CN107167385A - 锚杆应力损失的室内测试装置及方法 - Google Patents

锚杆应力损失的室内测试装置及方法 Download PDF

Info

Publication number
CN107167385A
CN107167385A CN201710471695.5A CN201710471695A CN107167385A CN 107167385 A CN107167385 A CN 107167385A CN 201710471695 A CN201710471695 A CN 201710471695A CN 107167385 A CN107167385 A CN 107167385A
Authority
CN
China
Prior art keywords
jack
soil body
free steel
steel plate
anchor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710471695.5A
Other languages
English (en)
Other versions
CN107167385B (zh
Inventor
李涛
罗兴浩
王义鑫
刘国坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology Beijing CUMTB
Original Assignee
China University of Mining and Technology Beijing CUMTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology Beijing CUMTB filed Critical China University of Mining and Technology Beijing CUMTB
Priority to CN201710471695.5A priority Critical patent/CN107167385B/zh
Publication of CN107167385A publication Critical patent/CN107167385A/zh
Application granted granted Critical
Publication of CN107167385B publication Critical patent/CN107167385B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0048Hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Piles And Underground Anchors (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明提供了一种锚杆应力损失的室内测试装置,包括有内外两个箱体的模型箱、两块自由钢板、两个用于支撑自由钢板的千斤顶、空心千斤顶、以及垫块。两个千斤顶以螺栓固定于自由钢板中心,两自由钢板之间连接有柔性连接件,两自由钢板与外箱侧壁紧密接触,空心千斤顶拉拔锚杆模型时注意维持应力稳定。本发明还提供了应用该装置的测试方法。本发明提供的锚杆应力损失的室内测试装置和方法结构简单、操作方便,测量误差小、精度高,并且边界条件及实验变量易于控制。该装置及方法可以应用于理论验证和实践操作中,对施工现场的指导和施工设计的改进均具有重要意义。

Description

锚杆应力损失的室内测试装置及方法
技术领域
本发明属于土木工程技术领域,特别涉及一种锚杆应力损失的室内测试装置及方法。
背景技术
岩土工程中,锚杆的使用已有悠久历史,锚杆广泛运用于基坑、隧道等的支护中,由于锚杆-围岩受力的复杂性,研究锚杆张拉后在土体中应力损失问题对设计和施工都显得尤为重要。
研究锚杆张拉后应力损失问题,要从现场实验和室内模拟实验两个方面共同出发。基于现场实验,可以得到土体中锚杆张拉后大致的受力分布规律,但是由于现场条件极其复杂,不论在经济成本和人力成本上都较大,锚杆张拉机进行张拉过程中误差也较大,而且难以控制边界条件来研究不同因素的影响。相对于现场实验,室内模拟实验简单易行,对于验证理论分析的结论和指导现场施工和改进设计具有极重要的意义。因此,发展一种实验室内测试锚杆应力损失的方法显得尤为重要。
发明内容
为了解决上述技术问题,本发明提供了一种锚杆应力损失的室内测试装置及方法。
本发明具体技术方案如下:
本发明一方面提供了一种锚杆应力损失的室内测试装置,包括模型箱,所述模型箱包括第一箱体,所述第一箱体包括底板以及设在所述底板上的依次首尾连接的第一侧板、第二侧板、第三侧板以及第四侧板;所述第一侧板内侧垂直设有第一自由钢板,所述第二侧板内侧垂直设有第二自由钢板,所述第一自由钢板、所述第二自由钢板、所述第一侧板、所述第二侧板以及所述底板围合成第二箱体,所述第二箱体内填充有土体,所述土体内插设有锚杆,所述锚杆外部套设有空心千斤顶;所述第一自由钢板与所述第四侧板之间设有第一千斤顶,所述第二自由钢板与所述第三侧板之间设有第二千斤顶。
进一步地,所述第一自由钢板与所述第二自由钢板相邻处通过柔性连接件连接,以保证两钢板挤压过程中土体不会从两钢板之间的缝隙中流出。
进一步地,所述空心千斤顶底部与所述土体顶部之间设有垫块。
实验所用模型箱设计为正方体钢质箱体,并采用现浇砂浆作为锚杆锚固体,以垫块代替锚索托盘,垫块采用混凝土制作并加入石膏增强其强度,实际工程中垫块均为方形,箱体上表面为正方形,为了更好地将锚杆提供的反力均匀的传递到土体上,故实验选择正方形垫块。使用时,也可以采用圆柱形的筒体和圆形的垫块,也能达到所需的效果。
第一自由钢板与第一侧板相连处、第二自由钢板与第二侧板相连处均不留缝隙,并可涂抹润滑材料,以减小第一自由钢板与第二自由钢板所受阻力,并保证在对自由钢板1与自由钢板2加压过程中土体不从缝隙中涌出。
进一步地,所述第一千斤顶两端分别通过螺栓固定在所述第一自由钢板中心以及所述第四侧板上;所述第二千斤顶两端分别通过螺栓固定在所述第二自由钢板中心以及所述第三侧板上,以保证每侧土体受力均匀。第一千斤顶和第二千斤顶优选为油压千斤顶,通过油压千斤顶施加压力,第一自由钢板与第二自由钢板在第一千斤顶与第二千斤顶作用下对土体产生侧向压力,以此改变土体围压。通过油压表显示压强值,可知第一自由钢板和第二自由钢板对土体施加的压力,由此可得到土体内围压。
本发明提供的锚杆应力损失的室内测试装置,结构简单、使用方便、成本低、误差小,应用灵活,实验结果准确率高、边界条件易于控制,可以应用于实践中。
本发明另一方面提供了一种锚杆应力损失的室内测试方法,包括如下步骤:
S1:进行土体重塑,原状土运抵实验室后,需将其捣碎、过筛、风干,在进行重塑,以便于配置符合实验要求状态的土体;
S2:向所述第二箱体中分多层填充土体,每填一层土后,均匀喷洒一定质量的水;每层填土完毕后,对土体进行夯实,再覆盖塑料薄膜进行第一次养护,养护时间为7d,让孔隙水压力完全消散;
S3:在填土过程中提前埋设PVC管,将PVC管埋于模型中央,以便后续锚杆锚固段注浆孔的制作;在填土高度达到所需锚固长度后,缓慢拔出PVC管,形成注浆孔;
S4:将所述锚杆***所述注浆孔,通过锚杆对中器的上、下两个圆塞保证锚杆的垂直度;向所述注浆孔内注浆,同时用铁丝轻轻搅拌,注浆结束后覆盖塑料薄膜进行第二次养护,养护时间为28d,防止土体水分蒸发和确保锚杆锚固体强度达到试验要求;
S5:养护结束后,继续填土直至达到设定的填土高度,并对土体进行夯实,夯实结束后用塑料薄膜封闭、进行第三次养护,防止水分的散失并静置消散孔隙水压力;
S6:养护结束后,进行预应力的加载,均匀操作所述空心千斤顶,并且采集所述空心千斤顶施加的应力;
S7:采集数据,观测锚杆上的应力随时间的损失情况。
进一步地,所述步骤S2中,填充土体时,通过所述第一千斤顶限制所述第一自由钢板受到压力后的推进距离,同时通过所述第二千斤顶限制所述第二自由钢板受到压力后的推进距离,以防止第一自由钢板与第二自由钢板在对土体施加围压过程中推进距离过大,以至破坏土体结构使土体中出现裂纹或向上过度***。
进一步地,所述步骤S2中,填充土体时,通过设置沙井提高土体渗透速度,具体包括如下步骤:
S2.1:在土体内布置至少一个纵向沙井,作为浸水通道;
S2.2:在土体底端铺垫一层中砂,使土层进行双向浸水。
设置沙井的目的是为简化改变土体含水率的过程。当实验要求需要配置多种含水率的土体时,只需配置出所需最低含水率的土体,一次实验完成后,依照比例向模型箱中的土体进行喷水即可。沙井可以提高土体渗透速度,缩短试验时间,降低实验成本。
进一步地,所述步骤S2.1的具体方法如下:
在所述模型箱内埋设若干根塑料管,填土结束后慢慢拔出所述塑料管,填入中砂并用细钎攒实。
进一步地,所述步骤S6的具体方法如下:
S6.1通过所述第一千斤顶与所述第二千斤顶对土体施加围压;
S6.2由所述空心千斤顶对所述锚杆施加预应力,当所施加应力达到实验设计值后,空心千斤顶停止增加预应力并维持预应力的稳定。
锚杆预应力的施加是模型试验最重要的一部分,首先依照实验要求通过第一千斤顶与第二千斤顶对土体施加实验设计的围压值,再由空心千斤顶对锚杆施加预应力,空心千斤顶下端顶在垫块上,力通过垫块均匀的传导于土体上;当所施加应力达到实验设计值后,空心千斤顶停止加载并维持稳定。实验过程中千斤顶不卸载以保证锚杆中应力稳定,减小因空心千斤顶加载引起应力损失。
进一步地,所述步骤S7中,采用静态采集仪对实验数据进行记录。
本发明的有益效果如下:本发明提供的锚杆应力损失的室内测试装置及应用该装置的测试方法,结果简单、操作方便,测量误差小、精度高,并且边界条件及实验变量易于控制。该装置及方法可以应用于理论验证和实践操作中,对施工现场的指导和施工设计的改进均具有重要意义。
附图说明
图1为实施例1所述的一种锚杆应力损失的室内测试装置的俯视图;
图2为实施例1所述的一种锚杆应力损失的室内测试装置的纵向剖视图;
图3为实施例1所述的一种锚杆应力损失的室内测试装置的立体图;
图4为实验例中不同含水率情况下锚杆预应力值变化情况。
其中:1、底板;2、第一侧板;3、第二侧板;4、第三侧板;5、第四侧板;6、第一自由钢板;7、第二自由钢板;8、土体;9、锚杆; 10、空心千斤顶;11、第一千斤顶;12、第二千斤顶;13、柔性连接件;14、垫块。
具体实施方式
下面结合附图和以下实施例对本发明作进一步详细说明。
实施例1
如图1~3所示,本发明实施例1提供了一种锚杆应力损失的室内测试装置,包括模型箱,所述模型箱包括第一箱体,所述第一箱体包括底板1以及设在所述底板1上的依次首尾连接的第一侧板2、第二侧板3、第三侧板4以及第四侧板5;所述第一侧板2内侧垂直设有第一自由钢板6,所述第二侧板3内侧垂直设有第二自由钢板7,所述第一自由钢板6、所述第二自由钢板7、所述第一侧板2、所述第二侧板3 以及所述底板1围合成第二箱体,所述第一自由钢板6与所述第二自由钢板7相邻处连接有柔性连接件13,所述柔性连接件13优选为帆布,所述第二箱体内填充有土体8,所述土体8内插设有锚杆9,所述锚杆 9外部套设有空心千斤顶10;所述第一自由钢板6与所述第四侧板5 之间设有第一千斤顶11,所述第二自由钢板7与所述第三侧板4之间设有第二千斤顶12。所述空心千斤顶10底部与所述土体8顶部之间设有垫块14。
实施例2
本实施例2在实施例1的基础上提供了一种锚杆应力损失的室内测试装置,该实施例2进一步限定了所述第一千斤顶11两端分别通过螺栓固定在所述第一自由钢板6中心以及所述第四侧板5上;所述第二千斤顶12两端分别通过螺栓固定在所述第二自由钢板7中心以及所述第三侧板4上。
实施例3
本实施例3提供了应用实施例1或2所述装置的锚杆应力损失的室内测试方法,包括如下步骤:
S1:进行土体8重塑;
S2:向所述第二箱体中分多层填充土体8,每填一层土后,均匀喷洒一定质量的水;每层填土完毕后,对土体8进行夯实,再覆盖塑料薄膜进行第一次养护,养护时间为7d;
S3:在填土过程中提前埋设PVC管,在填土高度达到所需锚固长度后,缓慢拔出PVC管,形成注浆孔;
S4:将所述锚杆9***所述注浆孔,向所述注浆孔内注浆,同时轻轻搅拌,注浆结束后覆盖塑料薄膜进行第二次养护,养护时间为28d;
S5:养护结束后,继续填土直至达到设定的填土高度,并对土体8 进行夯实,夯实结束后用塑料薄膜封闭、进行第三次养护;
S6:养护结束后,进行预应力的加载,均匀操作所述空心千斤顶 10,并且采集所述空心千斤顶10施加的应力;
S7:采集数据,观测锚杆9上的应力随时间的损失情况。
实施例4
本实施例4在实施例3的基础上提供了一种锚杆应力损失的室内测试方法,该实施例4进一步限定了所述步骤S2中,填充土体8时,通过所述第一千斤顶11限制所述第一自由钢板6受到压力后的推进距离,同时通过所述第二千斤顶12限制所述第二自由钢板7受到压力后的推进距离。同时通过设置沙井提高土体8渗透速度,沙井的设置具体包括如下步骤:
S2.1:在所述模型箱内埋设若干根塑料管,填土结束后慢慢拔出所述塑料管,填入中砂并用细钎攒实,从而在土体8内布置至少一个纵向沙井;
S2.2:在土体8底端铺垫一层中砂。
实施例5
本实施例5在实施例3的基础上提供了一种锚杆应力损失的室内测试方法,该实施例5进一步限定了所述步骤S6的具体方法如下:
S6.1通过所述第一千斤顶11与所述第二千斤顶12对土体8施加围压;
S6.2由所述空心千斤顶10对所述锚杆9施加预应力,当所施加应力达到实验设计值后,空心千斤顶10停止增加预应力并维持预应力的稳定。
所述步骤S7中,采用静态采集仪对实验数据进行记录,观测锚杆 9上的应力随时间的损失情况。
实验例
试样用土取自成都市龙泉驿城区,土体主要特征,灰黄色、褐黄色、稍湿、可塑,含少量铁、锰质结核,土体切面光滑,稍有光泽,土体干燥状态下强度、韧性较高,表面发育有较为密集的网状裂隙,裂隙被少量灰白色高岭土充填,裂隙间可见光滑镜面,遇水后裂隙收缩,土体迅速软化,具有典型膨胀土的特征。根据《室内土工试验报告》对粘土、粉质粘土所作的物理力学试验,对其各指标统计分析如下:
1.前期准备
当土运过来的时已经严重失水结块,为了后续更好地配置相应含水率的膨胀土,所以需要将土捣碎、过1mm筛。
2.装填模型箱
模型箱中的土高600mm,分6层填入。每层每次填入大约4kg的膨胀土,高度约为2cm,并用小喷壶均匀的喷洒计算好重量的水,配制16%含水率的膨胀土(膨胀土自然状态下含水率为16%),每层填土完毕后采用人工击实的方法进行击实,利用质量控制法控制土体干密度为1.6(土的干密度一般常在1.4-1.7,但是膨胀土的干密度一般为1.6)夯实结束后,在土体表面覆盖塑料薄膜,防止水分的蒸发。土样放置7d,目的是让孔隙水压力完全消散。
在填土过程中提前埋设直径50mm,长度为300mm的PVC管,以便后续锚杆9锚固段注浆孔的制作。在填土高度达到300mm时,缓慢的拔出PVC管形成孔洞,并用铁丝将孔壁刮毛,以便后续注浆体和土体更好地粘结在一起。
锚固体浇筑选用C30水泥,砂浆配比水:水泥:砂为0.45:1:1。通过锚杆对中器的上、下两个圆塞保证锚杆9的垂直度。注浆时采用铁丝轻微搅拌,保证浇筑锚杆9锚固体的完整性。注浆结束后覆盖薄膜养护28d,防止土体8水分蒸发和确保锚杆9锚固体强度达到试验要求。
待到养护阶段结束后,继续填土直至填土高度到达标定的高度 600mm,夯实过程同前期一样,夯实结束后用塑料薄膜进行封闭并盖上盖子,防止水分的散失并静置消散孔隙水压力。
3.应力加载及收集数据
养护结束后,先将应变片连接到数据采集仪上并打开相应的采集软件进入到采集界面,设置应变片的参数并输入锚杆9的弹性模量为2 ×105Mpa。然后进行预应力的加载,均匀的操作空心千斤顶10,使得锚杆9上的四个应变片示数均匀的增加直至平均值为300KPa(数据采集仪可以通过软件直接将采集的应变转化为应力)并迅速的将锚头锁死。
使用应变片粘贴在锚杆9上,通过测量锚杆9应变计算应力的变化,锚杆9自由端长度为300mm,在自由段每隔100mm处粘贴应变片,每处粘贴两个应变片共计四个应变片。数据采集仪可以直接将测得的应变转化为应力,取四个应力的平均值作为锚杆9自由段的应力值。
应变片采用BE120-3AA型号的电阻应变片,电阻值为120.2±0.1 Ω,灵敏系数为2.22±1%;数据采集仪采用HJ3816型号的数显式静态应变仪。
设置自动采集数据,观测锚杆9上的预应力随时间的损失情况。锚头锁固后,每隔5min观测1次;0.5h以后,改为10min观测1次; 1h以后改为0.5h观测1次;如此,每隔0.5h观测1次,2h以后改为 1h观测一次。若相邻两次观测结果的差值在3KPa以下,就认为锚杆的预应力瞬时损失已经结束,数据采集结束。
第二组试验是在19%含水率的情况下进行,首先打开锚头,卸载空心千斤顶10。算出需要添加的水量并均匀的加入到模型箱中,塑料膜密封静置养护7天,在防止水分蒸发的同时也使得水能均匀的渗透到土体中,土体充分发生反应,重复上述的加载过程,加载的预应力为300KPa并重复上述的数据采集过程。
第三组和第四组试验分别是在22%和25%含水率情况下进行,预应力加载以及数据的采集与前两组相同。
4.试验结果与分析
以时间为X轴,以锚杆9的预应力为Y轴建立坐标系得到的结果如图4所示。从图中可以得到如下信息:
(1)预应力的减小可以分为3个阶段:
a.第一个阶段为预应力快速减小阶段,时间为0-20min:这是因为随着土体8含水率的增加,土体8孔隙比增大,土体8粘粒含量增多,土体8的蠕变性也越加明显,同时在水的作用下土体8内部发生化学变化和物理变化从而导致内部联结力和结构强度的降低,造成在前20 分钟内土体8在外力作用下急剧变形,以致于锚,9中的应力迅速减小 (在实际工程中在加载结束后千斤顶回油的瞬间锚索不可避免的回缩,使得预应力瞬时损失,但在本文中更主要的是倾向于研究水对于膨胀土的膨胀作用对于锚杆9的影响,所以在实验过程中锚固好锁头的同时并没有卸载空心千斤顶10);
b.第二个阶段为预应力缓慢减小阶段,时间为20-60min:在第一阶段过程中,持续的外力以及自身的蠕变使得土体8的孔隙比减小密实度增加,并且外力的减小等因素都会使得土体8的变形不再那么急剧,所以第二阶段预应力进入相对缓慢的减小阶段;
c.第三个阶段为预应力相对稳定阶段,时间为1-5h:在这一阶段中预应力减小非常缓慢,每个小时的损失量均在10KPa以下,***相对达到一个比较稳定的状态。
(2)含水率为16%,19%,22%,25%的情况时预应力损失百分比分别为52.67%,65.33%,74.67%,87.33%,随着含水率的增加损失比率也随之增加,这也说明了含水率的增加使得膨胀土土体的膨胀作用越发显著。60min预应力损失占总损失百分比分别为82.27%,82.65%, 84.38%,85.11%,但实际上超过80%的损失都是在前一小时发生的,所以在实际工程中遭遇雨水天气必须迅速做好排水工作,否则在很短的时间内由于水的作用便会使得锚杆中的预应力迅速降低,对工程造成隐患。预应力损失规律可以参见表1。
表1预应力损失规律表
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种锚杆应力损失的室内测试装置,其特征在于,包括模型箱,所述模型箱包括第一箱体,所述第一箱体包括底板(1)以及设在所述底板(1)上的依次首尾连接的第一侧板(2)、第二侧板(3)、第三侧板(4)以及第四侧板(5);所述第一侧板(2)内侧垂直设有第一自由钢板(6),所述第二侧板(3)内侧垂直设有第二自由钢板(7),所述第一自由钢板(6)、所述第二自由钢板(7)、所述第一侧板(2)、所述第二侧板(3)以及所述底板(1)围合成第二箱体,所述第二箱体内填充有土体(8),所述土体(8)内插设有锚杆(9),所述锚杆(9)外部套设有空心千斤顶(10);所述第一自由钢板(6)与所述第四侧板(5)之间设有第一千斤顶(11),所述第二自由钢板(7)与所述第三侧板(4)之间设有第二千斤顶(12)。
2.如权利要求1所述的锚杆应力损失的室内测试装置,其特征在于,所述第一自由钢板(6)与所述第二自由钢板(7)相邻处通过柔性连接件(13)连接。
3.如权利要求1所述的锚杆应力损失的室内测试装置,其特征在于,所述空心千斤顶(10)底部与所述土体(8)顶部之间设有垫块(14)。
4.如权利要求1所述的锚杆应力损失的室内测试装置,其特征在于,所述第一千斤顶(11)两端分别通过螺栓固定在所述第一自由钢板(6)中心以及所述第四侧板(5)上;所述第二千斤顶(12)两端分别通过螺栓固定在所述第二自由钢板(7)中心以及所述第三侧板(4)上。
5.应用权利要求1~4中任一项所述装置的锚杆应力损失的室内测试方法,其特征在于,包括如下步骤:
S1:进行土体(8)重塑;
S2:向所述第二箱体中分多层填充土体(8),每填一层土后,均匀喷洒一定质量的水;每层填土完毕后,对土体(8)进行夯实,再覆盖塑料薄膜进行第一次养护,养护时间为7d;
S3:在填土过程中提前埋设PVC管,在填土高度达到所需锚固长度后,缓慢拔出PVC管,形成注浆孔;
S4:将所述锚杆(9)***所述注浆孔,向所述注浆孔内注浆,同时轻轻搅拌,注浆结束后覆盖塑料薄膜进行第二次养护,养护时间为28d;
S5:第二次养护结束后,继续填土直至达到设定的填土高度,并对土体(8)进行夯实,夯实结束后用塑料薄膜封闭、进行第三次养护;
S6:第三次养护结束后,进行预应力的加载,均匀操作所述空心千斤顶(10),并且采集所述空心千斤顶(10)施加的应力;
S7:采集数据,观测锚杆(9)上的应力随时间的损失情况。
6.如权利要求5所述的锚杆应力损失的室内测试方法,其特征在于,所述步骤S2中,填充土体(8)时,通过所述第一千斤顶(11)限制所述第一自由钢板(6)受到压力后的推进距离,同时通过所述第二千斤顶(12)限制所述第二自由钢板(7)受到压力后的推进距离。
7.如权利要求5所述的锚杆应力损失的室内测试方法,其特征在于,所述步骤S2中,填充土体(8)时,通过设置沙井提高土体(8)渗透速度,具体包括如下步骤:
S2.1:在土体(8)内布置至少一个纵向沙井;
S2.2:在土体(8)底端铺垫一层中砂。
8.如权利要求7所述的锚杆应力损失的室内测试方法,其特征在于,所述步骤S2.1的具体方法如下:
在所述模型箱内埋设若干根塑料管,填土结束后慢慢拔出所述塑料管,填入中砂并用细钎攒实。
9.如权利要求5所述的锚杆应力损失的室内测试方法,其特征在于,所述步骤S6的具体方法如下:
S6.1通过所述第一千斤顶(11)与所述第二千斤顶(12)对土体(8)施加围压;
S6.2由所述空心千斤顶(10)对所述锚杆(9)施加预应力,当所施加应力达到实验设计值后,空心千斤顶(10)停止增加预应力并维持预应力的稳定。
10.如权利要求5所述的锚杆应力损失的室内测试方法,其特征在于,所述步骤S7中,采用静态采集仪对实验数据进行记录。
CN201710471695.5A 2017-06-20 2017-06-20 锚杆应力损失的室内测试方法 Active CN107167385B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710471695.5A CN107167385B (zh) 2017-06-20 2017-06-20 锚杆应力损失的室内测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710471695.5A CN107167385B (zh) 2017-06-20 2017-06-20 锚杆应力损失的室内测试方法

Publications (2)

Publication Number Publication Date
CN107167385A true CN107167385A (zh) 2017-09-15
CN107167385B CN107167385B (zh) 2023-07-25

Family

ID=59819150

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710471695.5A Active CN107167385B (zh) 2017-06-20 2017-06-20 锚杆应力损失的室内测试方法

Country Status (1)

Country Link
CN (1) CN107167385B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107907228A (zh) * 2017-10-25 2018-04-13 江苏省沙钢钢铁研究院有限公司 一种方坯开轧温度采集及数据处理方法
CN109752266A (zh) * 2019-01-04 2019-05-14 中国地质大学(武汉) ***对喷射混凝土-围岩界面强度影响的试验装置及方法
CN109827851A (zh) * 2019-03-22 2019-05-31 河南理工大学 一种双向伺服加载锚固体稳定性实验装置及实验方法
CN112903419A (zh) * 2021-01-19 2021-06-04 中国地质大学(武汉) 一种渗流作用下岩体锚杆拉拔耦合试验装置及试验方法
CN114184482A (zh) * 2021-03-09 2022-03-15 中国水利水电第九工程局有限公司 一种锚杆抗拉拔力定量测试方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0657956A (ja) * 1992-07-31 1994-03-01 Maeda Corp コンクリート構造物の構築工法
JP2004162295A (ja) * 2002-11-11 2004-06-10 Kajima Corp 後施工アンカーの施工法
CN101230570A (zh) * 2008-02-20 2008-07-30 山东省交通厅公路局 分层多次调压调浆注浆方法
CN103512805A (zh) * 2013-10-22 2014-01-15 安徽理工大学 一种模拟锚固体围岩应力的锚杆拉拔实验的加压装置
CN103558088A (zh) * 2013-11-05 2014-02-05 兰州大学 土遗址锚固室内试验***
CN105510099A (zh) * 2016-01-13 2016-04-20 中南大学 一种重型非均质重塑土制样装置
CN105606150A (zh) * 2015-12-22 2016-05-25 中国矿业大学(北京) 一种基于线结构光和地质雷达的道路综合检测方法及***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0657956A (ja) * 1992-07-31 1994-03-01 Maeda Corp コンクリート構造物の構築工法
JP2004162295A (ja) * 2002-11-11 2004-06-10 Kajima Corp 後施工アンカーの施工法
CN101230570A (zh) * 2008-02-20 2008-07-30 山东省交通厅公路局 分层多次调压调浆注浆方法
CN103512805A (zh) * 2013-10-22 2014-01-15 安徽理工大学 一种模拟锚固体围岩应力的锚杆拉拔实验的加压装置
CN103558088A (zh) * 2013-11-05 2014-02-05 兰州大学 土遗址锚固室内试验***
CN105606150A (zh) * 2015-12-22 2016-05-25 中国矿业大学(北京) 一种基于线结构光和地质雷达的道路综合检测方法及***
CN105510099A (zh) * 2016-01-13 2016-04-20 中南大学 一种重型非均质重塑土制样装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘驹: "高填方地基锚索预应力损失试验研究" *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107907228A (zh) * 2017-10-25 2018-04-13 江苏省沙钢钢铁研究院有限公司 一种方坯开轧温度采集及数据处理方法
CN109752266A (zh) * 2019-01-04 2019-05-14 中国地质大学(武汉) ***对喷射混凝土-围岩界面强度影响的试验装置及方法
CN109827851A (zh) * 2019-03-22 2019-05-31 河南理工大学 一种双向伺服加载锚固体稳定性实验装置及实验方法
CN112903419A (zh) * 2021-01-19 2021-06-04 中国地质大学(武汉) 一种渗流作用下岩体锚杆拉拔耦合试验装置及试验方法
CN112903419B (zh) * 2021-01-19 2021-12-14 中国地质大学(武汉) 一种渗流作用下岩体锚杆拉拔耦合试验装置及试验方法
CN114184482A (zh) * 2021-03-09 2022-03-15 中国水利水电第九工程局有限公司 一种锚杆抗拉拔力定量测试方法

Also Published As

Publication number Publication date
CN107167385B (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
CN107167385A (zh) 锚杆应力损失的室内测试装置及方法
CN108613885B (zh) 一种模拟桩侧后注浆的室内试验方法
CN103837385B (zh) 粗粒土高聚物注浆三轴试验制样器及其使用方法
Wulfsohn et al. Triaxial testing of unsaturated agricultural soils
CN108828195B (zh) 一种模拟桩端后注浆浆液上返的室内试验方法
CN110331743B (zh) 一种测试静钻根植桩桩端扩大头承载性能的试验装置和试验方法
CN110344451B (zh) 一种模拟桩周注浆加固对桩基水平承载特性影响研究的试验装置和试验方法
US11255066B2 (en) Method for producing a component free of toe pressure
CN105275024B (zh) 有缺陷大直径嵌岩桩竖向承载力检测及加固的方法
CN106198890A (zh) 一种室内注浆模拟试验装置及其使用方法
CN111794293A (zh) 一种新型压密注浆土钉及其拉拔试验装置
Wan et al. Study on the response of postside-grouted piles subjected to lateral loading in calcareous sand
Jamsawang et al. Investigation and simulation of behavior of stiffened deep cement mixing (SDCM) piles
CN108661090A (zh) 一种闭口预应力混凝土管桩应力测试方法
CN115478568B (zh) 排水桩桩土接触面剪切实验装置
CN115791464A (zh) 循环荷载作用下重塑软土桩承式路堤模型装置及试验方法
Kleyner et al. Mathematical model for bore-injected cement grout installations
CN210684814U (zh) 一种测试静钻根植桩桩端扩大头承载性能的试验装置
Tanchaisawat et al. Stiffened deep cement mixing (SDCM) pile
CN219992559U (zh) 对穿越溶洞的桩基进行加载试验的模型
Pooranampillai et al. The Effects of Compaction Post Grouting of Model Shaft Tips in Fine Sand at Differing Relative Densities—Experimental Results
CN205012327U (zh) 一种部分预制的摩擦桩
CN110331742B (zh) 测试静钻根植桩桩土接触面摩擦特性的试验装置及其方法
CN115233658B (zh) 一种干作业扩底钻孔灌注桩施工方法
CN112195983B (zh) 一种自平衡测量膨胀桩桩端阻力与多个桩侧阻力的装置及测量方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant