CN107168104B - 基于观测器的纯电动智能汽车纵向车速控制方法 - Google Patents

基于观测器的纯电动智能汽车纵向车速控制方法 Download PDF

Info

Publication number
CN107168104B
CN107168104B CN201710483937.2A CN201710483937A CN107168104B CN 107168104 B CN107168104 B CN 107168104B CN 201710483937 A CN201710483937 A CN 201710483937A CN 107168104 B CN107168104 B CN 107168104B
Authority
CN
China
Prior art keywords
torque
vehicle
speed
driving
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710483937.2A
Other languages
English (en)
Other versions
CN107168104A (zh
Inventor
胡云峰
韩振宇
朱大吉
陈虹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201710483937.2A priority Critical patent/CN107168104B/zh
Publication of CN107168104A publication Critical patent/CN107168104A/zh
Application granted granted Critical
Publication of CN107168104B publication Critical patent/CN107168104B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种基于观测器的纯电动智能汽车纵向车速控制方法,属于汽车控制技术领域。本发明的目的是利用基于观测器的滚动时域优化控制算法来设计控制器,通过控制器优化出驾驶员需求的力矩,然后进行驱动和制动力矩分配,从而实现纵向车速有效控制的基于观测器的纯电动智能汽车纵向车速控制方法。本发明实现Matlab/Simulink和AMESim的联合仿真,在AMESim界面中添加与simulink通信的接口模块,经过***编译之后,AMESim中的模型信息以S‑function的形式保留在Simulink中,从而实现两者的联合仿真与通信。本发明主要针对纯电动智能汽车纵向车速控制问题,针对***的重要参数设计观测器,滚动时域优化控制算法能够很好的完成在线优化求解,同时能够显性的处理约束。

Description

基于观测器的纯电动智能汽车纵向车速控制方法
技术领域
本发明属于汽车控制技术领域。
背景技术
为了减少交通事故的发生,降低内燃机汽车对能源消耗及环境污染的影响,伴随着互联网、信息、电子和智能技术的发展,汽车的智能化及电动化技术已经成为解决上述问题的有效途径。近年来,大众、宝马、奥迪等知名汽车制造企业以及百度、谷歌等著名互联网企业,都在不断的增加对智能驾驶汽车领域的人力、财力的投入,以抢占智能驾驶的前沿技术。智能驾驶技术的发展必然会引领汽车行业新一轮的重大变革。纵向车速控制作为纯电动智能汽车的底层控制算法,其控制效果直接影响着智能汽车的安全性和乘车舒适性等性能。对于纯电动智能汽车,由于电机的响应速度快,电机的扭矩和转速容易获取,这为纯电动智能汽车的纵向车速控制提供了良好的基础条件。针对于集中式纯电动智能汽车纵向车速控制,主要有以下问题:
1. 智能汽车纵向车速的控制,即通过设计控制器合理的产生驾驶需求力矩(包括驱动力矩和制动力矩),从而实现纵向车速的跟踪控制。
2.纯电动智能汽车纵向车速控制***具有非线性。同时,控制器的输出要满足执行器电机和制动器的硬性约束,即驱动和制动力矩信号不能超过电机的实际最大输出力矩和制动器的最大制动力矩。
3.电动汽车需要动力电源,现在常用的是锂电池组,来给电机供电,电机的供电电压也影响着电机的最大输出力矩,因此在考虑电机的最大输出力矩时也必须考虑电池组输出电压的影响,即电机实际最大输出力矩是一个变约束。
4.***参数的不可测,整车质量作为影响***模型的重要参数,其随着乘车人的多少及体重而改变,而其并不可测。
发明内容
本发明的目的是利用基于观测器的滚动时域优化控制算法来设计控制器,通过控制器优化出驾驶员需求的力矩,然后进行驱动和制动力矩分配,从而实现纵向车速有效控制的基于观测器的纯电动智能汽车纵向车速控制方法。
本发明实现Matlab/Simulink和AMESim的联合仿真,
①必须设置PC电脑的环境变量,让两者相互关联;
②在AMESim界面中添加与simulink通信的接口模块,将Matlab/Simulink和AMESim间需要通信的变量连接到这个模块;
③经过***编译之后,AMESim中的模型信息以S-function的形式保留在Simulink中,从而实现两者的联合仿真与通信。
本发明的步骤是:
一、集中式电动汽车仿真模型搭建:
电动汽车仿真模型包括电驱动模块、传动模块、轮胎模块以及车辆纵向动力学,整车模型参数如表一
表一电动汽车参数表
Figure 226375DEST_PATH_IMAGE001
二、基于观测器的滚动时域优化控制器:
2.1面向控制器设计模型搭建
2.1.1车辆纵向动力学模型
在不考虑横向力的情况下,车辆坡路上行驶纵向受力根据牛顿第二定律有:
Figure 825983DEST_PATH_IMAGE002
(1)
其中:
Figure 433682DEST_PATH_IMAGE003
为行车质量,
Figure 984487DEST_PATH_IMAGE004
为驱动力、
Figure 968624DEST_PATH_IMAGE005
为行驶阻力;
Figure 422739DEST_PATH_IMAGE005
包括空气阻力
Figure 466918DEST_PATH_IMAGE006
、路面摩擦阻力
Figure 6484DEST_PATH_IMAGE007
、坡度阻力
Figure 794311DEST_PATH_IMAGE008
及机械制动力;
车重
Figure 837354DEST_PATH_IMAGE009
与行车质量
Figure 52434DEST_PATH_IMAGE003
关系用式下式表示:
Figure 813717DEST_PATH_IMAGE010
(2)
其中
Figure 405235DEST_PATH_IMAGE011
为一个车轮的惯量,
Figure 66899DEST_PATH_IMAGE012
为车轮半径;
在坡路上行驶的汽车受到坡度阻力
Figure 452881DEST_PATH_IMAGE008
为:
Figure 967038DEST_PATH_IMAGE013
(3)
其中
Figure 831089DEST_PATH_IMAGE014
为重力加速度;
路面上行驶的汽车受到的空气阻力
Figure 114303DEST_PATH_IMAGE006
为:
Figure 671186DEST_PATH_IMAGE015
(4)
其中
Figure 407061DEST_PATH_IMAGE016
为空气黏性密度,
Figure 74803DEST_PATH_IMAGE017
为风阻系数,
Figure 212523DEST_PATH_IMAGE018
为车辆的迎风面积,
Figure 205887DEST_PATH_IMAGE019
为风速,
Figure 662014DEST_PATH_IMAGE020
为车速;
忽略汽车风速影响,故空气阻力表示为:
Figure 133446DEST_PATH_IMAGE021
(5)
摩擦阻力
Figure 125673DEST_PATH_IMAGE007
是道路与轮胎间的摩擦力,通过下式:
Figure 24359DEST_PATH_IMAGE022
(6)
其中
Figure 734826DEST_PATH_IMAGE023
为路面摩擦系数,
Figure 9950DEST_PATH_IMAGE024
为粘滞摩擦系数;
机械制动力
Figure 856683DEST_PATH_IMAGE025
Figure 191849DEST_PATH_IMAGE026
为制动力矩;
得到车辆受到的行驶阻力为:
Figure 124033DEST_PATH_IMAGE027
(7);
2.1.2传动系建模
2.1.2.1离合器
由刚性假设,其传递的转矩为:
Figure 937268DEST_PATH_IMAGE028
(8)
其中
Figure 402623DEST_PATH_IMAGE029
为电机输出转矩,
Figure 377532DEST_PATH_IMAGE030
为离合器输出转矩,
Figure 62591DEST_PATH_IMAGE031
为电机输出转速,
Figure 413938DEST_PATH_IMAGE032
为离合器输出转速;
2.1.2.2 变速器
变速器输出转矩
Figure 235264DEST_PATH_IMAGE033
建模如下式:
Figure 646653DEST_PATH_IMAGE034
(9)
其中
Figure 553429DEST_PATH_IMAGE035
为扭转阻尼系数,
Figure 708467DEST_PATH_IMAGE036
为输出转速,
Figure 649878DEST_PATH_IMAGE037
为传动比,
Figure 730705DEST_PATH_IMAGE038
为档位传动比,
Figure 390356DEST_PATH_IMAGE039
为主减速比;
2.1.2.3驱动轴
Figure 83506DEST_PATH_IMAGE040
(10)
其中
Figure 145003DEST_PATH_IMAGE041
为驱动轴输出,
Figure 898195DEST_PATH_IMAGE042
为驱动轴输出转速;
将式8和式9代入式10整理得:
Figure 513984DEST_PATH_IMAGE043
(11)
Figure 276404DEST_PATH_IMAGE044
驱动力,用
Figure 926828DEST_PATH_IMAGE045
表示车轮半径,则由力和力矩之间的关系
Figure 850922DEST_PATH_IMAGE046
,同时车速
Figure 485165DEST_PATH_IMAGE047
,故结合式11得:
Figure 18652DEST_PATH_IMAGE048
(12)
其中车轮半径
Figure 789162DEST_PATH_IMAGE045
由下式求得,式中
Figure 884157DEST_PATH_IMAGE049
为轮毂半径,
Figure 474539DEST_PATH_IMAGE050
为轮胎扁平比,
Figure 578761DEST_PATH_IMAGE051
为轮胎宽度;
Figure 203777DEST_PATH_IMAGE052
(13);
2.2 联合观测器:
2.2.1递归最小二乘法质量辨识
结合式1和式7,得到如下等式:
Figure 735253DEST_PATH_IMAGE053
Figure 812930DEST_PATH_IMAGE054
(14)
同时结合式(2)、(3)、(4)、(5)、(6)整理成最小二乘格式,驱动轴力矩估计值
Figure 455264DEST_PATH_IMAGE055
,转化为驱动力
Figure 934787DEST_PATH_IMAGE056
,得
Figure 870120DEST_PATH_IMAGE057
Figure 700672DEST_PATH_IMAGE058
(15)
其中
Figure 881118DEST_PATH_IMAGE059
表示车辆纵向加速度,
Figure 746306DEST_PATH_IMAGE060
等效旋转质量,其值
Figure 354005DEST_PATH_IMAGE061
,其中
Figure 406274DEST_PATH_IMAGE062
为一个车轮的惯量,
Figure 390411DEST_PATH_IMAGE063
为车轮半径;
Figure 110105DEST_PATH_IMAGE064
表示包含驱动轴估计量***输出量,
Figure 888705DEST_PATH_IMAGE065
表示可获取的数据向量,
Figure 428271DEST_PATH_IMAGE066
为待辨识量,
Figure 449054DEST_PATH_IMAGE067
为***的过程白噪声;
根据最小二乘法原理,分别定义K-1、K时刻***辨识得到的整车质量为
Figure 23255DEST_PATH_IMAGE068
Figure 972757DEST_PATH_IMAGE069
,则得到质量辨识模型:
Figure 999619DEST_PATH_IMAGE070
(16)
式中,
Figure 325558DEST_PATH_IMAGE071
为第K时刻的遗忘因子;
遗忘因子
Figure 754265DEST_PATH_IMAGE072
规律为:
Figure 874668DEST_PATH_IMAGE073
(17);
2.2.2驱动轴力矩观测器
设驱动轴两端转速可测,则搭建驱动轴力矩生成模型:
Figure 388826DEST_PATH_IMAGE074
(18)
其中
Figure 252877DEST_PATH_IMAGE075
为开环计算驱动轴力矩,
Figure 801670DEST_PATH_IMAGE076
Figure 591509DEST_PATH_IMAGE077
为驱动轴两端转速,
Figure 327384DEST_PATH_IMAGE076
为变速箱输出转速,
Figure 260705DEST_PATH_IMAGE077
为车轮转速,
Figure 398425DEST_PATH_IMAGE078
为驱动轴等效刚度系数,
Figure 126209DEST_PATH_IMAGE079
为驱动轴等效阻尼系数;
得到等效的车轮动力学模型:
Figure 349380DEST_PATH_IMAGE080
(19)
其中
Figure 86392DEST_PATH_IMAGE081
为车轮转速估计值,
Figure 78619DEST_PATH_IMAGE082
为驱动力矩,
Figure 711726DEST_PATH_IMAGE083
为阻力矩,
Figure 687772DEST_PATH_IMAGE084
为驱动半轴末端的转动惯量,
Figure 195851DEST_PATH_IMAGE085
(20)
驱动力矩通过阻力
Figure 308164DEST_PATH_IMAGE086
数学模型求得,即
Figure 377751DEST_PATH_IMAGE087
,结合式7得
Figure 309935DEST_PATH_IMAGE088
(21)
其中
Figure 388749DEST_PATH_IMAGE089
表示坡度阻力矩,
Figure 89989DEST_PATH_IMAGE090
表示空气阻力矩,
Figure 596057DEST_PATH_IMAGE091
表示摩擦阻力矩,
Figure 15537DEST_PATH_IMAGE092
为机械制动力矩,
Figure 632463DEST_PATH_IMAGE093
表示行车阻力矩;驱动轴力矩估计器时用
Figure 453788DEST_PATH_IMAGE094
代替
Figure 130757DEST_PATH_IMAGE093
定义偏差
Figure 559506DEST_PATH_IMAGE095
,即车轮转速估计值减去实际值,对偏差
Figure 714544DEST_PATH_IMAGE096
求导,同时结合式19和式21得:
Figure 655955DEST_PATH_IMAGE097
(22)
取控制输入
Figure 238246DEST_PATH_IMAGE098
为如下形式:
Figure 897898DEST_PATH_IMAGE099
(23)
其中,
Figure 591047DEST_PATH_IMAGE100
为虚拟控制输入,利用反馈线性化方法,式22线性化形式
Figure 386965DEST_PATH_IMAGE101
(24)
将虚拟控制输入设计成PI形式,即:
Figure 140157DEST_PATH_IMAGE102
(25)
其中
Figure 21526DEST_PATH_IMAGE103
Figure 783945DEST_PATH_IMAGE104
为比例系数,
Figure 932905DEST_PATH_IMAGE105
为积分系数;
联合式23和25,得到控制器:
Figure 122578DEST_PATH_IMAGE106
(26)
定义Lyapunov函数如式(27):
Figure 225663DEST_PATH_IMAGE107
(27)
对两侧求导得:
Figure 260615DEST_PATH_IMAGE108
(28)
将式(25)带入上式并整理得:
Figure 296704DEST_PATH_IMAGE109
(29)
因此有
Figure 391699DEST_PATH_IMAGE110
时,故而
因此驱动轴力矩为:
Figure 86303DEST_PATH_IMAGE112
(30)。
本发明基于观测器的纵向车速控制器:
电机力矩和机械制动力矩之间在数值上通过传动比进行转化,即:
Figure 711319DEST_PATH_IMAGE113
(31)
即制动力矩和驱动力矩统一表示为
Figure 242794DEST_PATH_IMAGE114
通过式(1)、(7)和(12)整理得到如下关系式:
Figure 819007DEST_PATH_IMAGE115
(32)
其中选取纵向车速为状态量,即
Figure 461341DEST_PATH_IMAGE116
,选取驾驶需求为控制变量,即
Figure 940864DEST_PATH_IMAGE117
,同样选取纵向车速作为输出量,即
Figure 377661DEST_PATH_IMAGE118
;通过欧拉方法对状态空间方程进行离散化,用
Figure 208214DEST_PATH_IMAGE119
表示采样步长,则在
Figure 388660DEST_PATH_IMAGE120
时刻,离散化得到***离散模型如下:
Figure 988268DEST_PATH_IMAGE121
(33)
Figure 595967DEST_PATH_IMAGE122
为输出系数矩阵,定义***的预测时域为
Figure 648237DEST_PATH_IMAGE123
,控制时域为
Figure 897953DEST_PATH_IMAGE124
,需要满足
Figure 585024DEST_PATH_IMAGE125
,那么在
Figure 629203DEST_PATH_IMAGE120
时刻的预测输出序列表示为:
Figure 168769DEST_PATH_IMAGE126
(34)
同时,k时刻的优化控制输入序列
Figure 691017DEST_PATH_IMAGE127
表示为:
Figure 265218DEST_PATH_IMAGE128
(35)
在采样时刻
Figure 214719DEST_PATH_IMAGE120
,状态量的值为
Figure 507160DEST_PATH_IMAGE129
,推导出状态量和输出量的预测过程如公式(19)和(20)所示:
Figure 567520DEST_PATH_IMAGE130
(36)
Figure 996227DEST_PATH_IMAGE131
(37)
同时,参考输入为期望的车速
Figure 382209DEST_PATH_IMAGE132
,故得到参考输入序列:
Figure 394903DEST_PATH_IMAGE133
(38)
在控制器设计时需要考虑如下约束:
Figure 258953DEST_PATH_IMAGE134
(39)
同时为了保障纵向车速的跟踪,同时提高乘坐的舒适性,因此控制器选取性能指标目标为:
Figure 542167DEST_PATH_IMAGE135
(40)
其中
Figure 99050DEST_PATH_IMAGE136
进而描述为(41)式的优化问题,即使目标函数
Figure 834925DEST_PATH_IMAGE137
值最小:
Figure 768246DEST_PATH_IMAGE138
(41)
式(41)中,
Figure 905966DEST_PATH_IMAGE139
反映了实际输出车速与期望车速的偏差,
Figure 633751DEST_PATH_IMAGE140
反映了驾驶需求的强弱,
Figure 856922DEST_PATH_IMAGE141
Figure 328355DEST_PATH_IMAGE142
分别为输出信号序列和控制信号序列的权重因子;使用NAG求解41式的优化问题,优化出***的控制输入序列,然后将序列中第一个元素
Figure 819117DEST_PATH_IMAGE143
作用于***;下一时刻,重复上述的优化求解过程,即对自主驾驶纵向车速的闭环优化控制,
Figure 983382DEST_PATH_IMAGE144
(42);
需要对优化出的力矩进行力矩分配将驾驶员力矩需求中大于0 的部分化为驱动力矩,小于等于0 的部分化为制动力矩,即
Figure 693849DEST_PATH_IMAGE145
(43)
其中
Figure 437814DEST_PATH_IMAGE146
为优化的驾驶力矩需求,
Figure 815705DEST_PATH_IMAGE147
为电机期望力矩,
Figure 619713DEST_PATH_IMAGE148
为制动力矩,将制动力矩通过下式转化为机械制动信号
Figure 817477DEST_PATH_IMAGE149
Figure 630712DEST_PATH_IMAGE150
(44)。
本发明主要针对纯电动智能汽车纵向车速控制问题,针对***的重要参数设计观测器,滚动时域优化控制算法能够很好的完成在线优化求解,同时能够显性的处理约束。具体的说通过建立纵向车速控制***的机理模型,得到驾驶力矩需求的预测方程,然后构造代价函数,同时充分考虑约束条件,优化求解得到最优的驾驶员力矩需求。
本发明的有益效果是:
1.在纵向车速控制方面,传统的控制算法多数都是不基于模型的,而在实际道路上行驶的车辆工况复杂多变,很难找到一组控制器参数满足所有工况。同时将估计器加入到控制器设计过程中,抑制了车辆质量这一参数对汽车纵向车速控制的影响,基于观测器的滚动时域优化控制算法在控制器设计时基于***的机理模型,将观测的车辆质量等一些车辆运行工况信息直接引入机理模型,从而使车辆纵向车速控制更为精确。
2.本发明中设计的纵向车速控制***是一个非线性***,并且考虑到了电机、电池组和制动器的执行器硬性约束,传统的控制算法并不能有效的处理***的约束,而滚动时域优化控制算法能有效地处理带约束的控制问题,在求解时直接将约束条件编译到simulink中的S_function中在线求解。
附图说明
图1是实施本发明所述的基于滚动时域优化纵向车速控制框图;
图2是实施本发明所述的集中式电动汽车AMESim整车模型;
图3是本发明所述的车辆坡路上行驶纵向受力示意图;
图4 是本发明所述驱动轴力矩估计方案;
图5是本发明所述电机最大输出转矩MAP图;
图6是本发明中设计扭基于滚动优化算法的纵向车速控制器设计流程图;
图7是本发明进行控制器效果验证时采用的复杂城市工况的期望车速,横坐标为时间,单位s,纵坐标是纵向车速,单位为m/s;
图8是本发明所述的在平路工况下的仿真结果,从上到下依次为质量辨识对比曲线、驱动轴力矩估计对比曲线和车速跟踪曲线。其中在质量辨识对比曲线中实线是实际车辆质量,虚线是辨识质量。力矩对比曲线中虚线为估计力矩,实线为实际力矩。实际车速和期望车速对比图中,虚线为实际车速,实线为期望车速;
图9是本发明所述的在恒定大坡度工况下的仿真结果,从上到下依次为质量辨识对比曲线、驱动轴力矩估计对比曲线和车速跟踪曲线。其中在质量辨识对比曲线中实线是实际车辆质量,虚线是辨识质量。力矩对比曲线中虚线为估计力矩,实线为实际力矩。实际车速和期望车速对比图中,虚线为实际车速,实线为期望车速;
图10 是本发明所述的变坡度仿真时的道路坡度变化情况;
图11是本发明所述的在接近真实路面变坡度工况下的仿真结果,从上到下依次为质量辨识对比曲线、驱动轴力矩估计对比曲线和车速跟踪曲线。其中在质量辨识对比曲线中实线是实际车辆质量,虚线是辨识质量。力矩对比曲线中虚线为估计力矩,实线为实际力矩。实际车速和期望车速对比图中,虚线为实际车速,实线为期望车速。
具体实施方式
本发明中基于数据驱动预测控制的电动汽车扭矩优化方法实施的控制框图如图1所示,图中车速优化控制器是在Simulink中搭建的,控制器的输入为期望车速,实际车速作为可测信号,质量和坡度作为可测干扰实时反馈给控制器,Tmax是电机最大驱动力矩,它是由电机的机械特性和电池的输出电压共同决定的,既体现了电机本身的执行器硬性约束条件,又体现出了随着电池放电时间增加电压减小对整车性能的影响。整车控制器得到的驱动力矩必须小于等于Tmax,因此Tmax是作为约束给到控制器的。图2中集中式纯电动汽车模型是在AMESim中搭建的,用来模拟实车的运行。控制器优化驾驶需求力矩通过力矩分配为驱动和制动力矩信号分别给到电机和制动模块,控制车辆的运行,而车辆的实际车速作为反馈信号反馈给控制器。
本发明的控制目标是,纵向车速控制器根据实时反馈回来的实际车速与期望车速信号对比,在满足约束条件前提下,优化得到驾驶需求力矩,然后通过力矩分配,从而得到驱动力矩和制动力矩信号,并给到整车模型中的电机和制动模块,控制车辆的运行,最终让实际车速跟踪上期望车速。
本发明提供了一套基于以上运行原理和运行过程的装置。即基于PC机的离线电动汽车扭矩优化设计试验平台。搭建以及运行过程如下:
软件选择
该控制***的被控对象和控制器的仿真模型分别通过软件Matlab/Simulink和AMESim进行搭建,软件版本分别为Matlab R2009a和AMESim R10,求解器分别选择为ode3和Euler。仿真步长为定步长,步长选择为0.01s。
本发明要实现Matlab/Simulink和AMESim的联合仿真。
①首先必须按照要求设置PC电脑的环境变量,让两者相互关联。
②然后在AMESim界面中添加与simulink通信的接口模块,将Matlab/Simulink和AMESim间需要通信的变量连接到这个模块;
③最后经过***编译之后,AMESim中的模型信息以S-function的形式保留在Simulink中,从而实现两者的联合仿真与通信。
在运行Simulink仿真模型时,AMESim模型也在同时进行计算和求解。仿真过程中两者之间不断进行数据的交换。如果对AMESim中的模型结构或者参数设置进行了修改,则需要重新编译。值得注意的是,两者的仿真步长必须一致。
本发明步骤是:
一、集中式电动汽车仿真模型搭建:
如图2所示,整个电动汽车仿真模型包括电驱动模块、传动模块、轮胎模块以及车辆纵向动力学等几个部分,整车模型参数如表一所示。
表一电动汽车参数表
Figure 597531DEST_PATH_IMAGE001
电驱动***包括电池部分和电机部分,纯电动汽车的电池组是锂电池组,由多个单体电池串并联构成。电池组对外输出的终端电压为单个电池输出电压和,电池***输出终端电压即电池组提供给电机的电压;本发明中采用的是永磁同步电机。
传动***包括变速器,差速器和驱动轴三个部分。电机输出的动力经由变速器通过不同的齿轮半径产生不同速比从而进行减速增矩,本发明忽略了车辆的侧向动态,那么差速器两侧的输出转速相同,即差速器不起作用,差速器输出转速即为驱动轴的输入转速,而驱动轴的输出转速与车轮转速相等,轴上传递的力矩通过驱动轴两端转速差计算。电机输出的力矩经由变速器通过不同的齿轮半径产生不同速比从而进行减速增矩,本模型主减速比为2.2786,档位减速比为3.9431,即传动比为8.6847。
车辆纵向动力学部分,其中考虑了车辆在行驶过程中受到驱动力,制动力和行驶阻力的作用,其中行驶阻力包括空气阻力,滚动阻力和摩擦阻力。在这个模块中可以设置车辆的整体质量、坡度、风速等参数。
二、基于观测器的滚动时域优化控制器:
2.1面向控制器设计模型搭建
2.1.1车辆纵向动力学模型
为了实现纵向车速控制和车辆质量参数估计的研究,需要建立车辆纵向动力学模型。在不考虑横向力的情况下,车辆坡路上行驶纵向受力示意图如图3所示。图3中
Figure 103598DEST_PATH_IMAGE151
为道路坡度,
Figure 21614DEST_PATH_IMAGE003
为行车质量,则重力为
Figure 638540DEST_PATH_IMAGE152
Figure 459865DEST_PATH_IMAGE004
为驱动力、
Figure 136834DEST_PATH_IMAGE006
为空气阻力以,
Figure 43610DEST_PATH_IMAGE007
为路面摩擦阻力。根据牛顿第二定律有:
Figure 933069DEST_PATH_IMAGE002
(1)
其中:
Figure 140059DEST_PATH_IMAGE003
为行车质量,
Figure 722350DEST_PATH_IMAGE004
为驱动力、
Figure 382002DEST_PATH_IMAGE005
为行驶阻力;
Figure 75151DEST_PATH_IMAGE005
包括空气阻力
Figure 871069DEST_PATH_IMAGE006
、路面摩擦阻力
Figure 122797DEST_PATH_IMAGE007
、坡度阻力
Figure 269744DEST_PATH_IMAGE008
及机械制动力。
需要指出的是车重
Figure 766585DEST_PATH_IMAGE009
与行车质量
Figure 417009DEST_PATH_IMAGE003
并不相等,计算行车质量时受到行驶方向上惯性效果的影响,其关系可以近似用式下式表示:
Figure 341102DEST_PATH_IMAGE010
(2)
其中
Figure 709767DEST_PATH_IMAGE011
为一个车轮的惯量,
Figure 10298DEST_PATH_IMAGE012
为车轮半径;驱动力/制动力
Figure 780808DEST_PATH_IMAGE004
在下一小节做详细介绍,下面对车辆行驶过程中受到的行驶阻力
Figure 610224DEST_PATH_IMAGE005
进行分析介绍。
在坡路上行驶的汽车受到坡度阻力
Figure 731764DEST_PATH_IMAGE008
为:
Figure 68942DEST_PATH_IMAGE013
(3)
其中
Figure 428379DEST_PATH_IMAGE014
为重力加速度;
Figure 959854DEST_PATH_IMAGE009
为车重。考虑到AMESim模型中坡度
Figure 37532DEST_PATH_IMAGE153
为按百分比计算的道路坡度,为了后续仿真实验时坡度形式的统一,这里我们统一按百分制计算坡度,那么需要转化
Figure 945445DEST_PATH_IMAGE154
路面上行驶的汽车受到的空气阻力
Figure 424968DEST_PATH_IMAGE006
为:
Figure 127345DEST_PATH_IMAGE015
(4)
其中
Figure 692318DEST_PATH_IMAGE016
为空气黏性密度,
Figure 872764DEST_PATH_IMAGE017
为风阻系数,
Figure 472372DEST_PATH_IMAGE018
为车辆的迎风面积,
Figure 578606DEST_PATH_IMAGE019
为风速,
Figure 896455DEST_PATH_IMAGE020
为车速;这里由于空气阻力相对于坡度阻力和摩擦阻力数值较小,然后在城市中行驶的汽车风速相对于车速又较小,在控制器设计时忽略了风速的影响,故空气阻力表示为:
Figure 615013DEST_PATH_IMAGE021
(5)
摩擦阻力
Figure 334707DEST_PATH_IMAGE007
是道路与轮胎间的摩擦力,通过下式:
Figure 113307DEST_PATH_IMAGE022
(6)
其中
Figure 918452DEST_PATH_IMAGE023
为路面摩擦系数,
Figure 440700DEST_PATH_IMAGE024
为粘滞摩擦系数;
机械制动力
Figure 749322DEST_PATH_IMAGE025
Figure 964403DEST_PATH_IMAGE026
为制动力矩;
得到车辆受到的行驶阻力为:
Figure 725685DEST_PATH_IMAGE027
(7);
2.1.2传动系建模
建模时对离合器、传动轴、驱动轴进行刚性假设,同时忽略了主减速器和档位变速器之间传递的力矩损失。
2.1.2.1离合器
由刚性假设,其传递的转矩为:
Figure 815739DEST_PATH_IMAGE028
(8)
其中
Figure 978867DEST_PATH_IMAGE029
为电机输出转矩,
Figure 99270DEST_PATH_IMAGE030
为离合器输出转矩,
Figure 879007DEST_PATH_IMAGE031
为电机输出转速,
Figure 743057DEST_PATH_IMAGE032
为离合器输出转速。
2.1.2.2 变速器
这里由于我们忽略了主减速器和档位变速器之间传递的力矩损失,故在建模时我们对其进行了统一,变速器输出转矩
Figure 26271DEST_PATH_IMAGE033
建模如下式:
Figure 583155DEST_PATH_IMAGE034
(9)
其中
Figure 319029DEST_PATH_IMAGE035
为扭转阻尼系数,
Figure 252350DEST_PATH_IMAGE036
为输出转速,扭转阻尼系数和输出转速的乘积用于近似摩擦力矩损失,
Figure 124491DEST_PATH_IMAGE037
为传动比,
Figure 616390DEST_PATH_IMAGE038
为档位传动比,
Figure 839561DEST_PATH_IMAGE039
为主减速比。
2.1.2.3驱动轴
Figure 310994DEST_PATH_IMAGE040
(10)
其中
Figure 303221DEST_PATH_IMAGE041
为驱动轴输出,
Figure 201907DEST_PATH_IMAGE042
为驱动轴输出转速;即为车轮转速。
将式8和式9代入式10整理得:
Figure 912374DEST_PATH_IMAGE043
(11)
Figure 921918DEST_PATH_IMAGE044
驱动力,用
Figure 299810DEST_PATH_IMAGE045
表示车轮半径,则由力和力矩之间的关系
Figure 103818DEST_PATH_IMAGE046
,同时车速
Figure 301581DEST_PATH_IMAGE047
,故结合式11得:
Figure 347772DEST_PATH_IMAGE048
(12)
其中车轮半径
Figure 580170DEST_PATH_IMAGE045
由下式求得,式中
Figure 555079DEST_PATH_IMAGE049
为轮毂半径,
Figure 505718DEST_PATH_IMAGE050
为轮胎扁平比,
Figure 857065DEST_PATH_IMAGE051
为轮胎宽度;
Figure 943969DEST_PATH_IMAGE052
(13);
2.2 联合观测器:
为了准确估计车辆质量,我们设计质量和驱动轴力矩联合观测器。我们考虑到质量和驱动轴力矩之间存在耦合关系,即估计质量是需要用到驱动轴力矩信息,估计力矩是需要使用车辆质量信息。因而在确定估计方案时,分析两个待观测量各自的特性,汽车的质量的改变主要是由乘车人数、油箱中油的多少以及装载货物的多少引起,质量在车辆行驶过程中相对稳定,因而车辆质量是慢变量,可以用辨识的方法进行辨识,同时考虑这一特性用当前时刻的质量辨识结果对下一时刻的力矩进行估计对力矩估计结果产生影响很小,这样可以提高算法的效率,同时也解决了二者之间的耦合关系。
2.2.1递归最小二乘法质量辨识
分析车辆在坡路上行驶的动力学模型,结合式1和式7,得到如下等式:
Figure 355359DEST_PATH_IMAGE053
Figure 262135DEST_PATH_IMAGE054
(14)
同时结合式(2)、(3)、(4)、(5)、(6)整理成最小二乘格式,同时结合分析,估计质量时用到驱动轴力矩估计值
Figure 417173DEST_PATH_IMAGE055
,转化为驱动力
Figure 358584DEST_PATH_IMAGE056
,得
Figure 439411DEST_PATH_IMAGE057
Figure 833483DEST_PATH_IMAGE058
(15)
其中
Figure 526632DEST_PATH_IMAGE059
表示车辆纵向加速度,
Figure 588129DEST_PATH_IMAGE060
等效旋转质量,其值
Figure 341322DEST_PATH_IMAGE061
,其中
Figure 488269DEST_PATH_IMAGE062
为一个车轮的惯量,
Figure 719530DEST_PATH_IMAGE063
为车轮半径;
Figure 635534DEST_PATH_IMAGE064
表示包含驱动轴估计量***输出量,
Figure 559627DEST_PATH_IMAGE065
表示可获取的数据向量,
Figure 193871DEST_PATH_IMAGE066
为待辨识量,
Figure 727358DEST_PATH_IMAGE067
为***的过程白噪声;需要指出的是在辨识车辆质量过程中我们将驱动轴力矩当成可测量,那么根据力和力矩之间的关系,驱动力也是可测量,同时认为纵向加速度和机械制动力矩为实时可测参数。
根据前面介绍的最小二乘法原理,分别定义K-1、K时刻***辨识得到的整车质量为
Figure 232289DEST_PATH_IMAGE068
Figure 592863DEST_PATH_IMAGE069
,则得到质量辨识模型:
Figure 448824DEST_PATH_IMAGE070
(16)
式中,
Figure 287467DEST_PATH_IMAGE071
为第K时刻的遗忘因子。
车辆质量是慢变量,由于设定的质量初始值与实际质量可能存在较大的偏差,因此在辨识刚开始时,需要设定一个较大的信任度衰减,即此时选取的遗忘因子数值较小,随着辨识的不断进行,辨识结果会收敛到实际车辆质量附近,那么就需要一个较大的遗忘因子,以获取较小的信任度衰减,故本文中选取的遗忘因子
Figure 912483DEST_PATH_IMAGE072
规律为:
Figure 443959DEST_PATH_IMAGE073
(17);
2.2.2 驱动轴力矩观测器
本技术设计了闭环驱动轴力矩观测器,通过力矩生成模型开环计算结果,然后通过车速偏差对开环计算结果进行矫正,从而将驱动轴力矩观测问题转化为转速跟踪问题。估计方案如图4所示。考虑到负载力矩的非线性的特点,结合反馈线性化方法的优势,故采用反馈线性化方法进行力矩观测器设计。
设驱动轴两端转速可测,则搭建驱动轴力矩生成模型:
Figure 521636DEST_PATH_IMAGE074
(18)
其中
Figure 163970DEST_PATH_IMAGE075
为开环计算驱动轴力矩,
Figure 909072DEST_PATH_IMAGE076
Figure 844405DEST_PATH_IMAGE077
为驱动轴两端转速,
Figure 674958DEST_PATH_IMAGE076
为变速箱输出转速,
Figure 589824DEST_PATH_IMAGE077
为车轮转速,
Figure 189433DEST_PATH_IMAGE078
为驱动轴等效刚度系数,
Figure 62711DEST_PATH_IMAGE079
为驱动轴等效阻尼系数。
根据拉格朗日动力学方程,并且假设汽车行驶中车轮做纯滚动无滑动运动,故得到等效的车轮动力学模型:
Figure 114980DEST_PATH_IMAGE080
(19)
其中
Figure 833538DEST_PATH_IMAGE081
为车轮转速估计值,
Figure 553232DEST_PATH_IMAGE082
为驱动力矩,
Figure 331832DEST_PATH_IMAGE083
为阻力矩,
Figure 136977DEST_PATH_IMAGE084
为驱动半轴末端的转动惯量,近似用式20计算得到
Figure 181198DEST_PATH_IMAGE085
(20)
同时考虑力和力矩之间的关系,驱动力矩通过阻力
Figure 755399DEST_PATH_IMAGE086
数学模型求得,即
Figure 704900DEST_PATH_IMAGE087
,结合式7得
Figure 731762DEST_PATH_IMAGE088
(21)
其中
Figure 57701DEST_PATH_IMAGE089
表示坡度阻力矩,
Figure 220829DEST_PATH_IMAGE090
表示空气阻力矩,
Figure 606811DEST_PATH_IMAGE091
表示摩擦阻力矩,
Figure 120969DEST_PATH_IMAGE092
为机械制动力矩,
Figure 250599DEST_PATH_IMAGE093
表示行车阻力矩;同时考虑到在进行驱动轴力矩估计时采用的是上一时刻质量的表示结果,即在计算
Figure 268234DEST_PATH_IMAGE093
时采用的是
Figure 323652DEST_PATH_IMAGE155
,故在设计驱动轴力矩估计器时用
Figure 325106DEST_PATH_IMAGE094
代替
Figure 727269DEST_PATH_IMAGE093
定义偏差
Figure 130568DEST_PATH_IMAGE095
,即车轮转速估计值减去实际值,对偏差
Figure 858353DEST_PATH_IMAGE096
求导,同时结合式19和式21得:
Figure 815944DEST_PATH_IMAGE097
(22)
取控制输入
Figure 552956DEST_PATH_IMAGE098
为如下形式:
Figure 545183DEST_PATH_IMAGE099
(23)
其中,
Figure 443869DEST_PATH_IMAGE100
为虚拟控制输入,利用反馈线性化方法,式22线性化形式
Figure 154336DEST_PATH_IMAGE101
(24)
将虚拟控制输入设计成PI形式,即:
Figure 662416DEST_PATH_IMAGE102
(25)
其中
Figure 509149DEST_PATH_IMAGE103
Figure 844315DEST_PATH_IMAGE104
为比例系数,
Figure 776499DEST_PATH_IMAGE105
为积分系数;
联合式23和25,得到控制器:
Figure 855314DEST_PATH_IMAGE106
(26)
定义Lyapunov函数如式(27):
Figure 822133DEST_PATH_IMAGE107
(27)
对两侧求导得:
Figure 62621DEST_PATH_IMAGE108
(28)
将式(25)带入上式并整理得:
Figure 747680DEST_PATH_IMAGE109
(29)
因此有
Figure 99027DEST_PATH_IMAGE110
时,故而
Figure 185932DEST_PATH_IMAGE111
综上所述,估计得到的驱动轴力矩为:
Figure 830278DEST_PATH_IMAGE112
(30)。
本发明基于观测器的纵向车速控制器:
本文的控制目标是实现自主驾驶过程中纵向车速的跟踪控制,在不同工况下,通过控制器优化出期望的驾驶需求,然后通过电机和机械制动等执行机构实现实际车速跟踪上期望车速。
为了方便控制器设计优化,我们将机械制动力矩和电机制动力矩统一进行优化,即在考虑电机为理想电机的情况下,优化出达到期望车速时的驾驶员需求
Figure 2633DEST_PATH_IMAGE157
,然后在通过一定的控制策略将其分为电机力矩需求和机械力矩需求。
为了实现统一优化驾驶员力矩需求,需要建立机械制动力矩和电机力矩之间关系,这里我们忽略传动系的惯性损失,那么电机力矩和机械制动力矩之间在数值上通过传动比进行转化,即:
Figure 157671DEST_PATH_IMAGE113
(31)
即制动力矩和驱动力矩统一表示为
Figure 99082DEST_PATH_IMAGE114
,综上分析集合前面建立的***模型,同时为了更准确的实现车速控制,我们在设计控制器时整车质量采用联合估计器估计的质量。
通过式(1)、(7)和(12)整理得到如下关系式:
Figure 681373DEST_PATH_IMAGE115
(32)
其中选取纵向车速为状态量,即
Figure 75445DEST_PATH_IMAGE116
,选取驾驶需求为控制变量,即
Figure 34174DEST_PATH_IMAGE117
,同样选取纵向车速作为输出量,即
Figure 830092DEST_PATH_IMAGE118
;通过欧拉方法对状态空间方程进行离散化,用
Figure 848863DEST_PATH_IMAGE119
表示采样步长,则在
Figure 464652DEST_PATH_IMAGE120
时刻,离散化得到***离散模型如下:
Figure 227072DEST_PATH_IMAGE121
(33)
Figure 376031DEST_PATH_IMAGE122
为输出系数矩阵,根据模型预测控制理论,定义***的预测时域为
Figure 565704DEST_PATH_IMAGE123
,控制时域为
Figure 934369DEST_PATH_IMAGE124
,需要满足
Figure 969321DEST_PATH_IMAGE125
,那么在
Figure 739831DEST_PATH_IMAGE120
时刻的预测输出序列表示为:
Figure 834826DEST_PATH_IMAGE126
(34)
同时,k时刻的优化控制输入序列
Figure 690786DEST_PATH_IMAGE127
表示为:
Figure 529429DEST_PATH_IMAGE128
(35)。
在采样时刻
Figure 420025DEST_PATH_IMAGE120
,状态量的值为
Figure 685921DEST_PATH_IMAGE129
,根据模型预测控制的基本原则和相关理论,推导出状态量和输出量的预测过程如公式(19)和(20)所示:
Figure 527713DEST_PATH_IMAGE130
(36)
Figure 904468DEST_PATH_IMAGE131
(37)。
通过分析计算当前时刻的状态变量值和上一时刻***输入值,优化求解出控制量序列,而只将优化求解出的控制量序列的第一个量作用于***。而在下一采样时刻,电动汽车模型会反馈回新的输入变量和状态量,控制器重新优化求解控制问题。
同时,参考输入为期望的车速
Figure 649570DEST_PATH_IMAGE132
,故得到参考输入序列:
Figure 86367DEST_PATH_IMAGE133
(38)
在自主驾驶过程中,为了保证驾驶安全,需要对状态量进行约束,同时考虑到电机本身特性,其输出力矩具有约束,同时考虑到机械结构的限制,又有最大制动力矩的约束,综上所述,在控制器设计时需要考虑如下约束:
Figure 651341DEST_PATH_IMAGE134
(39)
其中电机提供的最大力矩由图5中的MAP查表得到。
同时为了保障纵向车速的跟踪,同时提高乘坐的舒适性(即加速和制动过程中控制动作尽可能小),,因此控制器选取性能指标目标为:
Figure 97366DEST_PATH_IMAGE135
(40)
其中
Figure 696974DEST_PATH_IMAGE136
进而描述为(41)式的优化问题,即使目标函数
Figure 304673DEST_PATH_IMAGE137
值最小:
Figure 91363DEST_PATH_IMAGE138
(41)
式(41)中,
Figure 308456DEST_PATH_IMAGE139
反映了实际输出车速与期望车速的偏差,
Figure 762571DEST_PATH_IMAGE140
反映了驾驶需求的强弱,
Figure 806750DEST_PATH_IMAGE141
Figure 80737DEST_PATH_IMAGE142
分别为输出信号序列和控制信号序列的权重因子。
Figure 602985DEST_PATH_IMAGE141
的大小反映速度跟踪精度的要求,
Figure 911607DEST_PATH_IMAGE141
越大,速度跟踪的偏差越接近零。
Figure 861108DEST_PATH_IMAGE142
则反映对控制动作的要求,
Figure 887970DEST_PATH_IMAGE142
越大,控制动作越小,乘车舒适性更好。使用NAG(一种滚动时域优化算法MATLAB求解工具箱)求解41式的优化问题,优化出***的控制输入序列,然后将序列中第一个元素
Figure 446865DEST_PATH_IMAGE143
作用于***;下一时刻,重复上述的优化求解过程,即对自主驾驶纵向车速的闭环优化控制,
Figure 875572DEST_PATH_IMAGE144
(42);
滚动时域优化控制器设计的流程如图6所示:滚动时域优化控制器优化出驾驶员力矩需求
Figure DEST_PATH_IMAGE158
,但在控制中需要的控制信号是电机力矩需求和机械制动信号,故需要对优化出的力矩进行力矩分配将驾驶员力矩需求中大于0 的部分化为驱动力矩,小于等于0的部分化为制动力矩,即
Figure 464817DEST_PATH_IMAGE145
(43)
其中
Figure 978975DEST_PATH_IMAGE146
为优化的驾驶力矩需求,
Figure 843025DEST_PATH_IMAGE147
为电机期望力矩,
Figure 126239DEST_PATH_IMAGE148
为制动力矩,将制动力矩通过下式转化为机械制动信号
Figure 417543DEST_PATH_IMAGE149
Figure 153418DEST_PATH_IMAGE150
(44)。
实验验证
反复调节控制参数,分别选取输出信号序列和控制信号序列的权重因子Γy =100,Γu = 2,采样时间为0.01s,我们选择了加减速频繁的城市工况,期望车速如图7。设定整车质量为1500kg,分别在平路工况、恒定大坡度和贴近真实路面的变坡度工况下对控制器进行验证。
1)平路工况仿真验证
首先我们选择水平路面验证,设定道路坡度为0,在仿真时设定风速为0,车辆质量为1500 Kg,即车辆空载运行,仿真结果如图8所示,图中给出从上到下依次为质量辨识对比曲线、驱动轴力矩估计对比曲线和车速跟踪曲线,从图中可以看出估计器和控制器都具有良好的效果。
2)恒定大坡度工况仿真验证
在仿真环境下,我们设定道路坡度为10%,即恒定较大坡路上,验证在长时间持续较大坡路行驶控制器的控制效果是否稳定,仿真结果如图9所示。图中给出从上到下依次为质量辨识对比曲线、驱动轴力矩估计对比曲线和车速跟踪曲线。仿真结果表明,在较大坡路上行驶,估计器估计效果很好,实际车速在大部分时间可以跟踪上期望车速,但在200~300s左右,实际车速并没有跟踪上期望车速,而是车速维持在20 m/s,这是由于电机期望力矩受到了控制器设计过程中我们电机最大电机力矩约束的作用,通过图5电机最大输出力矩map可知,此时的电机期望力矩刚好等于电机最大输出力矩。说明控制器效果良好,同时***约束起到了很好的作用。
3)变坡度工况仿真验证
在实际车辆运行环境中,道路坡度并不会保持不变,因而我们设定更接近实际运行工况的变坡度(道路坡度如图10)进行验证。仿真结果如图10一所示,从仿真结果中可以看出,联合估计器估计效果良好,同时在变坡度工况下车辆纵向车速很好的跟踪期望车速。
本发明针对纯电动智能汽车设计了基于滚动时域优化方法的纵向车速控制器,这种方法很好的实现了在线优化,同时显性的处理约束。为了验证纵向车速优化控制器的有效性,在AMESim高级仿真软件中搭建了集中式电动汽车模型,并且在复杂城市道路,分别在平路工况、恒定大坡度工况和贴近实际路面的变坡度工况下验证了控制器的性能。仿真结果表明,滚动时域优化纵向车速控制器在不同行驶工况下,具有良好的控制性能。

Claims (1)

1.一种基于观测器的纯电动智能汽车纵向车速控制方法,其特征在于:实现Matlab/Simulink和AMESim的联合仿真,
①必须设置PC电脑的环境变量,让两者相互关联;
②在AMESim界面中添加与simulink通信的接口模块,将Matlab/Simulink和AMESim间需要通信的变量连接到这个模块;
③经过***编译之后,AMESim中的模型信息以S-function的形式保留在Simulink中,从而实现两者的联合仿真与通信;
详细过程如下:
一、集中式电动汽车仿真模型搭建:
电动汽车仿真模型包括电驱动模块、传动模块、轮胎模块以及车辆纵向动力学,整车模型参数如表一
表一电动汽车参数表
参数 数值 整车质量、 1500kg 空气阻力系数 0.36 迎风面积 2.08m<sup>2</sup> 粘滞摩擦系数 1.2258kg/m<sup>3</sup> 车轮半径 0.301m 轮胎转动惯量、 0.75kg/m<sup>2</sup> 最大制动力矩 1000N 路面摩擦系数 0.01064 电机电枢电阻 0.0001Ω 电机电感 0.02H 电机永磁磁通 0.9Wb 重力加速度 9.8066m/s<sup>2</sup> 主减速比 2.2786 档位减速比 3.9431
二、基于观测器的滚动时域优化控制器:
2.1面向控制器设计模型搭建
2.1.1车辆纵向动力学模型
在不考虑横向力的情况下,车辆坡路上行驶纵向受力根据牛顿第二定律有:
Figure FDA0002353002090000021
其中:m为行车质量,Fw为驱动力、Fres为行驶阻力;Fres包括空气阻力Fa、路面摩擦阻力Ff、坡度阻力Fcl及机械制动力;
车重mv与行车质量m关系用式下式表示:
Figure FDA0002353002090000022
其中Jw为一个车轮的惯量,r为车轮半径;
在坡路上行驶的汽车受到坡度阻力Fcl为:
Fcl=mv·g·sinθ (3)
其中g为重力加速度;
路面上行驶的汽车受到的空气阻力Fa为:
Fa=0.5·ρair·Cx·S·(v+vwind)2 (4)
其中ρair为空气黏性密度,Cx为风阻系数,S为车辆的迎风面积,vwind为风速,v为车速;忽略汽车风速影响,故空气阻力表示为:
Fa=0.5·ρair·Cx·S·v2 (5)
摩擦阻力Ff是道路与轮胎间的摩擦力,通过下式:
Ff=mv·g·(f+fk·v) (6)
其中f为路面摩擦系数,fk为粘滞摩擦系数;
机械制动力Fk=Tk/r,Tk为制动力矩;
得到车辆受到的行驶阻力为:
Fres=Fcl+Fa+Ff+Fk
=mv·g·sinθ+0.5·ρair·Cx·S·v2+mv·g·(f+fk·v)+Tk/r (7);
2.1.2传动***建模
2.1.2.1离合器
由刚性假设,其传递的转矩为:
Tc=Te,ωe=ωc (8)
其中Te为电机输出转矩,Tc为离合器输出转矩,ωe为电机输出转速,ωc为离合器输出转速;
2.1.2.2变速器
变速器输出转矩Tp建模如下式:
Tp=Tci0-dtωt (9)
其中dt为扭转阻尼系数,ωt为输出转速,i0=αi·αm为传动比,αi为档位传动比,αm为主减速比;
2.1.2.3驱动轴
Tw=Tp,ω=ωt (10)
其中Tw为驱动轴输出,ω为驱动轴输出转速;
将式8和式9代入式10整理得:
Tw=Tei0-dtω (11)
用Fw驱动力,用r表示车轮半径,则由力和力矩之间的关系Fw=Tx·r,同时车速v=ω·r,故结合式11得:
Fw=Tei0/r-dtv/r2 (12)
其中车轮半径r由下式求得,式中rm为轮毂半径,h为轮胎扁平比,l为轮胎宽度;
r=0.5·rm+0.01·h·l (13);
2.2联合观测器:
2.2.1递归最小二乘法质量辨识
结合式1和式7,得到如下等式:
Figure FDA0002353002090000041
同时结合式(2)、(3)、(4)、(5)、(6)整理成最小二乘格式,驱动轴力矩估计值
Figure FDA0002353002090000042
转化为驱动力
Figure FDA0002353002090000043
Figure FDA0002353002090000044
其中
Figure FDA0002353002090000045
表示车辆纵向加速度,σ等效旋转质量,其值
Figure FDA0002353002090000046
其中Jw为一个车轮的惯量,r为车轮半径;
Figure FDA0002353002090000047
表示包含驱动轴估计量***输出量,Be表示可获取的数据向量,mv为待辨识量,α为***的过程白噪声;
根据最小二乘法原理,分别定义K-1、K时刻***辨识得到的整车质量为
Figure FDA0002353002090000048
则得到质量辨识模型:
Figure FDA0002353002090000049
R(k)=P(k-1)Be(k)[Be(k)P(k-1)Be(k)+μ(k)]-1
P(k)=μ(k)-1[I-R(k)Be(k)]P(k-1) (16)
式中,u(k)为第K时刻的遗忘因子;
遗忘因子μ(t)规律为:
μ(t)=1-0.05·0.98t (17);
2.2.2驱动轴力矩观测器
设驱动轴两端转速可测,则搭建驱动轴力矩生成模型:
Ttw0=ks∫(ωtω)dt+bstω) (18)
其中Ttw0为开环计算驱动轴力矩,ωt、ωω为驱动轴两端转速,ωt为变速箱输出转速,ωω为车轮转速,ks为驱动轴等效刚度系数,bs为驱动轴等效阻尼系数;
得到等效的车轮动力学模型:
Figure FDA0002353002090000051
其中
Figure FDA0002353002090000052
为车轮转速估计值,Ttw为驱动力矩,Tres为阻力矩,Jtw为驱动半轴末端的转动惯量,
Figure FDA0002353002090000053
驱动力矩通过阻力Fres数学模型求得,即Tres=Fres·r,结合式7得
Tres=Tcl+Ta+Tf+Tk
=Tload+Tk
={mv·g·sin[arctan(0.01·i)]+0.5·ρair·Cx·S·v2+mv·g·(f+fk·v)}·r+Tk (21)
其中Tcl表示坡度阻力矩,Ta表示空气阻力矩,Tf表示摩擦阻力矩,Tk为机械制动力矩,Tload表示行车阻力矩;驱动轴力矩估计器时用
Figure FDA0002353002090000054
代替Tload
定义偏差
Figure FDA0002353002090000055
即车轮转速估计值减去实际值,对偏差e求导,同时结合式19和式21得:
Figure FDA0002353002090000056
取控制输入u为如下形式:
Figure FDA0002353002090000057
其中,v为虚拟控制输入,利用反馈线性化方法,式22线性化形式
Figure FDA0002353002090000058
将虚拟控制输入设计成PI形式,即:
v=-kpe-kiθe (25)
其中
Figure FDA0002353002090000059
kp>0为比例系数,ki>0为积分系数;
联合式23和25,得到控制器:
Figure FDA00023530020900000510
定义Lyapunov函数如式(27):
Figure FDA0002353002090000061
对两侧求导得:
Figure FDA0002353002090000062
将式(25)带入上式并整理得:
Figure FDA0002353002090000063
因此有
Figure FDA0002353002090000064
t→∞时,故而
Figure FDA0002353002090000065
t→∞;
因此驱动轴力矩为:
Figure FDA0002353002090000066
基于观测器的纵向车速控制器:
电机力矩和机械制动力矩之间在数值上通过传动比进行转化,即:
Tk=Te·i0 (31)
即制动力矩和驱动力矩统一表示为Tdr
通过式(1)、(7)和(12)整理得到如下关系式:
Figure FDA0002353002090000067
其中选取纵向车速为状态量,即x=[v],选取驾驶需求为控制变量,即u=[Tdr],同样选取纵向车速作为输出量,即y=[v];通过欧拉方法对状态空间方程进行离散化,用Δt表示采样步长,则在k时刻,离散化得到***离散模型如下:
x(k+1)=f(x(k),u(k))·Δt+x(k)
y(k+1)=Cv·x(k),k≥0. (33)
Cy为输出系数矩阵,定义***的预测时域为Np,控制时域为Nu,需要满足1≤Nu≤Np,那么在k时刻的预测输出序列表示为:
Figure FDA0002353002090000071
同时,k时刻的优化控制输入序列U(k)表示为:
Figure FDA0002353002090000072
在采样时刻k,状态量的值为x(k|k),推导出状态量和输出量的预测过程如公式(19)和(20)所示:
Figure FDA0002353002090000073
Figure FDA0002353002090000074
同时,参考输入为期望的车速
Figure FDA0002353002090000075
故得到参考输入序列:
Figure FDA0002353002090000076
在控制器设计时需要考虑如下约束:
0≤v(k)≤35m/s
-1000/i0≤Tdr(k)≤TMmax, (39)
同时为了保障纵向车速的跟踪,同时提高乘坐的舒适性,因此控制器选取性能指标目标为:
Figure FDA0002353002090000081
其中ΔU(k)=U(k+1)-U(k);
进而描述为(41)式的优化问题,即使目标函数J(y(k),U(k),Nu,Np)值最小:
minU(k)J(yc(k),U(k),Nu,Np) (41)
式(41)中,
Figure FDA0002353002090000082
反映了实际输出车速与期望车速的偏差,J2=||ΓuΔU(k)||2反映了驾驶需求的强弱,Γy和Γu分别为输出信号序列和控制信号序列的权重因子;使用NAG求解41式的优化问题,优化出***的控制输入序列,然后将序列中第一个元素u(k)作用于***;下一时刻,重复上述的优化求解过程,即对自主驾驶纵向车速的闭环优化控制,
u(k)=[1 0…0]U(k) (42);
需要对优化出的力矩进行力矩分配将驾驶员力矩需求中大于0的部分化为驱动力矩,小于等于0的部分化为制动力矩,即
Figure FDA0002353002090000083
其中Tdr(k)为优化的驾驶力矩需求,Te(k)为电机期望力矩,Tk(k)为制动力矩,将制动力矩通过下式转化为机械制动信号sigbr
sigbr=Tk(k)/1000 (44)。
CN201710483937.2A 2017-06-23 2017-06-23 基于观测器的纯电动智能汽车纵向车速控制方法 Active CN107168104B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710483937.2A CN107168104B (zh) 2017-06-23 2017-06-23 基于观测器的纯电动智能汽车纵向车速控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710483937.2A CN107168104B (zh) 2017-06-23 2017-06-23 基于观测器的纯电动智能汽车纵向车速控制方法

Publications (2)

Publication Number Publication Date
CN107168104A CN107168104A (zh) 2017-09-15
CN107168104B true CN107168104B (zh) 2020-06-16

Family

ID=59820095

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710483937.2A Active CN107168104B (zh) 2017-06-23 2017-06-23 基于观测器的纯电动智能汽车纵向车速控制方法

Country Status (1)

Country Link
CN (1) CN107168104B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107168104B (zh) * 2017-06-23 2020-06-16 吉林大学 基于观测器的纯电动智能汽车纵向车速控制方法
CN108897928B (zh) * 2018-06-13 2020-04-21 吉林大学 一种基于嵌套蒙特卡洛树搜索的智能车坡路节能车速优化方法
CN109268159B (zh) * 2018-09-18 2020-08-18 吉林大学 稀薄燃烧汽油机燃空比***控制方法
CN109063406A (zh) * 2018-10-26 2018-12-21 中铁工程装备集团隧道设备制造有限公司 一种基于advisor的水平运输机车仿真建模方法
CN109521674B (zh) * 2018-11-26 2021-10-29 东南大学 一种电动车驾驶机器人控制器参数自学习方法
CN110727994A (zh) * 2019-10-28 2020-01-24 吉林大学 参数解耦的电动汽车质量与坡度估计方法
CN111176140B (zh) * 2020-01-02 2023-06-09 北京航空航天大学杭州创新研究院 一种电动汽车运动-传动-能源***一体化控制方法
US20210402980A1 (en) * 2020-06-26 2021-12-30 Mitsubishi Electric Research Laboratories, Inc. System and Method for Data-Driven Reference Generation
CN111976736A (zh) * 2020-08-27 2020-11-24 浙江吉利新能源商用车集团有限公司 一种用于车辆的自动驾驶控制***及方法
CN113085807B (zh) * 2021-04-08 2022-02-01 中车唐山机车车辆有限公司 列车制动方法、装置、电子设备和存储介质
CN114233844B (zh) * 2021-12-22 2023-03-28 珠海格力电器股份有限公司 电动汽车变速箱换挡控制方法、装置、存储介质及控制器
CN115416654B (zh) * 2022-11-03 2023-02-03 北京清研宏达信息科技有限公司 一种基于自抗扰的人机共驾车速控制方法及***
CN116151031A (zh) * 2023-04-17 2023-05-23 中汽智联技术有限公司 一种应用于ibc***的加速度传感器模拟方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102529976A (zh) * 2011-12-15 2012-07-04 东南大学 一种基于滑模观测器的车辆运行状态非线性鲁棒估计方法
CN103308325A (zh) * 2013-06-26 2013-09-18 东莞中山大学研究院 电动汽车驱动***半实物仿真平台
CN107168104A (zh) * 2017-06-23 2017-09-15 吉林大学 基于观测器的纯电动智能汽车纵向车速控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2917694B1 (fr) * 2007-06-21 2009-08-21 Renault Sas Procede de controle du freinage recuperatif pour vehicule hybride et/ou a quatre roues motrices et arrangement pour vehicule mettant en oeuvre le procede
CN103921786B (zh) * 2014-04-11 2016-08-17 北京工业大学 一种电动车辆再生制动过程的非线性模型预测控制方法
CN104175891B (zh) * 2014-08-07 2016-07-13 吉林大学 纯电动汽车能量回收再生制动控制方法
CN104401232B (zh) * 2014-12-21 2016-06-22 吉林大学 基于数据驱动预测控制的电动汽车扭矩优化方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102529976A (zh) * 2011-12-15 2012-07-04 东南大学 一种基于滑模观测器的车辆运行状态非线性鲁棒估计方法
CN103308325A (zh) * 2013-06-26 2013-09-18 东莞中山大学研究院 电动汽车驱动***半实物仿真平台
CN107168104A (zh) * 2017-06-23 2017-09-15 吉林大学 基于观测器的纯电动智能汽车纵向车速控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《Super-twisting sliding-mode tractio ncontrol of vehicle swith tractive force observer》;SuwatKuntanapreeda;《ControlEngineeringPractice》;20150107;第26-36页 *
《基于观测器的输出反馈电子节气门控制器设计》;胡云峰 等;《自动化学报》;20110630;第746-753页 *

Also Published As

Publication number Publication date
CN107168104A (zh) 2017-09-15

Similar Documents

Publication Publication Date Title
CN107168104B (zh) 基于观测器的纯电动智能汽车纵向车速控制方法
Yang et al. Efficient mode transition control for parallel hybrid electric vehicle with adaptive dual-loop control framework
Li et al. Analysis of downshift’s improvement to energy efficiency of an electric vehicle during regenerative braking
Li et al. AMT downshifting strategy design of HEV during regenerative braking process for energy conservation
CN107539305A (zh) 一种行星式混联混合动力***的动态扭矩协调控制方法
Liao et al. An eco-driving strategy for electric vehicle based on the powertrain
Zhang et al. Time-varying delays compensation algorithm for powertrain active damping of an electrified vehicle equipped with an axle motor during regenerative braking
Zhao et al. Downshift decision and process optimal control of dual clutch transmission for hybrid electric vehicles under rapid braking condition
CN113104023B (zh) 分布式mpc的网联混合动力汽车能量管理***及方法
Lv et al. Cyber-physical system based optimization framework for intelligent powertrain control
Sun et al. A novel torque coordination control strategy of a single‐shaft parallel hybrid electric vehicle based on model predictive control
Dokuyucu et al. Concurrent design of energy management and vehicle traction supervisory control algorithms for parallel hybrid electric vehicles
CN109635433A (zh) 一种改进灰色预测的混合动力汽车自适应pid动态控制方法
Zhao et al. Distributed electric powertrain test bench with dynamic load controlled by neuron PI speed-tracking method
Wang et al. A moment-of-inertia-driven engine start-up method based on adaptive model predictive control for hybrid electric vehicles with drivability optimization
Lei et al. Car fuel economy simulation forecast method based on CVT efficiencies measured from bench test
Zhang et al. Real-time optimization of energy consumption under adaptive cruise control for connected HEVs
Louback et al. A review of the design process of energy management systems for dual-motor battery electric vehicles
Chai et al. Robust shifting control of a motor‐transmission integrated system considering anti‐jerking and speed regulation for electric vehicles
CN113386768A (zh) 一种纯电动汽车单踏板的非线性模型预测控制方法
Mohebbi et al. Adaptive neuro control of parallel hybrid electric vehicles
Xiang et al. A novel nonlinear optimal control approach for the dynamic process of a hybrid electric vehicle equipped with electromechanical transmission
Yunlong et al. Neural network and efficiency-based control for dual-mode hybrid electric vehicles
Zhou et al. Energy optimization for intelligent hybrid electric vehicles based on hybrid system approach in a car‐following process
Wang et al. Energy management of HEV in platoon operation with constant headway policy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant