CN107170011A - 一种机器人视觉跟踪方法及*** - Google Patents

一种机器人视觉跟踪方法及*** Download PDF

Info

Publication number
CN107170011A
CN107170011A CN201710271571.2A CN201710271571A CN107170011A CN 107170011 A CN107170011 A CN 107170011A CN 201710271571 A CN201710271571 A CN 201710271571A CN 107170011 A CN107170011 A CN 107170011A
Authority
CN
China
Prior art keywords
robot
interest
tracking
current location
tracking target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710271571.2A
Other languages
English (en)
Other versions
CN107170011B (zh
Inventor
张绍明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou core Intelligent Technology Co., Ltd.
Original Assignee
Hangzhou Fine Wood Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Fine Wood Technology Co Ltd filed Critical Hangzhou Fine Wood Technology Co Ltd
Priority to CN201710271571.2A priority Critical patent/CN107170011B/zh
Publication of CN107170011A publication Critical patent/CN107170011A/zh
Application granted granted Critical
Publication of CN107170011B publication Critical patent/CN107170011B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/25Determination of region of interest [ROI] or a volume of interest [VOI]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种机器人视觉跟踪方法及***,所述方法包括:利用深度卷积神经网络,获取跟踪目标的感兴趣区域;确定机器人的当前位置信息和机器人的姿态信息;根据所述感兴趣区域,对所述跟踪目标进行检测,确定所述跟踪目标的当前位置信息;根据所述机器人的当前位置信息、所述机器人的姿态信息和所述跟踪目标的当前位置信息,控制机器人对所述跟踪目标进行跟踪。本发明基于深度卷积神经网络和视觉SLAM技术进行目标识别和跟踪,能够提高其鲁棒性。

Description

一种机器人视觉跟踪方法及***
技术领域
本发明涉及机器人技术领域,尤其涉及一种机器人视觉跟踪方法及***。
背景技术
在机器人应用当中,如何让机器人自动的跟踪目标进行运动和活动是人工智能领域的核心问题之一。目前,基于机器视觉的机器人目标跟踪算法主要有:方法一,基于子区域匹配的目标跟踪方法;方法二,基于卡尔曼滤波和粒子滤波的滤波性跟踪算法。
好的跟踪算法应该要有很好的鲁棒性,而上述方法受外在条件和目标运动规律的限制,很难保证算法鲁棒性。其中,方法一基于颜色作为匹配特征,采用迭代的方法寻找当前帧中目标的可能位置,该方法快速高效,但是存在的问题是其对于光照条件十分敏感,当光线变化严重时,很难保证算法的鲁棒性;方法二是一种目前应用较广泛的目标跟踪方法,其基于线性高斯假设,能很有效地预测目标的线性运动。不过,当目标运动不再符合线性假设时,该方法所预测的目标位置往往会产生较大的偏差。
发明内容
针对现有技术中的缺陷,本发明提供一种机器人视觉跟踪方法及***,基于深度卷积神经网络和视觉SLAM技术进行目标识别和跟踪,能够提高其鲁棒性。
第一方面,本发明提供了一种机器人视觉跟踪方法,所述方法包括:
利用深度卷积神经网络,获取跟踪目标的感兴趣区域;
确定机器人的当前位置信息和机器人的姿态信息;
根据所述感兴趣区域,对所述跟踪目标进行检测,确定所述跟踪目标的当前位置信息;
根据所述机器人的当前位置信息、所述机器人的姿态信息和所述跟踪目标的当前位置信息,控制机器人对所述跟踪目标进行跟踪。
进一步地,所述利用深度卷积神经网络,获取跟踪目标的感兴趣区域,具体包括:
采用RGBD相机,采集场景地图中当前帧场景图像的RGB通道图像;
对所述RGB通道图像进行预处理,输出感兴趣区域图像;
将所述感兴趣区域图像输入深度卷积神经网络;
从所述深度卷积神经网络的所述感兴趣区域图像中获取所述感兴趣区域。
进一步地,所述对所述RGB通道图像进行预处理,输出感兴趣区域图像,具体包括:
对所述RGB通道图像进行卷积、非线性激活和池化,得到特征图;
将所有特征图输入到用于预测兴趣区的子网络,并对所述特征图进行池化,输出所述感兴趣区域图像。
进一步地,所述确定机器人的当前位置信息和机器人的姿态信息,具体包括:
根据所述机器人在上一时刻的位置信息,初步确定所述机器人的当前位置信息;
将所述感兴趣区域与所述语义地图进行特征匹配,进一步确定所述机器人的当前位置信息和所述机器人的姿态信息。
进一步地,所述根据所述感兴趣区域,对所述跟踪目标进行检测,确定所述跟踪目标的当前位置信息,具体包括:
识别所述感兴趣区域中包含的二维码,根据所述二维码检测所述跟踪目标;
在检测到所述跟踪目标的情况下,根据所述感兴趣区域、所述机器人的位置信息和所述机器人的姿态信息,确定所述跟踪目标的当前位置信息。
进一步地,所述根据所述感兴趣区域,对所述跟踪目标进行检测,确定所述跟踪目标的当前位置信息,具体包括:
识别所述感兴趣区域中包含的二维码,根据所述二维码检测所述跟踪目标;
在检测不到所述跟踪目标的情况下,根据所述机器人的姿态信息和所述语义地图,判断前方是否有遮挡物或路径转角;
在确定有遮挡物或路径转角的情况下,更新场景地图,再次检测所述跟踪目标,并确定所述跟踪目标的当前位置信息。
进一步地,所述根据所述机器人的当前位置信息、所述机器人的姿态信息和所述跟踪目标的当前位置信息,控制机器人对所述跟踪目标进行跟踪,具体包括:
根据所述机器人的当前位置信息、所述机器人的姿态信息和所述跟踪目标的当前位置信息,制定相应的跟踪决策;
根据所述跟踪决策,控制所述机器人对所述跟踪目标进行跟踪。
第二方面,本发明还提供了一种机器人视觉跟踪***,所述***包括:区域获取模块,位姿确定模块,目标检测模块,控制模块;所述区域获取模块与所述位姿确定模块连接,所述位姿确定模块与所述目标检测模块连接,所述目标检测模块与所述控制模块连接;
所述区域获取模块,用于利用深度卷积神经网络,获取跟踪目标的感兴趣区域;
所述位姿确定模块,用于确定机器人的当前位置信息和机器人的姿态信息;
所述目标检测模块,用于根据所述感兴趣区域,对所述跟踪目标进行检测,确定所述跟踪目标的当前位置信息;
所述控制模块,用于根据所述机器人的当前位置信息、所述机器人的姿态信息和所述跟踪目标的当前位置信息,控制机器人对所述跟踪目标进行跟踪。
进一步地,所述区域获取模块具体用于:
采用RGBD相机,采集场景地图中当前帧场景图像的RGB通道图像;
对所述RGB通道图像进行预处理,输出感兴趣区域图像;
将所述感兴趣区域图像输入深度卷积神经网络;
从所述深度卷积神经网络的所述感兴趣区域图像中获取所述感兴趣区域。
进一步地,所述区域获取模块包括图像处理单元;
所述图像处理单元,用于对所述RGB通道图像进行卷积、非线性激活和池化,得到特征图;对所述特征图进行兴趣区预测子网处理,并进行池化,输出所述感兴趣区域图像。
由上述技术方案可知,本发明提供一种机器人视觉跟踪方法及***,基于深度卷积神经网络和视觉SLAM技术进行目标识别和跟踪,能够提高其鲁棒性。
附图说明
图1示出了本发明提供的机器人视觉跟踪方法的流程示意图。
图2示出了本发明提供的机器人视觉跟踪***的结构示意图。
具体实施方式
下面将结合附图对本发明技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本发明的技术方案,因此只是作为示例,而不能以此来限制本发明的保护范围。
实施例一
图1示出了本发明实施例一提供的机器人视觉跟踪方法的流程示意图。如图1所示,所述方法包括:
步骤S1,利用深度卷积神经网络,获取跟踪目标的感兴趣区域(ROI);
步骤S2,确定机器人的当前位置信息和机器人的姿态信息;
步骤S3,根据所述感兴趣区域(ROI),对所述跟踪目标进行检测,确定所述跟踪目标的当前位置信息;
步骤S4,根据所述机器人的当前位置信息、所述机器人的姿态信息和所述跟踪目标的当前位置信息,控制机器人对所述跟踪目标进行跟踪。
本实施例的技术方案具体为:
步骤S1,利用深度卷积神经网络,获取跟踪目标的感兴趣区域。
优选地,所述步骤S1具体包括:首先,采用RGBD相机,采集场景地图中当前帧场景图像的RGB通道图像,其大小保持原图大小;其次,对所述RGB通道图像进行预处理,输出感兴趣区域图像;再次,将所述感兴趣区域图像输入深度卷积神经网络;最后,从所述深度卷积神经网络的所述感兴趣区域图像中获取所述感兴趣区域。所述感兴趣区域中包含LandMark和跟踪标识。
进一步优选地,对所述RGB通道图像进行预处理,输出感兴趣区域图像,具体包括:首先,对所述RGB通道图像进行卷积、非线性激活和池化,得到特征图,该特征图的大小与原图大小对应,根据原图大小的不同而不同,但其维数始终固定在128维;其次,将所有特征图输入到用于预测兴趣区的子网络,并对所述特征图进行池化,输出所述感兴趣区域图像。该感兴趣区域图像,包含兴趣区矩形框相对于原图的左上角坐标、该矩形框的长度和宽度、以及该感兴趣区域图像的类别。其中,所述类别包括:包含LandMark的感兴趣区域图像,和包含跟踪标识的感兴趣区域图像。
其中,深度卷积神经网络近年来在计算机视觉领域取得巨大的成果,其在目标识别、图像分类、目标检测、场景理解、图像语义分割等领域都中飞跃式的进步。经过深度卷积神经网络提取的网络特征具有层次性,越往深层,特征抽象性越强,其转换到隐式特征空间的非线性也越强,同时也具备了更好的图像信息表达能力。
基于以上,本发明实施例采用深度卷积神经网络确定跟踪目标的ROI,相比传统方法更稳定,该方法不受光照条件、目标运动规律等因素的限制,检出率高,可避免遗漏;得到ROI有助于进行进一步处理,可以减少后续处理时间,增加精度。
步骤S2,确定机器人的当前位置信息和机器人的姿态信息。
优选地,所述步骤S2具体包括:首先,根据所述机器人在上一时刻的位置信息,初步确定所述机器人的当前位置信息,即确定机器人大致的当前位置;其次,将步骤S1中从深度卷积神经网络中提取出的ROI与所述语义地图进行特征匹配,从而精确确定所述机器人的当前位置信息和所述机器人的姿态信息。
进一步优选地,将从所述ROI中提取的LandMark与所述语义地图进行特征匹配,以计算所述机器人的当前位置信息和所述机器人的姿态信息。其中,所述语义地图是预先采用视觉SLAM技术构建得到的离线地图,该地图存储于机器人中。
本步骤基于视觉SLAM技术,能够更准确地确定机器人的位置信息和姿态信息,为后续制定跟踪决策提供有效数据。
步骤S3,根据所述感兴趣区域(ROI),对所述跟踪目标进行检测,确定所述跟踪目标的当前位置信息。
优选地,在所述步骤S3中,首先需识别所述ROI中包含的跟踪标识,然后根据所述跟踪标识检测所述跟踪目标。其中,所述跟踪标识优选为二维码。
根据是否能够检测到跟踪目标,分别有以下几种处理方式:
若检测到所述跟踪目标,则根据所述ROI的坐标、所述机器人的位置信息和所述机器人的姿态信息,通过计算确定所述跟踪目标的当前位置信息。具体地,将所述ROI的坐标输入到所述RGBD相机的Depth通道中,再结合所述机器人的位置信息和所述机器人的姿态信息,进行计算。
若检测不到所述跟踪目标,则根据所述机器人的姿态信息和所述语义地图,判断前方是否有遮挡物或路径转角。
根据判断结果,若确定前方有遮挡物或路径转角,则控制机器人继续行进,并更新场景地图;在更新的场景地图中再次通过步骤S1、步骤S2以及部分S3步骤,重新识别跟踪标识和检测所述跟踪目标,检测到跟踪目标后,确定所述跟踪目标的当前位置信息,若更新后依然没有检测到跟踪目标,则发出报警指示。根据判断结果,若确定前方没有遮挡物和路径转角,则发出报警指示。
本步骤优选二维码作为作为目标跟踪标识,简单快速,识别率高,可有效地避免跟踪目标混淆。
步骤S4,根据所述机器人的当前位置信息、所述机器人的姿态信息和所述跟踪目标的当前位置信息,控制机器人对所述跟踪目标进行跟踪。
优选地,在能够检测到跟踪目标的情况下,所述步骤S4具体包括:根据前述步骤中得到的所述机器人的当前位置信息、所述机器人的姿态信息和所述跟踪目标的当前位置信息,制定相应的跟踪决策;根据所述跟踪决策,控制所述机器人对所述跟踪目标进行跟踪。
基于以上内容,本发明实施例一可以实现的技术效果为:基于深度卷积神经网络确定目标的ROI,相比传统方法更稳定,不受光照条件限制,检出率高,可避免遗漏;基于视觉SLAM技术,能够更准确地确定机器人的位置信息和姿态信息,为后续制定跟踪决策提供有效数据;采用二维码作为目标跟踪标识,简单快速,识别率高,避免跟踪目标混淆;当目标暂时遮挡的情况下,能够结合场景环境作出更合理的运行规划。因此本发明实施例一能够提高跟踪方法的鲁棒性。
实施例二
对本发明实施例一对应地,图2示出了本发明实施例提供的一种机器人视觉跟踪***的结构示意图。如图2所示,所述***包括:区域获取模块101,位姿确定模块102,目标检测模块103,控制模块104;所述区域获取模块101与所述位姿确定模块102连接,所述位姿确定模块102与所述目标检测模块103连接,所述目标检测模块103与所述控制模块104连接。
所述区域获取模块101,用于利用深度卷积神经网络,获取跟踪目标的感兴趣区域。具体用于:采用RGBD相机,采集场景地图中当前帧场景图像的RGB通道图像;对所述RGB通道图像进行预处理,输出感兴趣区域图像;将所述感兴趣区域图像输入深度卷积神经网络;从所述深度卷积神经网络的所述感兴趣区域图像中获取所述感兴趣区域。
其中,所述区域获取模块101包括图像处理单元;所述图像处理单元,用于对所述RGB通道图像进行预处理,输出所述感兴趣区域图像。具体用于:对所述RGB通道图像进行卷积、非线性激活和池化,得到特征图;将所有特征图输入到用于预测兴趣区的子网络,并对所述特征图进行池化,输出所述感兴趣区域图像。
所述位姿确定模块102,用于利用视觉SLAM技术,确定机器人的当前位置信息和机器人的姿态信息。具体用于:根据所述机器人在上一时刻的位置信息,初步确定所述机器人的当前位置信息,即确定机器人大致的当前位置;将步骤S1中从深度卷积神经网络中提取出的ROI与所述语义地图进行特征匹配,从而精确确定所述机器人的当前位置信息和所述机器人的姿态信息。
所述目标检测模块103,用于根据所述感兴趣区域,对所述跟踪目标进行检测,确定所述跟踪目标的当前位置信息。
所述控制模块104,用于根据所述机器人的当前位置信息、所述机器人的姿态信息和所述跟踪目标的当前位置信息,控制机器人对所述跟踪目标进行跟踪。具体用于:根据前述步骤中得到的所述机器人的当前位置信息、所述机器人的姿态信息和所述跟踪目标的当前位置信息,制定相应的跟踪决策;根据所述跟踪决策,控制所述机器人对所述跟踪目标进行跟踪。
基于以上内容,本发明实施例二可以达到的技术效果是:所述***基于深度卷积神经网络确定目标的ROI,相比传统方法更稳定,不受光照条件限制,检出率高,可避免遗漏;所述***基于视觉SLAM技术,能够更准确地确定机器人的位置信息和姿态信息,为后续制定跟踪决策提供有效数据;采用二维码作为目标跟踪标识,简单快速,识别率高,避免跟踪目标混淆;当目标暂时遮挡的情况下,能够结合场景环境作出更合理的运行规划。因此本发明实施例二能够提高所实施的跟踪方法的鲁棒性。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围,其均应涵盖在本发明的权利要求和说明书的范围当中。

Claims (10)

1.一种机器人视觉跟踪方法,其特征在于,所述方法包括:
利用深度卷积神经网络,获取跟踪目标的感兴趣区域;
确定机器人的当前位置信息和机器人的姿态信息;
根据所述感兴趣区域,对所述跟踪目标进行检测,确定所述跟踪目标的当前位置信息;
根据所述机器人的当前位置信息、所述机器人的姿态信息和所述跟踪目标的当前位置信息,控制机器人对所述跟踪目标进行跟踪。
2.根据权利要求1所述的机器人视觉跟踪方法,其特征在于,所述利用深度卷积神经网络,获取跟踪目标的感兴趣区域,具体包括:
采用RGBD相机,采集场景地图中当前帧场景图像的RGB通道图像;
对所述RGB通道图像进行预处理,输出感兴趣区域图像;
将所述感兴趣区域图像输入深度卷积神经网络;
从所述深度卷积神经网络的所述感兴趣区域图像中获取所述感兴趣区域。
3.根据权利要求2所述的机器人视觉跟踪方法,其特征在于,所述对所述RGB通道图像进行预处理,输出感兴趣区域图像,具体包括:
对所述RGB通道图像进行卷积、非线性激活和池化,得到特征图;
将所有特征图输入到用于预测兴趣区的子网络,并对所述特征图进行池化,输出所述感兴趣区域图像。
4.根据权利要求1所述的机器人视觉跟踪方法,其特征在于,所述确定机器人的当前位置信息和机器人的姿态信息,具体包括:
根据所述机器人在上一时刻的位置信息,初步确定所述机器人的当前位置信息;
将所述感兴趣区域与所述语义地图进行特征匹配,进一步确定所述机器人的当前位置信息和所述机器人的姿态信息。
5.根据权利要求1所述的机器人视觉跟踪方法,其特征在于,所述根据所述感兴趣区域,对所述跟踪目标进行检测,确定所述跟踪目标的当前位置信息,具体包括:
识别所述感兴趣区域中包含的二维码,根据所述二维码检测所述跟踪目标;
在检测到所述跟踪目标的情况下,根据所述感兴趣区域、所述机器人的位置信息和所述机器人的姿态信息,确定所述跟踪目标的当前位置信息。
6.根据权利要求4所述的机器人视觉跟踪方法,其特征在于,所述根据所述感兴趣区域,对所述跟踪目标进行检测,确定所述跟踪目标的当前位置信息,具体包括:
识别所述感兴趣区域中包含的二维码,根据所述二维码检测所述跟踪目标;
在检测不到所述跟踪目标的情况下,根据所述机器人的姿态信息和所述语义地图,判断前方是否有遮挡物或路径转角;
在确定有遮挡物或路径转角的情况下,更新场景地图,再次检测所述跟踪目标,并确定所述跟踪目标的当前位置信息。
7.根据权利要求5或6所述的机器人视觉跟踪方法,其特征在于,所述根据所述机器人的当前位置信息、所述机器人的姿态信息和所述跟踪目标的当前位置信息,控制机器人对所述跟踪目标进行跟踪,具体包括:
根据所述机器人的当前位置信息、所述机器人的姿态信息和所述跟踪目标的当前位置信息,制定相应的跟踪决策;
根据所述跟踪决策,控制所述机器人对所述跟踪目标进行跟踪。
8.一种机器人视觉跟踪***,其特征在于,所述***包括:区域获取模块,位姿确定模块,目标检测模块,控制模块;所述区域获取模块与所述位姿确定模块连接,所述位姿确定模块与所述目标检测模块连接,所述目标检测模块与所述控制模块连接;
所述区域获取模块,用于利用深度卷积神经网络,获取跟踪目标的感兴趣区域;
所述位姿确定模块,用于确定机器人的当前位置信息和机器人的姿态信息;
所述目标检测模块,用于根据所述感兴趣区域,对所述跟踪目标进行检测,确定所述跟踪目标的当前位置信息;
所述控制模块,用于根据所述机器人的当前位置信息、所述机器人的姿态信息和所述跟踪目标的当前位置信息,控制机器人对所述跟踪目标进行跟踪。
9.根据权利要求8所述的机器人视觉跟踪***,其特征在于,所述区域获取模块具体用于:
采用RGBD相机,采集场景地图中当前帧场景图像的RGB通道图像;
对所述RGB通道图像进行预处理,输出感兴趣区域图像;
将所述感兴趣区域图像输入深度卷积神经网络;
从所述深度卷积神经网络的所述感兴趣区域图像中获取所述感兴趣区域。
10.根据权利要求8所述的机器人视觉跟踪***,其特征在于,所述区域获取模块包括图像处理单元;
所述图像处理单元,用于对所述RGB通道图像进行卷积、非线性激活和池化,得到特征图;对所述特征图进行兴趣区预测子网处理,并进行池化,输出所述感兴趣区域图像。
CN201710271571.2A 2017-04-24 2017-04-24 一种机器人视觉跟踪方法及*** Active CN107170011B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710271571.2A CN107170011B (zh) 2017-04-24 2017-04-24 一种机器人视觉跟踪方法及***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710271571.2A CN107170011B (zh) 2017-04-24 2017-04-24 一种机器人视觉跟踪方法及***

Publications (2)

Publication Number Publication Date
CN107170011A true CN107170011A (zh) 2017-09-15
CN107170011B CN107170011B (zh) 2019-12-17

Family

ID=59812213

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710271571.2A Active CN107170011B (zh) 2017-04-24 2017-04-24 一种机器人视觉跟踪方法及***

Country Status (1)

Country Link
CN (1) CN107170011B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107742311A (zh) * 2017-09-29 2018-02-27 北京易达图灵科技有限公司 一种视觉定位的方法及装置
CN107944337A (zh) * 2017-10-13 2018-04-20 西安天和防务技术股份有限公司 一种低空目标智能跟踪方法及***、存储介质及电子终端
CN108038483A (zh) * 2017-10-13 2018-05-15 西安天和防务技术股份有限公司 一种主动式智能跟踪方法及***、存储介质及电子终端
CN108648214A (zh) * 2018-06-14 2018-10-12 广东工业大学 一种基于宽度学习滤波的视觉slam算法及***
CN108665496A (zh) * 2018-03-21 2018-10-16 浙江大学 一种基于深度学习的端到端的语义即时定位与建图方法
CN109176512A (zh) * 2018-08-31 2019-01-11 南昌与德通讯技术有限公司 一种体感控制机器人的方法、机器人及控制装置
CN109341694A (zh) * 2018-11-12 2019-02-15 哈尔滨理工大学 一种移动探测机器人的自主定位导航方法
CN110207702A (zh) * 2019-04-22 2019-09-06 北京云迹科技有限公司 目标定位的方法及装置
CN110481029A (zh) * 2019-09-05 2019-11-22 南京信息职业技术学院 一种位置随动的3d打印防翘曲温度补偿***及补偿方法
CN111325770A (zh) * 2020-02-13 2020-06-23 中国科学院自动化研究所 基于rgbd相机的目标跟随方法、***、装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102411368A (zh) * 2011-07-22 2012-04-11 北京大学 机器人的主动视觉人脸跟踪方法和跟踪***
WO2014178966A1 (en) * 2013-04-30 2014-11-06 Qualcomm Incorporated Diminished and mediated reality effects from reconstruction
CN105045263A (zh) * 2015-07-06 2015-11-11 杭州南江机器人股份有限公司 一种基于Kinect的机器人自定位方法
CN105352508A (zh) * 2015-10-22 2016-02-24 深圳创想未来机器人有限公司 机器人定位导航方法及装置
CN105729468A (zh) * 2016-01-27 2016-07-06 浙江大学 一种基于多深度摄像机增强的机器人工作台
CN106155093A (zh) * 2016-07-22 2016-11-23 王威 一种基于计算机视觉的机器人跟随人体的***和方法
CN106203432A (zh) * 2016-07-14 2016-12-07 杭州健培科技有限公司 一种基于卷积神经网显著性图谱的感兴趣区域的定位方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102411368A (zh) * 2011-07-22 2012-04-11 北京大学 机器人的主动视觉人脸跟踪方法和跟踪***
WO2014178966A1 (en) * 2013-04-30 2014-11-06 Qualcomm Incorporated Diminished and mediated reality effects from reconstruction
CN105045263A (zh) * 2015-07-06 2015-11-11 杭州南江机器人股份有限公司 一种基于Kinect的机器人自定位方法
CN105352508A (zh) * 2015-10-22 2016-02-24 深圳创想未来机器人有限公司 机器人定位导航方法及装置
CN105729468A (zh) * 2016-01-27 2016-07-06 浙江大学 一种基于多深度摄像机增强的机器人工作台
CN106203432A (zh) * 2016-07-14 2016-12-07 杭州健培科技有限公司 一种基于卷积神经网显著性图谱的感兴趣区域的定位方法
CN106155093A (zh) * 2016-07-22 2016-11-23 王威 一种基于计算机视觉的机器人跟随人体的***和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DANIEL DETONE,TOMASZ MALISIEWICZ: ""Toward Geometric Deep SLAM"", 《ARXIV》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107742311A (zh) * 2017-09-29 2018-02-27 北京易达图灵科技有限公司 一种视觉定位的方法及装置
CN107742311B (zh) * 2017-09-29 2020-02-18 北京易达图灵科技有限公司 一种视觉定位的方法及装置
CN107944337A (zh) * 2017-10-13 2018-04-20 西安天和防务技术股份有限公司 一种低空目标智能跟踪方法及***、存储介质及电子终端
CN108038483A (zh) * 2017-10-13 2018-05-15 西安天和防务技术股份有限公司 一种主动式智能跟踪方法及***、存储介质及电子终端
CN108665496A (zh) * 2018-03-21 2018-10-16 浙江大学 一种基于深度学习的端到端的语义即时定位与建图方法
CN108665496B (zh) * 2018-03-21 2021-01-26 浙江大学 一种基于深度学习的端到端的语义即时定位与建图方法
CN108648214A (zh) * 2018-06-14 2018-10-12 广东工业大学 一种基于宽度学习滤波的视觉slam算法及***
CN108648214B (zh) * 2018-06-14 2022-04-29 广东工业大学 一种基于宽度学习滤波的视觉slam算法及***
CN109176512A (zh) * 2018-08-31 2019-01-11 南昌与德通讯技术有限公司 一种体感控制机器人的方法、机器人及控制装置
CN109341694A (zh) * 2018-11-12 2019-02-15 哈尔滨理工大学 一种移动探测机器人的自主定位导航方法
CN110207702B (zh) * 2019-04-22 2022-01-07 北京云迹科技有限公司 目标定位的方法及装置
CN110207702A (zh) * 2019-04-22 2019-09-06 北京云迹科技有限公司 目标定位的方法及装置
CN110481029A (zh) * 2019-09-05 2019-11-22 南京信息职业技术学院 一种位置随动的3d打印防翘曲温度补偿***及补偿方法
CN110481029B (zh) * 2019-09-05 2021-08-20 南京信息职业技术学院 一种位置随动的3d打印防翘曲温度补偿***及补偿方法
CN111325770A (zh) * 2020-02-13 2020-06-23 中国科学院自动化研究所 基于rgbd相机的目标跟随方法、***、装置
CN111325770B (zh) * 2020-02-13 2023-12-22 中国科学院自动化研究所 基于rgbd相机的目标跟随方法、***、装置

Also Published As

Publication number Publication date
CN107170011B (zh) 2019-12-17

Similar Documents

Publication Publication Date Title
CN107170011A (zh) 一种机器人视觉跟踪方法及***
Tan et al. Color model-based real-time learning for road following
Roy et al. Active recognition through next view planning: a survey
Bertozzi et al. Pedestrian localization and tracking system with Kalman filtering
Shan et al. Real-time hand tracking using a mean shift embedded particle filter
EP1872302A1 (en) Three-dimensional road layout estimation from video sequences by tracking pedestrians
CN109325979A (zh) 基于深度学习的机器人回环检测方法
Parameswaran et al. Tunable kernels for tracking
CN108089695A (zh) 一种控制可移动设备的方法和装置
Silva et al. Monocular trail detection and tracking aided by visual SLAM for small unmanned aerial vehicles
Su et al. Adaptive colour feature identification in image for object tracking
Lee et al. Visual object detection and tracking using analytical learning approach of validity level
Dai et al. A vehicle detection method via symmetry in multi-scale windows
CN101081513A (zh) 机器人视觉***在有遮挡情况下对特定人的跟踪方法
Lee et al. A cumulative distribution function of edge direction for road-lane detection
Foedisch et al. Adaptive road detection through continuous environment learning
CN110111358B (zh) 一种基于多层时序滤波的目标跟踪方法
Valente et al. Real-time method for general road segmentation
Sun et al. Saliency-Induced Moving Object Detection for Robust RGB-D Vision Navigation Under Complex Dynamic Environments
Souza et al. Template-based autonomous navigation in urban environments
CN114155273B (zh) 一种结合历史轨迹信息的视频图像单目标跟踪方法
Vergés-Llahí et al. Object tracking system using colour histograms
Brooks et al. Gaussian process models for sensor-centric robot localisation
Wang et al. Efficient construction of topological semantic map with 3D information
Jeong et al. Local difference probability (LDP)-based environment adaptive algorithm for unmanned ground vehicle

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20180308

Address after: Hangzhou City, Zhejiang province 310000 Binjiang District Qianmo Road No. 459 building 1601 B optical center

Applicant after: Hangzhou core Intelligent Technology Co., Ltd.

Address before: Xiaoshan District of Hangzhou City, Zhejiang province 310000 Ning Ning Wai Street Jiangning Road No. 27 Building 1 Building 6 layer

Applicant before: Hangzhou fine wood technology Co., Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant