护所述的超高密度有序银纳米球阵列作为表面拉曼增强活性基底材料在检测酚类污染物中的应用。
本发明同时提供一种检测酚类污染物的方法,采用所述的超高密度有序银纳米球阵列作为表面拉曼增强活性基底材料,然后将上述表面拉曼增强活性基底材料浸泡在含有酚类污染物的溶液中进行检测;
其中,含有酚类污染物的浓度为10-2 ~10-8mol/L,浸泡时间为1小时,将浸泡后吸附了酚类污染物的基底材料置于拉曼光谱仪激光下照射,激光波长为633 nm,功率选择为0.1 mW。
本申请人在申请号为201610658664.6的专利中提供了一种制备有序银纳米球阵列的方法,其采用有序铝纳米碗OAB阵列制备模板样品,并在500℃的高温真空条件下进行退火1h,与本发明相比,申请人的模板阵列为AAO阵列,且为在150℃的氮气进行退火,制备条件上,本发明更为简单,能耗更低。
同时,本发明进行了上述两种材料性能的对比(如图9所示),发现本发明提供的超高密度有序银纳米球阵列在用于检测酚类污染物上,其灵敏度更高,应用前景更好。
与现有技术相比,本发明具有如下优点和有益效果:
本发明提供的超高密度有序银纳米球阵列无需将AAO模板转移到其它基底,也无需除去多余的金属铝,因此可大面积制备有序的Ag纳米球阵列,所制备的超高密度有序银纳米球阵列可作为表面拉曼增强活性(SERS)基底用于检测酚类污染物,检测酚类污染物灵敏度高。同时制备过程温度低,能耗小,应用前景佳。
附图说明
图1为本发明实施例1中基于超高密度有序银纳米球阵列检测酚类污染物的方法流程示意图;
图2为本发明应用实例AAO模板的SEM(Scanning Electron Microscope,扫描电子显微镜)表面图,放大倍数为10万倍;
图3为本发明应用实例通过150℃真空退火后得到的超高密度有序银纳米球阵列阵列结构的SEM表面图,放大倍数为10万倍;
图4为本发明应用实例超高密度有序银纳米球阵列基底的低倍TEM(Transmissionelectron microscope,透射电子显微镜);
图5为本发明应用超高密度有序银纳米球阵列的尺寸统计图,总共统计了225个球。
图6为本发明厘米级超高密度有序银纳米球阵列的实物图。
图7为本发明检测浓度为10-8 M甲基对硫磷浓度的拉曼曲线图,由图可知甲基对硫磷的特征拉曼峰位在856 cm−1(P-O 拉伸振动)1110 cm-1(C-N), 1345 cm−1(C-H弯曲振动),和1591 cm−1(苯基伸缩振动)处。
图8为甲基对硫磷在1345 cm−1处,拉曼强度与浓度的对应关系图,表明农药甲基对硫磷在超高密度有序银纳米球阵列基底上具有浓度与信号之间的线性响应。
图9为本发明制备的超高密度有序银纳米球阵列与专利201610658664 .6中公开的银纳米球阵列的性能对比图。
具体实施方式
以下结合具体实施例和附图来进一步说明本发明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
除非特别说明,本发明所用试剂和材料均为市购。
实施例1:
利用退润湿技术可以直接在AAO模板上形成大面积、高密度有序的金属纳米粒子。纳米粒子的尺寸、密度决于金属薄膜的厚度模板的纳米结构,这种简单的方法为低成本、大面积制备超高密度有序的金属纳米球阵列提供了可能。目前,利用PS小球作为模板,结合dewetting(退润湿)的技术,成功实现了有序的金属(金,银,铜,钴,镍)纳米球阵列的制备。
但是制备间隙在100纳米以内的有序贵金属纳米结构阵列仍然是一个挑战。为了实现间隙在100nm的以内有序贵金属纳米结构阵列的制备。Y. Lei等人利用超薄AAO模板实现了有序的银纳米颗粒阵列的制备,间距可调,最小间距可以控制在10nm以下。然而,Y.Lei必须将AAO模板转移到其它基底,因此很难实现大面积制备。
为解决上述问题,本发明实施例提供一种基于退润湿技术,直接在AAO上热蒸镀Ag, 无需转移AAO模板,然后退火,制备一种超高密度有序银纳米球阵列,该方法制备超高密度有序银纳米球阵列具有超高密度,有序度高,尺寸分布小,退后温度仅需150度,降低了能耗和成本,同时可实现大面积制备等优点。
如图1所示,以下结合应用实例对本发明上述实施例进行详细说明:
AAO模板的制备:所述将铝片样品用二次氧化的方法制备AAO模板样品,所述的铝片样品纯度为99.999%, 所述二次氧化的方法还包括:一次氧化是将铝片样品在0.3wt.%H2SO4,温度为0.6℃,24V的电化学条件下氧化24h后,然后将铝片样品转移至1.8wt.%铬酸和6wt.%H3PO4、温度为43℃的混合溶液中去除上述所获得的氧化层;二次氧化是在与一次氧化相同的条件,即0.3wt.%H2SO4,温度为0.6℃,24V下,继续氧化180s,即得到如图2所示,为本发明应用实例AAO模板的SEM表面图,放大倍数为10万倍。
后处理:按照丙酮、乙醇、去离子水的步骤超声清洗制备好的AAO模板,超声功率为180W,超声清洗时间分别为10min,确保AAO模板表面无其它杂质。
热蒸镀金属薄膜:将清洗干净的样品放入热蒸镀设备中,AAO模板较软,转移到热蒸发***时务必小心,一旦样品发生形变导致样品不平,会直接影响到膜的均匀性。当热蒸镀腔体真空抽至6×10-4Pa后,缓慢加大电流至舟中银融化成液体。此时调节电流至蒸镀速率稳定在0.1Å/S,然后调节样品托盘转速20r/min后打开样品挡板。热蒸镀银膜厚度为10nm,通常,较慢的速率,膜的均匀性较好,膜的均匀性的好坏会直接影响到纳米球的尺寸的均匀性。
超高密度有序银纳米球阵列基底制备:由于纳米级别的Ag容易氧化,所以镀完Ag膜之后应立即将样品转移至RTP中,然后通氮气保护,防止样品被氧化,5mins后,将腔体加热至150℃,然后保温3h。在这过程中,根据奥斯瓦尔德熟化机理,之前沉积的Ag膜实际上是由尺寸不均一的纳米级小颗粒组成,在高温下,纳米级的大颗粒开始吞噬小颗粒,由于AAO模板的限制,大颗粒吞噬小颗粒的数量是有限的,大颗粒吞噬完周边的小颗粒之后无法再继续长大,最终每个洞里都有一个很大的球,即得到超高密度有序的银纳米球阵列结构。如图3所示,为本发明应用实例通过150℃ 氮气氛围下退火后得到的阵列结构的SEM表面图,放大倍数为10万倍。图4为本发明应用实例超高密度有序银纳米球阵列基底的低倍TEM。如图5所示,为本发明应用超高密度有序银纳米球的尺寸统计图,总共统计了225个球。图6为本发明厘米级超高密度有序银纳米球阵列的实物图。
SERS基底性能表征:将样品泡在被对甲基对硫磷的溶液中1h,然后取出自然晾干。图7和图8是本发明应用实例 SERS 基底上检测不同浓度对甲苯硫酚(10-2M ~10-8M)的拉曼曲线图,从图中可以发现,我们的检测极限是10-7M,具有很高的灵敏度。另外我们对比了有序Ag纳米球在AAO模板和201610658664 .6中公开的OAB模板上制备的有序银纳米球阵列的拉曼性能,如图9所示,发现Ag纳米球在AAO上的拉曼灵敏度更高。
上述技术方案使制备的有序的银纳米球阵列具有极高的密度,无需转移到其它基底便可大面积制备,制备工艺简单,重复性好,制备成本低,制备过程温度低,能耗小。所制备的超高密度有序银纳米球阵列可作为表面拉曼增强活性(SERS)基底用于检测酚类污染物,检测酚类污染物灵敏度高。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种超高密度有序银纳米球阵列,其特征在于,采用如下方法制备得到:
S1.制备超高密度有序铝纳米洞AAO阵列模板样品;
S2.在所述AAO阵列模板样品的表面热蒸镀10nm厚的银膜;
S3.将热镀了银膜后的所述样品在150℃氮气氛围中退火3h,获得超高密度有序银纳米球阵列。
2.根据权利要求1所述的超高密度有序银纳米球阵列,其特征在于,S1中利用二次氧化的方法制备超高密度有序铝纳米洞AAO阵列模板样品;所述利用二次氧化的方法制备超高密度有序氧化铝纳米洞AAO阵列模板样品包括一次氧化和二次氧化,
所述一次氧化是将铝片样品在0.3wt.%H2SO4,温度为0.6℃,24V的电化学条件下,氧化24h后,然后将铝片样品转移至1.8wt.%铬酸和6wt.%H3PO4、温度为43℃的混合溶液中去除所获得的氧化层;
所述二次氧化是在0.3wt.%H2SO4,温度为0.6℃,24V的电化学条件下,继续氧化180s,即得到所述AAO阵列模板样品。
3.根据权利要求1所述超高密度有序银纳米球阵列,其特征在于,铝片样品在进行一次氧化之前,在400℃氮气氛围下退火4h,然后在电化学条件下抛光;所述铝片样品纯度为99.999%。
4.根据权利要求1所述超高密度有序银纳米球阵列,其特征在于,S2中利用热蒸发镀膜***的热蒸镀腔,在所述AAO阵列模板样品的表面热蒸镀一层预置厚度的银薄膜;所述热蒸镀腔内压强抽至6×10-4Pa以得到真空度,热蒸镀的速率为所述AAO阵列模板样品所在的样品托盘转动速度为20r/min。
5.根据权利要求1所述超高密度有序银纳米球阵列,其特征在于,S3中具体包括如下步骤:将所述AAO阵列模板样品转移至快速退火炉中,然后先通氮气5mins,保证样品在氮气氛围中退火,避免样品被氧化,然后开始升温至150℃,保温3h,获得超高密度有序银纳米球阵列。
6.一种权利要求1至5任一所述的超高密度有序银纳米球阵列作为表面拉曼增强活性基底材料在检测酚类污染物中的应用。
7.一种检测酚类污染物的方法,其特征在于,采用权利要求1至5任一所述的超高密度有序银纳米球阵列作为表面拉曼增强活性基底材料,然后将上述表面拉曼增强活性基底材料浸泡在含有酚类污染物的溶液中进行检测;
其中,含有酚类污染物的浓度为10-2~10-8mol/L,浸泡时间为1小时,将浸泡后吸附了酚类污染物的基底材料置于拉曼光谱仪激光下照射,激光波长为633nm,功率选择为0.1mW。
CN201710188407.5A 2017-03-27 2017-03-27 一种超高密度有序银纳米球阵列及其应用 Active CN107177874B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710188407.5A CN107177874B (zh) 2017-03-27 2017-03-27 一种超高密度有序银纳米球阵列及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710188407.5A CN107177874B (zh) 2017-03-27 2017-03-27 一种超高密度有序银纳米球阵列及其应用

Publications (2)

Publication Number Publication Date
CN107177874A CN107177874A (zh) 2017-09-19
CN107177874B true CN107177874B (zh) 2019-06-21

Family

ID=59829828

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710188407.5A Active CN107177874B (zh) 2017-03-27 2017-03-27 一种超高密度有序银纳米球阵列及其应用

Country Status (1)

Country Link
CN (1) CN107177874B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107478638B (zh) * 2017-07-17 2020-07-07 中国科学院合肥物质科学研究院 银纳米颗粒组装的单层反蛋白石结构及其制备方法和用途
CN108802006A (zh) * 2018-05-28 2018-11-13 宁德师范学院 一种具有sers基底的制备及其表面增强因子的计算方法
CN110205587A (zh) * 2019-07-09 2019-09-06 河南师范大学 一种模板退火制备大面积规则排布金纳米颗粒阵列的方法
CN111364092B (zh) * 2020-03-26 2021-06-08 新疆艾旗斯德检测科技有限公司 一种银-多孔硅基表面增强拉曼散射的生物检测芯片的制备方法
CN112981443B (zh) * 2021-02-22 2022-04-19 吉林大学 一种表面沉积纳米银薄膜的泡沫镍、制备方法及其应用
CN113720826B (zh) * 2021-08-30 2024-05-10 南通大学 基于v型腔阵列表面的可控电镀法在制备高灵敏sers基底中的应用
CN114606466A (zh) * 2022-02-24 2022-06-10 北京工业大学 一种改善低成本可集成且大规模制备金属纳米颗粒方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029550A2 (en) * 2008-09-11 2010-03-18 Ramot At Tel Aviv University Ltd. Novel nanostructures and process of preparing same
CN105424674A (zh) * 2015-11-03 2016-03-23 华南师范大学 一种基于离子刻蚀制备表面拉曼增强活性基底的方法
CN106018379A (zh) * 2016-05-16 2016-10-12 华南师范大学 一种大面积表面增强拉曼散射基底及其制备方法
CN106282931A (zh) * 2016-08-11 2017-01-04 华南师范大学 一种制备有序银纳米球阵列的方法
CN106353296A (zh) * 2016-08-11 2017-01-25 华南师范大学 一种制备高均匀性表面增强拉曼活性基底的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029550A2 (en) * 2008-09-11 2010-03-18 Ramot At Tel Aviv University Ltd. Novel nanostructures and process of preparing same
CN105424674A (zh) * 2015-11-03 2016-03-23 华南师范大学 一种基于离子刻蚀制备表面拉曼增强活性基底的方法
CN106018379A (zh) * 2016-05-16 2016-10-12 华南师范大学 一种大面积表面增强拉曼散射基底及其制备方法
CN106282931A (zh) * 2016-08-11 2017-01-04 华南师范大学 一种制备有序银纳米球阵列的方法
CN106353296A (zh) * 2016-08-11 2017-01-25 华南师范大学 一种制备高均匀性表面增强拉曼活性基底的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
High-temperature stability of silver nanoparticles;Hui Chen et al;《ROYAL SOCIRTY OF CHEMISTRY》;20160906(第6期);第86930-86937页 *
SERS imaging of silver coated nanostructured Al and Al2O3 substrates. The effect of nanostructure;Kamilla Malek et al;《Journal of RAMAN SPECTROSCOPY》;20140303(第45期);第281-291页 *

Also Published As

Publication number Publication date
CN107177874A (zh) 2017-09-19

Similar Documents

Publication Publication Date Title
CN107177874B (zh) 一种超高密度有序银纳米球阵列及其应用
CN106353296B (zh) 一种制备高均匀性表面增强拉曼活性基底的方法
Zhang et al. Synthesis and SERS properties of nanocrystalline gold octahedra generated from thermal decomposition of HAuCl4 in block copolymers
CN106493381B (zh) 一种银/氧化亚铜微纳结构复合材料的制备方法及其应用
He et al. Silver nanosheet-coated inverse opal film as a highly active and uniform SERS substrate
CN111175284B (zh) 一种分层微/纳米结构的表面增强拉曼底物的制备方法
CN104692827B (zh) 一种Ag‑SiO2‑Ag纳米球阵列的制备方法
CN108872192B (zh) Sers单元及sers***
CN100557083C (zh) 一种可移植超薄纳米孔金膜及其制备方法
US11203523B2 (en) Bionic SERS substrate with metal-based compound eye bowl structure and its construction method and application
CN103938158A (zh) 一种自组装球型阵列的sers基底及制备方法
Hirai et al. Arrays of triangular shaped pincushions for SERS substrates prepared by using self-organization and vapor deposition
Wang et al. Fabrication of gold and silver hierarchically micro/nanostructured arrays by localized electrocrystallization for application as SERS substrates
CN111411335B (zh) 一种大面积分布的Ag@SiO2纳米粒子的制备方法及应用
CN111426674B (zh) 一种增强sers活性的太阳花纳米阵列结构及其制备方法
CN101270475A (zh) 疏水性银表面的制备方法
CN106282931B (zh) 一种制备有序银纳米球阵列的方法
CN105967139A (zh) 在硅基体上刻蚀孔洞的方法、含孔洞硅基体和半导体器件
Korotcenkov et al. Synthesis by successive ionic layer deposition (SILD) methodology and characterization of gold nanoclusters on the surface of tin and indium oxide films
Ansari et al. Controlled growth of thermally stable uniform-sized Ag nanoparticles on flat support and their electrochemical activity
Trang et al. Hotspot-type silver-polymers grafted nanocellulose paper with analyte enrichment as flexible plasmonic sensors for highly sensitive SERS sensing
CN112525881A (zh) 聚乙烯醇包覆表面增强拉曼散射基底及其制备方法
Rajput et al. Silica coating of polymer nanowires produced via nanoimprint lithography from femtosecond laser machined templates
TW201311788A (zh) 奈米金屬-聚合物複合導電薄膜與其製備方法
Tharion et al. Facile synthesis of size-tunable silver nanoparticles by heteroepitaxial growth method for efficient NIR SERS

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant