CN107170970B - 一种锂电电极材料表面固溶层材料的优化方法 - Google Patents

一种锂电电极材料表面固溶层材料的优化方法 Download PDF

Info

Publication number
CN107170970B
CN107170970B CN201710348650.9A CN201710348650A CN107170970B CN 107170970 B CN107170970 B CN 107170970B CN 201710348650 A CN201710348650 A CN 201710348650A CN 107170970 B CN107170970 B CN 107170970B
Authority
CN
China
Prior art keywords
block materials
lithium
materials
solid solution
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710348650.9A
Other languages
English (en)
Other versions
CN107170970A (zh
Inventor
黄冰心
胡希韬
强文江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201710348650.9A priority Critical patent/CN107170970B/zh
Publication of CN107170970A publication Critical patent/CN107170970A/zh
Application granted granted Critical
Publication of CN107170970B publication Critical patent/CN107170970B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明属于锂电材料技术领域,特别是一种以锂电正极或负极材料为基体,以力学及导电性能为依据选择固溶体成分,将此固溶体包覆于电极颗粒之上,此表面固溶体层可以提高锂离子电池循环性能从而大大提高电池使用寿命的一种锂电电极材料表面固溶层材料的优化方法。具体为:将基体材料与掺杂材料按特定比例混合,将所述混合物经过一系列工艺制成块体材料,测试块体材料力学性能与导电性能,以力学性能和导电性能为判定依据选出最优成分作为包覆材料,将最优成分包覆于基体颗粒表层后即获得改性电极基体材料。本发明将力学和导电性能测试作为选择依据,相对传统试错法提高了效率,并且更加具有针对性,所制备材料循环性能较原基体材料有了大幅度提高。

Description

一种锂电电极材料表面固溶层材料的优化方法
技术领域
本发明应用在锂电电极材料领域,以力学性能与导电性能为选择依据,应用于锂电电极材料的表面包覆层成分选择的优化方法。
背景技术
锂离子电池被广泛应用于移动电话、笔记本电脑、照相机等移动电子设备。近年来,电动汽车以及储能装置的发展极大地拓宽了锂离子电池的应用领域,同时,对锂离子电池的能量密度和使用寿命也提出了更高的要求。在锂离子电池中,电极材料约占整体重量的30-40%,此外,电极材料的循环稳定性也是决定锂离子电池使用寿命的重要原因之一,因而电极材料是决定电池能量密度和使用寿命的最关键因素。在各类电极材料中,锂过渡金属氧化物材料具有高电极电位、良好的电子和离子导电性、以及锂可逆脱嵌过程中良好的结构稳定性等优点,因此,该类化合物是优良的锂离子电池备选电极材料。
能量密度和循环寿命是表征电极材料电化学性能的重要参数,有趣的是,它们都和电极材料的力学稳定性密切相关。在充放电过程中,电极材料的点阵常数随着锂离子的脱出(或嵌入)会发生变化,如LiCoO2的点阵常数变化达到3%,但应该注意对于脆性的电极材料来说,应变>0.1%即被认为是危险的。而对于给定的电极材料,其能量密度取决于可利用的锂离子分数,当过量锂离子脱出时,材料的力学性能变差,更容易发生断裂,因此,能量密度和力学稳定性相关。即使没有过充发生,电极材料在充放电循环过程中,点阵常数随着锂离子的脱出或嵌入发生周期性变化,因而产生周期性应力,在较小的应力下,电极也会发生断裂、粉化,从而造成电极颗粒接触不良,使电池不再适合进一步循环。因此,电极材料的循环寿命强烈依赖于力学稳定性。
研究证明,表面修饰可有效提高电极材料的循环性能,这通常归因于修饰层能提高表面力学强度,防止裂纹产生。但是,由于缺乏定量的实验数据,目前表面修饰都是采用试错法,其工艺路线如图1,也就是直接在颗粒表面制备固溶体层,然后组装电池,检测电化学性能。优化过程非常复杂,且存在包覆不均匀,包覆层成分难以控制,需要大量工作。尤其对电极材料在充放电过程中的力学-电化学性能耦合作用,即对电极颗粒应力衍变导致的裂纹和颗粒表面修饰强化的机理研究更少。
发明内容
本发明从电极材料表面包覆层的力学和导电性能入手,根据表面修饰层是电极材料固溶体的事实,设计与制备电极材料的固溶体,以力学性能和导电性能作为选择依据,相对传统试错法大大提高了效率。
本发明的技术方案如下:一种锂电电极材料表面固溶层材料的优化方法,该方法具体包括以下步骤:
步骤1:按照设计成分,将基体材料与掺杂材料在一定范围内按照不同的比例分别进行混合;
步骤2:将不同比例的混合材料分别制成块体材料;
步骤3:分别测试步骤2得到的块体材料的力学性能,以力学性能判定依据选出不同成分的块体材料中筛选出最优组分,将最优材料包覆于电极材料表面获得改性电极材料。
进一步,所述步骤1中比例为4:0 ~ 4:1,限制在掺杂材料的固溶度内。
进一步,所述步骤3中力学性能测试方法为:将块体材料置于微米/纳米压痕设备的测试平台上,施加的压力为:0.1~10 N,分别得到被测试块体材料的硬度,断裂韧性和杨氏模量,然后将被测试块体材料进行脱锂处理,当脱出50% 锂时,被测试材料的硬度﹑断裂韧性和杨氏模量下降在20%内的,即为最优材料。
进一步,该方法还包括以下步骤,当两种块体材料的硬度﹑断裂韧性和杨氏模量下降值都在20%内时,通过测试两种块体材料的导电性能,将块体材料两面镀金,利用交流阻抗谱仪和直流电阻仪测量离子电导和电子电导,得到块体材料的电导率,选择电导率高的块体材料为最优材料。
本发明的优点在于结合力学和电学性能测试作为选择依据,相对传统试错法大大提高了效率,并且更加具有针对性,所制备材料循环性能较原基体材料有了大幅度提高。
附图说明
图1为传统锂离子电池表面材料选择与制作过程
图2为本工艺锂离子电池表面材料选择与制作过程
图3为表面修饰层效果示意图。
图4为包覆后颗粒。
图5为该基体循环性能。
图6 NCA-Ti20与NCA、NCA-Ti10(Li(Ni0.8CO0.15Al0.05)0.9Ti0.1O2)力学性能对比。
具体实施方式
下面结合具体实施例对本发明的技术方案作进一步说明,但本方法并不局限于以下实施例。
本发明一种锂电电极材料表面固溶层材料的优化方法,该方法具体包括以下步骤:
步骤1:按照设计成分,将基体材料与掺杂材料在一定范围内按照不同的比例分别进行混合;
步骤2:将不同比例的混合材料分别制成块体材料;
步骤3:分别测试步骤2得到的块体材料的力学性能,以力学性能判定依据选出不同成分的块体材料中筛选出最优组分,将最优材料包覆于电极材料表面获得改性电极材料。
进一步,所述步骤1中比例为4:0 ~ 4:1,限制在掺杂材料的固溶度内。
进一步所述步骤3中力学性能测试方法为:将块体材料置于微米/纳米压痕设备的测试平台上,施加的压力为:0.1~10 N,分别得到被测试块体材料的硬度,断裂韧性和杨氏模量,然后将被测试块体材料进行脱锂处理,当脱出50% 锂时,被测试材料的硬度﹑断裂韧性和杨氏模量下降在20%内的,即为最优材料。
该方法还包括以下步骤,当两种块体材料的硬度﹑断裂韧性和杨氏模量下降值都在20%内时,通过测试两种块体材料的导电性能,将块体材料两面镀金,利用交流阻抗谱仪和直流电阻仪测量离子电导和电子电导,得到块体材料的电导率,选择电导率高的块体材料为最优材料。
实施例1:
1) 将基体材料(LiNi0.8CO0.15Al0.05O2)与掺杂材料分别以摩尔比9:1,4:1比例混合,其中掺杂材料为纳米级TiO2与Li2CO3其摩尔比为1:1~1:1.1。
2) 将混合物于碳酸锂分解温度上到材料熔点下温度区间内进行初烧,较优为650℃~800℃下保温6~8小时,使其发生充分反应。
3) 将初烧产物再次粉碎后压制,以高于初烧温度进行烧结,从而使晶粒充分生长但不宜过高以防止出现晶粒异常长大,从而导致块体烧结不均匀,较优区段为700~1000℃,保温8~12小时烧获得目标产物NCA-Ti10,NCA-Ti20
4) 对NCA,NCA-Ti10,NCA-Ti20进行力学性能与电学性能测试,这三种材料力学性能和电导性能较优的为NCA-Ti20,故确定NCA-Ti20为最优包覆材料
5) 将NCA-Ti20包覆于NCA颗粒表层后即获得改性NCA正极材料。
其表面修饰层效果示意图如图3。
包覆后颗粒(d、e、f)与包覆前颗粒(a、b、c)SEM对比照片如图4。
该包覆材料循环性能如图5。
NCA-Ti20与NCA、NCA-Ti10力学性能对比为图6。

Claims (3)

1.一种锂电电极材料表面固溶层材料的优化方法,其特征在于,该方法具体包括以下步骤:
步骤1:按照设计成分,将含锂的基体材料与含锂的掺杂材料在一定范围内按照不同的比例分别进行混合;
步骤2:将步骤1混合后的不同比例的混合材料分别制成块体材料;
步骤3:分别测试步骤2得到的块体材料的力学性能,以力学性能判定依据选出不同成分的块体材料中筛选出最优材料的组分,将最优材料包覆于电极材料表面获得改性电极材料;
所述步骤3中力学性能测试方法为:将块体材料置于微米/纳米压痕设备的测试平台上,施加的压力为:0.1~10 N,分别得到被测试块体材料的硬度,断裂韧性和杨氏模量,然后将被测试块体材料进行脱锂处理,当脱出50% 锂时,被测试材料的硬度﹑断裂韧性和杨氏模量下降在20%内的,即为最优材料。
2.根据权利要求1所述的方法,其特征在于,所述步骤1中的含锂的基体材料与含锂的掺杂材料的摩尔比为4:0 ~ 4:1,限制在掺杂材料的固溶度内。
3.根据权利要求1所述的方法,其特征在于,该方法还包括以下步骤,当两种块体材料的硬度﹑断裂韧性和杨氏模量下降值都在20%内时,通过测试两种块体材料的导电性能,将块体材料两面镀金,利用交流阻抗谱仪和直流电阻仪测量离子电导和电子电导,得到块体材料的电导率,选择电导率高的块体材料为最优材料。
CN201710348650.9A 2017-05-17 2017-05-17 一种锂电电极材料表面固溶层材料的优化方法 Expired - Fee Related CN107170970B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710348650.9A CN107170970B (zh) 2017-05-17 2017-05-17 一种锂电电极材料表面固溶层材料的优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710348650.9A CN107170970B (zh) 2017-05-17 2017-05-17 一种锂电电极材料表面固溶层材料的优化方法

Publications (2)

Publication Number Publication Date
CN107170970A CN107170970A (zh) 2017-09-15
CN107170970B true CN107170970B (zh) 2019-09-13

Family

ID=59815296

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710348650.9A Expired - Fee Related CN107170970B (zh) 2017-05-17 2017-05-17 一种锂电电极材料表面固溶层材料的优化方法

Country Status (1)

Country Link
CN (1) CN107170970B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103633314A (zh) * 2013-10-28 2014-03-12 江苏金和源新材料有限公司 一种复合改性锂离子电池用的正极材料锰酸锂制备方法
CN105470455A (zh) * 2014-09-03 2016-04-06 中国科学院宁波材料技术与工程研究所 一种改性锂离子电池正极材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103633314A (zh) * 2013-10-28 2014-03-12 江苏金和源新材料有限公司 一种复合改性锂离子电池用的正极材料锰酸锂制备方法
CN105470455A (zh) * 2014-09-03 2016-04-06 中国科学院宁波材料技术与工程研究所 一种改性锂离子电池正极材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Charge–discharge properties of surface-modified carbon by resin coating in Li-ion battery;J.-S.Kim,et al.;《Journal of Power Sources》;20020126;标题、第178页右栏倒数第1段-第179页左栏第1段 *

Also Published As

Publication number Publication date
CN107170970A (zh) 2017-09-15

Similar Documents

Publication Publication Date Title
Zou et al. Revealing cycling rate-dependent structure evolution in Ni-rich layered cathode materials
Ran et al. Dual functions of gradient phosphate polyanion doping on improving the electrochemical performance of Ni-rich LiNi0. 6Co0. 2Mn0. 2O2 cathode at high cut-off voltage and high temperature
Liu et al. Intergranular cracking as a major cause of long-term capacity fading of layered cathodes
Huang et al. Early lithium plating behavior in confined nanospace of 3D lithiophilic carbon matrix for stable solid‐state lithium metal batteries
Lei et al. In situ Raman microscopy of individual LiNi0. 8Co0. 15Al0. 05O2 particles in a Li-ion battery composite cathode
Mistry et al. Electrochemistry coupled mesoscale complexations in electrodes lead to thermo-electrochemical extremes
CN104813520B (zh) 电极活性物质材料、电极活性物质材料的制造方法、电极、电池、以及包合物的使用方法
CN106450211B (zh) 一种表面包覆复合的富锂锰基正极材料及其制备方法
Yen et al. Effects of styrene-butadiene rubber/carboxymethylcellulose (SBR/CMC) and polyvinylidene difluoride (PVDF) binders on low temperature lithium ion batteries
Fonseca Rodrigues et al. Lithium acetylide: A spectroscopic marker for lithium deposition during fast charging of Li-ion cells
US20180083275A1 (en) Composite Powder for Use in an Anode of a Lithium Ion Battery, Method for Manufacturing a Composite Powder and Lithium Ion Battery
Wang et al. Study of the formation and evolution of solid electrolyte interface via in-situ electrochemical impedance spectroscopy
Schweidler et al. Kinetic limitations in cycled nickel-rich NCM cathodes and their effect on the phase transformation behavior
Li et al. Stabilize lithium metal anode through constructing a lithiophilic viscoelastic interface based on hydroxypropyl methyl cellulose
Hu et al. Electrochemical and mechanical stability of LixLa0. 557TiO3‐δ perovskite electrolyte at various voltages
Ren et al. Three‐dimensional tin nanoparticles embedded in carbon nanotubes on carbon cloth as a flexible anode for lithium‐ion batteries
Yang et al. Lithium compound deposition on mesocarbon microbead anode of lithium ion batteries after long-term cycling
Jiang et al. Interfacial mechanical strength enhancement for high-performance ZnS thin-film anodes
Duan et al. Quantitative Understanding of Lithium Deposition‐Stripping Process on Graphite Anodes of Lithium‐Ion Batteries
Kang et al. Multifunctional Fluoroethylene Carbonate for Improving High-Temperature Performance of LiNi0. 8Mn0. 1Co0. 1O2|| SiO x@ Graphite Lithium-Ion Batteries
Sarkar et al. Anodic interfacial evolution in extremely fast charged lithium-ion batteries
Wang et al. The effect of removing the native passivation film on the electrochemical performance of lithium metal electrodes
Zhang et al. Polyaniline/copper composite anode current collectors prepared through electrochemical polymerization for lithium‐ion batteries
Zapata Dominguez et al. (De) Lithiation and Strain Mechanism in Crystalline Ge Nanoparticles
Bal et al. Probing the Formation of Cathode-Electrolyte Interphase on Lithium Iron Phosphate Cathodes via Operando Mechanical Measurements

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190913

CF01 Termination of patent right due to non-payment of annual fee