CN107176836A - 一种铈钙双元素共掺杂锆酸镧纳米陶瓷粉体及其制备方法 - Google Patents

一种铈钙双元素共掺杂锆酸镧纳米陶瓷粉体及其制备方法 Download PDF

Info

Publication number
CN107176836A
CN107176836A CN201710325194.6A CN201710325194A CN107176836A CN 107176836 A CN107176836 A CN 107176836A CN 201710325194 A CN201710325194 A CN 201710325194A CN 107176836 A CN107176836 A CN 107176836A
Authority
CN
China
Prior art keywords
ceramic powder
cerium
dual element
zirconic acid
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710325194.6A
Other languages
English (en)
Other versions
CN107176836B (zh
Inventor
靳洪允
何福俭
侯书恩
徐春辉
陈勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Geosciences
Original Assignee
China University of Geosciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Geosciences filed Critical China University of Geosciences
Priority to CN201710325194.6A priority Critical patent/CN107176836B/zh
Publication of CN107176836A publication Critical patent/CN107176836A/zh
Application granted granted Critical
Publication of CN107176836B publication Critical patent/CN107176836B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种铈钙双元素共掺杂锆酸镧纳米陶瓷粉体及其制备方法,其中制备方法包括以下步骤:配制混合溶液,将所述混合溶液与沉淀剂混合,得到氢氧化物胶体;将所述氢氧化物胶体分离洗涤,得到沉淀;将所述沉淀压滤,得到半固态氢氧化物凝胶;将所述半固态氢氧化物凝胶与分散剂均匀混合,得到混合物;将所述混合物蒸馏,然后干燥,得到固体粉料;将所述固体粉料煅烧,得到铈钙双元素共掺杂锆酸镧纳米陶瓷粉体。本发明还提供一种利用上述制备方法获取的铈钙双元素共掺杂锆酸镧纳米陶瓷粉体,其结构式为(La1‑2xCexCax)2(Zr0.7Ce0.3)2O7,式中:0.05≤x≤0.2。本发明提供的制备方法工艺流程少、易于控制。

Description

一种铈钙双元素共掺杂锆酸镧纳米陶瓷粉体及其制备方法
技术领域
本发明涉及无机非金属材料制备与应用领域,尤其涉及一种铈钙双元素共掺杂锆酸镧纳米陶瓷粉体及其制备方法。
背景技术
锆酸镧材料具有独特的晶体结构,其化学稳定性好、热导率低,是一种重要的结构和功能陶瓷。铈掺杂锆酸镧材料具有熔点高、热导率小、热膨胀系数大、化学稳定性好和高温下无相变的特点,是高温热障涂层材料的重要候选材料。同时,锆酸镧材料虽然具有优异的热力学性能,但其热膨胀系数较小(25℃~1200℃约9.7×10-6K-1),因此其在用作热障涂层材料时,存在与基体材料不匹配的问题。CeO2固有的热膨胀系数较高,此外,Ce4+和Zr4+的离子半径及相对原子质量相差明显。Ce4+取代La2Zr2O7中的Zr4+可能有利于改善材料的热物理性能。
Y.F.Wang等人研究了La2(Zr0.7Ce0.3)2O7的热物理性能的影响因素。研究结果表明,CeO2的掺入明显降低了La2Zr2O7的热导率,同时热导率随温度变化的幅度较平缓。掺杂元素与相应基体元素的离子半径差异要比质量差异更有效地影响点缺陷声子散射,从而也影响热导率随温度变化的趋势。此外,掺入较大质量的元素,尤其是尺寸较大的元素可以有效降低材料的理论最低热导率。
另一种有效的掺杂方式是用二价金属元素(Mg、Ca、Sr等),能更大程度上扭曲晶格,增加氧空位浓度,增强声子散射作用,降低材料的热导率。H.S.Zhang等人研究了Sr、Ca、Mg掺杂La2Ce2O7对其热导率的影响。结果显示,二价元素Sr、Ca、Mg部分掺杂La位后,(La0.95M0.05)2Ce2O7(M=Sr、Ca、Mg)的热导率较La2Ce2O7有了明显的降低。
发明内容
有鉴于此,本发明提供了一种热膨胀系数高的铈钙双元素共掺杂锆酸镧纳米陶瓷粉体,还提供了一种工艺流程少的铈钙双元素共掺杂锆酸镧纳米陶瓷粉体的制备方法。
本发明提供一种铈钙双元素共掺杂锆酸镧纳米陶瓷粉体的制备方法,包括以下步骤:
S1,配制铈盐、钙盐、锆盐和镧盐的混合溶液,将所述混合溶液与沉淀剂混合,搅拌后静置陈化,得到氢氧化物胶体;
S2,将所述氢氧化物胶体分离洗涤,得到沉淀和溶液;
S3,利用压滤机将所述沉淀压滤,得到半固态氢氧化物凝胶;
S4,将所述半固态氢氧化物凝胶与分散剂均匀混合,得到混合物;
S5,将所述混合物置于蒸馏装置中蒸馏,然后干燥,得到固体粉料;
S6,将所述固体粉料煅烧,得到铈钙双元素共掺杂锆酸镧纳米陶瓷粉体。
进一步地,步骤S1中,所述铈盐、钙盐、锆盐和镧盐的浓度为0.1~1mol/L,所述铈盐为硫酸高铈或硝酸铈,所述钙盐为硝酸钙、氯化钙或硫酸钙,所述锆盐为氯氧化锆,所述镧盐为硝酸镧或氯化镧,所述混合溶液中钙离子、铈离子、锆离子与镧离子的摩尔比为1:7:14:18~2:5:7:6。
进一步地,步骤S1中,所述沉淀剂为氨水或草酸铵,氨水的体积浓度为25%~100%。
进一步地,步骤S1中,搅拌的时间为2~4h,搅拌至所述沉淀剂中反应体系的pH值保持在10~14,静置陈化的时间为9~12h。
进一步地,步骤S2中,采用无机陶瓷膜分离技术将所述氢氧化物胶体分离洗涤,停止分离过程的判断条件为分离后得到的溶液的pH值为7且溶液与硝酸银反应不产生絮状物。
进一步地,步骤S3中,以重量百分比计,所述半固态氢氧化物凝胶的固含量为8~20%。
进一步地,步骤S4中,混合的方式为利用胶体磨处理或强力搅拌,分散剂为醇类分散剂,分散剂选用一缩二乙二醇、正丁醇、正丙醇、乙二醇、异丁醇、异丙醇或正戊醇中的任一种,所述分散剂与半固态氢氧化物凝胶的质量比为2:1~6:1。
进一步地,步骤S5中,蒸馏的具体过程为:将所述混合物置于蒸馏装置中,通过加热将蒸馏装置的温度控制在80~180℃,从而蒸馏脱除混合物中的吸附水,待吸附水完全脱除后,升高蒸馏装置的温度使分散剂蒸发,然后干燥2~8h,得到固体粉料。
进一步地,步骤S6中,将所述固体粉料在1300℃~1600℃下煅烧2~5h,得到铈钙双元素共掺杂锆酸镧纳米陶瓷粉体。
本发明还提供了一种铈钙双元素共掺杂锆酸镧纳米陶瓷粉体,利用上述制备方法获得,其结构式为(La1-2xCexCax)2(Zr0.7Ce0.3)2O7,式中:0.05≤x≤0.2,该纳米陶瓷粉体为烧绿石结构。
本发明提供的技术方案带来的有益效果是:
1.本发明提供的铈钙双元素共掺杂锆酸镧纳米陶瓷粉体为烧绿石结构,具备优异的热膨胀性能和抗烧结性能,该纳米陶瓷粉体粒径分布均匀可控、形貌规整,高温下结构稳定,与锆酸镧(热膨胀系数:25℃~1500℃达到9.37×10-6K-1,热导率:25℃~1450℃为1.571W·m-1·K-1)相比,该纳米陶瓷粉体具有更优的热膨胀系数(25℃~1500℃达到12.34×10-6K-1)和热导率(25℃~1450℃为1.183W·m-1·K-1);
2.本发明提供的铈钙双元素共掺杂锆酸镧纳米陶瓷粉体在应用时能够更大限度地提高涂层使用寿命和隔热性能,适用于各种抗高温热障涂层或高温耐磨耗、耐腐蚀涂层材料的制备,能广泛应用于航空航天、燃气轮机、船舶、汽车、机械、化工等领域;
3.本发明提供的铈钙双元素共掺杂锆酸镧纳米陶瓷粉体的制备方法工艺流程少,所需设备简单,制备过程易于控制,适合大规模工业生产。
附图说明
图1是本发明的铈钙双元素共掺杂锆酸镧纳米陶瓷粉体的制备方法的一示意图。
图2是本发明的铈钙双元素共掺杂锆酸镧纳米陶瓷粉体制备方法中实施例1得到的纳米陶瓷粉体的X射线粉晶衍射图谱。
图3是本发明的铈钙双元素共掺杂锆酸镧纳米陶瓷粉体制备方法中实施例2得到的纳米陶瓷粉体的X射线粉晶衍射图谱。
图4是本发明的铈钙双元素共掺杂锆酸镧纳米陶瓷粉体制备方法中实施例3得到的纳米陶瓷粉体的X射线粉晶衍射图谱。
图5是本发明的铈钙双元素共掺杂锆酸镧纳米陶瓷粉体制备方法中实施例4得到的纳米陶瓷粉体的X射线粉晶衍射图谱。
图6是本发明的铈钙双元素共掺杂锆酸镧纳米陶瓷粉体制备方法中实施例4得到的纳米陶瓷粉体的热膨胀系数随温度变化的曲线。
图7是本发明的铈钙双元素共掺杂锆酸镧纳米陶瓷粉体制备方法中实施例4得到的纳米陶瓷粉体的热导率随温度变化的曲线。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图和实施例对本发明实施方式作进一步地描述。
请参考图1,本发明的实施例提供了一种铈钙双元素共掺杂锆酸镧纳米陶瓷粉体的制备方法,包括以下步骤:
S1,将浓度为0.1~1mol/L的铈盐、钙盐、锆盐和镧盐混合,配制成混合溶液,利用反向滴定法将混合溶液加入到沉淀剂中,搅拌后静置陈化,得到氢氧化物胶体。
步骤S1中,铈盐为硫酸高铈或硝酸铈,钙盐为硝酸钙、氯化钙或硫酸钙,锆盐为氯氧化锆,镧盐为硝酸镧或氯化镧,混合溶液中钙离子、铈离子、锆离子与镧离子的摩尔比为1:7:14:18~2:5:7:6,沉淀剂为氨水或草酸铵,氨水的体积浓度为25%~100%,搅拌的时间为2~4h,搅拌至沉淀剂中反应体系的pH值保持在10~14,静置陈化的时间为9~12h。
S2,采用无机陶瓷膜分离技术将步骤S1中得到的氢氧化物胶体分离洗涤,得到沉淀和溶液;无机陶瓷膜分离技术是利用膜的选择性分离以实现料液的不同组分的分离、纯化和浓缩的一种技术,其具有能在常温下进行、无相态变化、无化学变化、选择性好、适应性强和能耗低的优点。
步骤S2中,分离的作用是去除氢氧化物胶体中的杂质离子,停止分离过程的判断条件为分离后得到的溶液的pH值为7且溶液与硝酸银反应不产生絮状物。
S3,利用压滤机将沉淀压滤,得到半固态氢氧化物凝胶;以重量百分比计,半固态氢氧化物凝胶的固含量为8~20%。
S4,将步骤S3中得到的半固态氢氧化物凝胶与分散剂均匀混合,得到混合物。
步骤S4中,混合的方式为利用胶体磨处理或强力搅拌,分散剂为醇类分散剂,分散剂选用一缩二乙二醇、正丁醇、正丙醇、乙二醇、异丁醇、异丙醇或正戊醇中的任一种,分散剂与半固态氢氧化物凝胶的质量比为2:1~6:1。
S5,将步骤S4中得到的混合物置于蒸馏装置中蒸馏,然后干燥,得到固体粉料。
具体地,步骤S5中,将混合物置于蒸馏装置中,通过加热将蒸馏装置的温度控制在80~180℃,从而蒸馏脱除混合物中的吸附水,待吸附水完全脱除后,升高蒸馏装置的温度使分散剂蒸发,然后干燥2~8h,得到固体粉料,干燥过程中不断搅拌,使得到的固体粉料均匀干燥。
S6,将固体粉料煅烧,通过控制煅烧的温度可以得到不同粒度的铈钙双元素共掺杂锆酸镧纳米陶瓷粉体。
具体地,步骤S6中,将固体粉料在1300℃~1600℃下煅烧2~5h,得到铈钙双元素共掺杂锆酸镧纳米陶瓷粉体。
本发明还提供了一种铈钙双元素共掺杂锆酸镧纳米陶瓷粉体,利用上述制备方法获得,该纳米陶瓷粉体为烧绿石结构,该纳米陶瓷粉体的结构式为:(La1-2xCexCax)2(Zr0.7Ce0.3)2O7,式中:0.05≤x≤0.2。
下面给出本发明的铈钙双元素共掺杂锆酸镧纳米陶瓷粉体的制备方法的几个实施例,结合该实施例对上述制备方法进行举例说明。
实施例1:
将浓度为0.2mol/L的硝酸铈溶液、浓度为0.356mol/L的氯氧化锆溶液、浓度为0.5mol/L的硝酸钙溶液以及浓度为0.5mol/L的硝酸镧溶液混合,配制成钙离子、铈离子、锆离子与镧离子的摩尔比为1:7:14:18的混合溶液,利用反向滴定法将混合溶液加入到体积浓度为40%的氨水中,搅拌至氨水中反应体系的pH值达到10,静置陈化12h,得到氢氧化物胶体;采用无机陶瓷膜分离技术将氢氧化物胶体分离洗涤,得到沉淀和溶液,测量溶液的pH值,若溶液的pH值大于7,则继续分离直至溶液的pH值为7且溶液与硝酸银反应不产生絮状物;利用压滤机将分离后得到的沉淀压滤,得到半固态氢氧化物凝胶;利用胶体磨将正丁醇与半固态氢氧化物凝胶按质量比为2:1混合均匀,得到混合物;将混合物置于蒸馏装置中,通过加热将蒸馏装置中的温度控制在150℃,待混合物中的吸附水完全脱除后,升高蒸馏装置的温度使正丁醇蒸发,然后干燥2h,得到固体粉料;将固体粉料在1350℃下煅烧4h,得到铈钙双元素共掺杂锆酸镧纳米陶瓷粉体。
将利用实施例1制备得到的铈钙双元素共掺杂锆酸镧纳米陶瓷粉体进行X射线衍射(X-ray diffraction,XRD)测试,图2为利用实施例1得到的铈钙双元素共掺杂锆酸镧纳米陶瓷粉体的X射线粉晶衍射图谱,由图2可以分析出得到的纳米陶瓷粉体为烧绿石结构。
实施例2:
将浓度为0.15mol/L的硝酸铈溶液、浓度为0.45mol/L的氯氧化锆溶液、浓度为0.6mol/L的硝酸钙溶液以及浓度为0.65mol/L的硝酸镧溶液混合,配制成钙离子、铈离子、锆离子与镧离子的摩尔比为1:4:7:8的混合溶液,利用反向滴定法将混合溶液加入到体积浓度为30%的氨水中,搅拌至氨水中反应体系的pH值达到11,静置陈化11h,得到氢氧化物胶体;采用无机陶瓷膜分离技术将氢氧化物胶体分离洗涤,得到沉淀和溶液,测量溶液的pH值,若溶液的pH值大于7,则继续分离直至溶液的pH值为7且溶液与硝酸银反应不产生絮状物;利用压滤机将分离后得到的沉淀压滤,得到半固态氢氧化物凝胶;利用胶体磨将一缩二乙二醇与半固态氢氧化物凝胶按质量比为5:2混合均匀,得到混合物;将混合物置于蒸馏装置中,通过加热将蒸馏装置中的温度控制在135℃,待混合物中的吸附水完全脱除后,升高蒸馏装置的温度使一缩二乙二醇蒸发,然后干燥4h,得到固体粉料;将固体粉料在1350℃下煅烧3h,得到铈钙双元素共掺杂锆酸镧纳米陶瓷粉体。
将利用实施例2制备得到的铈钙双元素共掺杂锆酸镧纳米陶瓷粉体进行XRD测试,图3为利用实施例2得到的铈钙双元素共掺杂锆酸镧纳米陶瓷粉体的X射线粉晶衍射图谱,由图3可以分析出得到的纳米陶瓷粉体为烧绿石结构。
实施例3:
将浓度为0.35mol/L的硝酸铈溶液、浓度为0.65mol/L的氯氧化锆溶液、浓度为0.8mol/L的硝酸钙溶液以及浓度为0.85mol/L的硝酸镧溶液混合,配制成钙离子、铈离子、锆离子与镧离子的摩尔比为3:9:14:14的混合溶液,利用反向滴定法将混合溶液加入到体积浓度为30%的氨水中,搅拌至氨水中反应体系的pH值达到12,静置陈化10h,得到氢氧化物胶体;采用无机陶瓷膜分离技术将氢氧化物胶体分离洗涤,得到沉淀和溶液,测量溶液的pH值,若溶液的pH值大于7,则继续分离直至溶液的pH值为7且溶液与硝酸银反应不产生絮状物;利用压滤机将分离后得到的沉淀压滤,得到半固态氢氧化物凝胶;利用胶体磨将乙二醇与半固态氢氧化物凝胶按质量比为5:2混合均匀,得到混合物;将混合物置于蒸馏装置中,通过加热将蒸馏装置中的温度控制在135℃,待混合物中的吸附水完全脱除后,升高蒸馏装置的温度使乙二醇蒸发,然后干燥3h,得到固体粉料;将固体粉料在1450℃下煅烧2.5h,得到铈钙双元素共掺杂锆酸镧纳米陶瓷粉体。
将利用实施例3制备得到的铈钙双元素共掺杂锆酸镧纳米陶瓷粉体进行XRD测试,图4为利用实施例3得到的铈钙双元素共掺杂锆酸镧纳米陶瓷粉体的X射线粉晶衍射图谱,由图4可以分析出得到的纳米陶瓷粉体为烧绿石结构。
实施例4:
将浓度为0.2mol/L的硝酸铈溶液、浓度为1.0mol/L的氯氧化锆溶液、浓度为0.5mol/L的硝酸钙溶液以及浓度为0.75mol/L的硝酸镧溶液混合,配制成钙离子、铈离子、锆离子与镧离子的摩尔比为2:5:7:6的混合溶液,利用反向滴定法将混合溶液加入到体积浓度为30%的氨水中,搅拌至氨水中反应体系的pH值达到14,静置陈化9h,得到氢氧化物胶体;采用无机陶瓷膜分离技术将氢氧化物胶体分离洗涤,得到沉淀和溶液,测量溶液的pH值,若溶液的pH值大于7,则继续分离直至溶液的pH值为7且溶液与硝酸银反应不产生絮状物;利用压滤机将分离后得到的沉淀压滤,得到半固态氢氧化物凝胶;利用胶体磨将异丁醇与半固态氢氧化物凝胶按质量比为5:2混合均匀,得到混合物;将混合物置于蒸馏装置中,通过加热将蒸馏装置中的温度控制在150℃,待混合物中的吸附水完全脱除后,升高蒸馏装置的温度使异丁醇蒸发,然后干燥5h,得到固体粉料;将固体粉料在1500℃下煅烧4h,得到铈钙双元素共掺杂锆酸镧纳米陶瓷粉体。
将利用实施例4制备得到的铈钙双元素共掺杂锆酸镧纳米陶瓷粉体进行XRD测试、半导体致冷器(Thermo Electric Cooler,TEC)测试和热导率测试,图5为利用实施例4得到的铈钙双元素共掺杂锆酸镧纳米陶瓷粉体的X射线粉晶衍射图谱,图6为利用实施例4得到的铈钙双元素共掺杂锆酸镧纳米陶瓷粉体的热膨胀系数随温度变化的曲线,图7为利用实施例4得到的铈钙双元素共掺杂锆酸镧纳米陶瓷粉体的热导率随温度变化的曲线,由图5可以分析出得到的纳米陶瓷粉体为烧绿石结构,从图6可以看出,铈钙双元素共掺杂锆酸镧纳米陶瓷粉体的热膨胀系数(25℃~1500℃)达到12.34×10-6K-1,从图7可以看出,铈钙双元素共掺杂锆酸镧纳米陶瓷粉体的热导率(25℃~1450℃)为1.183W·m-1·K-1
本发明提供的铈钙双元素共掺杂锆酸镧纳米陶瓷粉体为烧绿石结构,具备优异的热膨胀性能和抗烧结性能,该纳米陶瓷粉体粒径分布均匀可控、形貌规整,高温下结构稳定,与锆酸镧(热膨胀系数:25℃~1500℃达到9.37×10-6K-1,热导率:25℃~1450℃为1.571W·m-1·K-1)相比,该纳米陶瓷粉体具有更优的热膨胀系数(25℃~1500℃达到12.34×10-6K-1)和热导率(25℃~1450℃为1.183W·m-1·K-1);本发明提供的铈钙双元素共掺杂锆酸镧纳米陶瓷粉体在应用时能够更大限度地提高涂层使用寿命和隔热性能,适用于各种抗高温热障涂层或高温耐磨耗、耐腐蚀涂层材料的制备,能广泛应用于航空航天、燃气轮机、船舶、汽车、机械、化工等领域;本发明提供的铈钙双元素共掺杂锆酸镧纳米陶瓷粉体的制备方法工艺流程少,所需设备简单,制备过程易于控制,适合大规模工业生产。
在不冲突的情况下,本文中上述实施例及实施例中的特征可以相互结合。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种铈钙双元素共掺杂锆酸镧纳米陶瓷粉体的制备方法,其特征在于,包括以下步骤:
S1,配制铈盐、钙盐、锆盐和镧盐的混合溶液,将所述混合溶液与沉淀剂混合,搅拌后静置陈化,得到氢氧化物胶体;
S2,将所述氢氧化物胶体分离洗涤,得到沉淀和溶液;
S3,利用压滤机将所述沉淀压滤,得到半固态氢氧化物凝胶;
S4,将所述半固态氢氧化物凝胶与分散剂均匀混合,得到混合物;
S5,将所述混合物置于蒸馏装置中蒸馏,然后干燥,得到固体粉料;
S6,将所述固体粉料煅烧,得到铈钙双元素共掺杂锆酸镧纳米陶瓷粉体。
2.如权利要求1所述的铈钙双元素共掺杂锆酸镧纳米陶瓷粉体的制备方法,其特征在于,步骤S1中,所述铈盐、钙盐、锆盐和镧盐的浓度为0.1~1mol/L,所述铈盐为硫酸高铈或硝酸铈,所述钙盐为硝酸钙、氯化钙或硫酸钙,所述锆盐为氯氧化锆,所述镧盐为硝酸镧或氯化镧,所述混合溶液中钙离子、铈离子、锆离子与镧离子的摩尔比为1:7:14:18~2:5:7:6。
3.如权利要求1所述的铈钙双元素共掺杂锆酸镧纳米陶瓷粉体的制备方法,其特征在于,步骤S1中,所述沉淀剂为氨水或草酸铵,氨水的体积浓度为25%~100%。
4.如权利要求1所述的铈钙双元素共掺杂锆酸镧纳米陶瓷粉体的制备方法,其特征在于,步骤S1中,搅拌的时间为2~4h,搅拌至所述沉淀剂中反应体系的pH值保持在10~14,静置陈化的时间为9~12h。
5.如权利要求1所述的铈钙双元素共掺杂锆酸镧纳米陶瓷粉体的制备方法,其特征在于,步骤S2中,采用无机陶瓷膜分离技术将所述氢氧化物胶体分离洗涤,停止分离过程的判断条件为分离后得到的溶液的pH值为7且溶液与硝酸银反应不产生絮状物。
6.如权利要求1所述的铈钙双元素共掺杂锆酸镧纳米陶瓷粉体的制备方法,其特征在于,步骤S3中,以重量百分比计,所述半固态氢氧化物凝胶的固含量为8~20%。
7.如权利要求1所述的铈钙双元素共掺杂锆酸镧纳米陶瓷粉体的制备方法,其特征在于,步骤S4中,混合的方式为利用胶体磨处理或强力搅拌,分散剂为醇类分散剂,分散剂选用一缩二乙二醇、正丁醇、正丙醇、乙二醇、异丁醇、异丙醇或正戊醇中的任一种,所述分散剂与半固态氢氧化物凝胶的质量比为2∶1~6:1。
8.如权利要求1所述的铈钙双元素共掺杂锆酸镧纳米陶瓷粉体的制备方法,其特征在于,步骤S5中,蒸馏的具体过程为:将所述混合物置于蒸馏装置中,通过加热将蒸馏装置的温度控制在80~180℃,从而蒸馏脱除混合物中的吸附水,待吸附水完全脱除后,升高蒸馏装置的温度使分散剂蒸发,然后干燥2~8h,得到固体粉料。
9.如权利要求1所述的铈钙双元素共掺杂锆酸镧纳米陶瓷粉体的制备方法,其特征在于,步骤S6中,将所述固体粉料在1300℃~1600℃下煅烧2~5h,得到铈钙双元素共掺杂锆酸镧纳米陶瓷粉体。
10.一种铈钙双元素共掺杂锆酸镧纳米陶瓷粉体,其特征在于,所述铈钙双元素共掺杂锆酸镧纳米陶瓷粉体根据权利要求1~9中任一项所述的制备方法获得,其结构式为(La1- 2xCexCax)2(Zr0.7Ce0.3)2O7,式中:0.05≤x≤0.2,该纳米陶瓷粉体为烧绿石结构。
CN201710325194.6A 2017-05-10 2017-05-10 一种铈钙双元素共掺杂锆酸镧纳米陶瓷粉体及其制备方法 Active CN107176836B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710325194.6A CN107176836B (zh) 2017-05-10 2017-05-10 一种铈钙双元素共掺杂锆酸镧纳米陶瓷粉体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710325194.6A CN107176836B (zh) 2017-05-10 2017-05-10 一种铈钙双元素共掺杂锆酸镧纳米陶瓷粉体及其制备方法

Publications (2)

Publication Number Publication Date
CN107176836A true CN107176836A (zh) 2017-09-19
CN107176836B CN107176836B (zh) 2020-04-10

Family

ID=59832187

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710325194.6A Active CN107176836B (zh) 2017-05-10 2017-05-10 一种铈钙双元素共掺杂锆酸镧纳米陶瓷粉体及其制备方法

Country Status (1)

Country Link
CN (1) CN107176836B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108178631A (zh) * 2018-01-15 2018-06-19 中国地质大学(武汉) 一种热喷涂球形锆酸镧粉体的制备方法
CN109796206A (zh) * 2019-03-26 2019-05-24 武汉理工大学 一种高红外辐射陶瓷材料及其制备方法和应用
US10322409B1 (en) 2018-03-05 2019-06-18 King Fahd University Of Petroleum And Minerals Low temperature hydrothermal method for the preparation of LaCO3OH nanoparticles
CN112960980A (zh) * 2021-03-02 2021-06-15 中国人民解放军国防科技大学 一种超低热导率共掺杂改性烧绿石热障涂层材料及其制备方法
CN113121227A (zh) * 2021-03-08 2021-07-16 江苏大学 一种钆镍共掺杂镁基六铝酸镧陶瓷及制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102659403A (zh) * 2012-05-31 2012-09-12 北京科技大学 一种耐高温热障涂层陶瓷材料及其制备方法
CN102718485A (zh) * 2012-06-27 2012-10-10 中国地质大学(武汉) 一种铈掺杂锆酸镧纳米粉体及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102659403A (zh) * 2012-05-31 2012-09-12 北京科技大学 一种耐高温热障涂层陶瓷材料及其制备方法
CN102718485A (zh) * 2012-06-27 2012-10-10 中国地质大学(武汉) 一种铈掺杂锆酸镧纳米粉体及其制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108178631A (zh) * 2018-01-15 2018-06-19 中国地质大学(武汉) 一种热喷涂球形锆酸镧粉体的制备方法
US10322409B1 (en) 2018-03-05 2019-06-18 King Fahd University Of Petroleum And Minerals Low temperature hydrothermal method for the preparation of LaCO3OH nanoparticles
US10512900B2 (en) 2018-03-05 2019-12-24 King Fahd University Of Petroleum And Minerals Method for making LaCO3OH nanoparticles from aqueous salt solutions
US10646856B2 (en) 2018-03-05 2020-05-12 King Fahd University Of Petroleum And Minerals Method for forming lanthanum hydroxycarbonate nanoparticles
CN109796206A (zh) * 2019-03-26 2019-05-24 武汉理工大学 一种高红外辐射陶瓷材料及其制备方法和应用
CN109796206B (zh) * 2019-03-26 2021-11-16 武汉理工大学 一种高红外辐射陶瓷材料及其制备方法和应用
CN112960980A (zh) * 2021-03-02 2021-06-15 中国人民解放军国防科技大学 一种超低热导率共掺杂改性烧绿石热障涂层材料及其制备方法
CN113121227A (zh) * 2021-03-08 2021-07-16 江苏大学 一种钆镍共掺杂镁基六铝酸镧陶瓷及制备方法

Also Published As

Publication number Publication date
CN107176836B (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
CN107176836A (zh) 一种铈钙双元素共掺杂锆酸镧纳米陶瓷粉体及其制备方法
CN101091914B (zh) 氧化锆基混合氧化物及其制造方法
KR101472242B1 (ko) 다공질 알루미나 재료 및 그 제조 방법, 및 촉매
Taguchi et al. Simple and rapid synthesis of ZrO 2 nanoparticles from Zr (OEt) 4 and Zr (OH) 4 using a hydrothermal method
CN102718485B (zh) 一种铈掺杂锆酸镧纳米粉体及其制备方法
Abu-Zied et al. Fabrication, characterization, and electrical conductivity properties of Pr6O11 nanoparticles
CN107857302A (zh) 一种a位镁钙双掺杂铁酸镧复合氧化物材料的制备方法
CN107427822A (zh) 核‑壳载体、其制造方法、使用该核‑壳载体的排气净化催化剂、其制造方法和使用所述排气净化催化剂净化排气的方法
Yadav et al. Effect of acceptor Na 1+ doping on the properties of perovskite SrCeO 3
CN107176835B (zh) 一种铈双掺锆酸镧纳米陶瓷粉体及其制备方法
CN103523830B (zh) 一种高比表面积的纯单斜相二氧化锆的制备方法
JPWO2007142116A1 (ja) 金属酸化物粒子の製造方法
Sari et al. Effect of iron impurity on structural development in ball-milled ZrO2–3 mol% Y2O3
CN104085925B (zh) 一种laton钙钛矿型氮氧化物粉体的制备方法
JP6254913B2 (ja) α−アルミン酸リチウムの製造方法
Fabrichnaya et al. Phase relations in the ZrO 2-Nd 2 O 3-Y 2 O 3 system: Experimental study and advanced thermodynamic modeling
Liu et al. Kinetics Investigation of Oxygen Storage Capacity in La2O3–CeO2 Solid Solution
CN107352995A (zh) 一种Ca1‑x‑ySrxBayZr4(PO4)6超低热膨胀陶瓷材料及其制备方法
Chen et al. Preparation of single-phase three-component alkaline earth oxide of (BaSrMg) O: a high capacity and thermally stable chemisorbent for oxygen separation
Srisombat et al. Chemical synthesis of magnesium niobate powders
CN105801114A (zh) 一种超细氧化钇稳定氧化锆粉体的制备方法
US20150336083A1 (en) Porous Alumina Material, Process for Producing Same, and Catalyst
CN104386750A (zh) 一种钪钽酸钡粉体的制备方法
CN104229890B (zh) 一种钽镁酸镧粉体的制备方法
Xia et al. Synthesis, Sintering Behavior, Structure, and Electrical Properties of 5YSZ Electrolyte

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant