CN107159072A - 一种可调控的液滴自驱动微反应器的制备方法 - Google Patents

一种可调控的液滴自驱动微反应器的制备方法 Download PDF

Info

Publication number
CN107159072A
CN107159072A CN201710325224.3A CN201710325224A CN107159072A CN 107159072 A CN107159072 A CN 107159072A CN 201710325224 A CN201710325224 A CN 201710325224A CN 107159072 A CN107159072 A CN 107159072A
Authority
CN
China
Prior art keywords
gradient
prepare
spin coating
coating liquid
flexible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710325224.3A
Other languages
English (en)
Other versions
CN107159072B (zh
Inventor
吴化平
徐振雄
杨哲
梁利华
刘爱萍
张征
丁浩
李吉泉
鲁聪达
曹彬彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201710325224.3A priority Critical patent/CN107159072B/zh
Publication of CN107159072A publication Critical patent/CN107159072A/zh
Application granted granted Critical
Publication of CN107159072B publication Critical patent/CN107159072B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Micromachines (AREA)

Abstract

本发明公开了一种可调控的液滴自驱动微反应器的制备方法,包括以下步骤:(1)制备涂覆液;(2)制备掩盖板;(3)制备具有柔性的多级梯度结构表面;(4)制备遮挡板;(5)制备化学梯度与柔性多级梯度结构相结合的表面;(6)将至少3条通过步骤(1)至(5)制得的化学梯度与柔性多级梯度结构相结合的表面,按照表面柱子由疏到密的顺序,将至少3条上述结构的表面从上至下排列成一个“Y”字型,组装成一个微反应器;至少两种反应流体会先汇集于交叉口反应,之后再流向竖直的流道。本发明在柔性多级梯度结构表面的基础上,结合了材料表面的化学性能变化形成的化学梯度,增强了材料表面驱动液滴定向运输的能力。

Description

一种可调控的液滴自驱动微反应器的制备方法
技术领域
本发明属于高分子材料制备领域,尤其涉及一种可调控的液滴自驱动微反应器的制备方法。
背景技术
微反应器是一种单元反应界面宽度为微米量级的微型化化学反应***,是90年代兴起的微化工技术。它是指以反应为主要目的,以一个或多个微反应器为主,同时还可能包括有微混合、微换热、微分离、微萃取等辅助装置及微传感器和微执行器等关键组件的一个微反应***。具体来说,微反应器一般是指通过微加工技术和精密加工技术制造的带有微结构的反应设备,微反应器内的流体通道或者分散尺度在微米量级,而微反应器的处理量则依据其应用的目的的不同达到从数微升每分钟到数万立方米每年的规模。近年来,基于某些特定的反应对流道表面润湿性的要求,表面润湿性开始被引入到微反应器中,利用润湿性可以有效的调控流体在流道中的移动。
传统的微反应***主要通过光刻、蚀刻和机械加工的方法在硅片、玻璃、聚二甲基硅氧烷和聚甲基丙烯酸甲酯等材料上制作,但这些制备方法存在着制备设备昂贵,制备过程复杂,流道精度不准确等缺点,并大多数需要外部辅助设施来提供动力,大大限制了微反应器的工业化进程。在微反应器中结合润湿性,制作具有润湿梯度的微反应器流道,可以实现液滴的自驱动,从而减少需要外部辅助的需求。目前的微反应***存在制作设备昂贵,制备过程复杂,流道精度不准确、不可调控,需要外部辅助等问题,而市场上将润湿梯度与微反应器结合的研究少之又少,对于能够调控的液滴自驱动微反应器的研究几乎没有。
发明内容
为了解决上述问题,本发明提供一种可调控的液滴自驱动微反应器的制备方法,针对现有技术的不足,实现了微流体的自驱动及其调控,极大降低了流体驱动调控成本,具有便携、经济、快速、高效等特点,实现广泛应用。
为此采用如下的技术方案:一种可调控的液滴自驱动微反应器的制备方法,其特征在于包括以下步骤:
步骤(1)制备涂覆液:将聚二甲基硅氧烷的预聚物与交联剂以质量为10:1的比例混合搅拌均匀,之后放置在真空干燥箱中用真空泵抽取20min,去除溶液中的气泡,制得聚二甲基硅氧烷的涂覆液;
步骤(2)制备掩盖板:取一片长50mm、宽25mm、厚1mm的硅模板,利用三维绘图软件绘制出梯度结构排布图,所述梯度结构排布图是以直径为10μm、深40μm的单元孔在模板上呈梯度分布,所述梯度分布方式以沿模板长边为准,以第一个1mm的距离内单元孔间距为10μm,在第二个1mm的距离内单元孔间距增至20μm并以此类推;然后以绘制的梯度结构排布图为参照,对硅模板进行雕刻处理;选用的基底为玻璃基底,并对其进行预清洗,即将玻璃基底依次在丙酮、无水酒精、去离子水中超声10~20min,超声频率为50~100Hz,之后用水洗净并进行干燥处理;然后将处理好的硅模板紧密贴合在预清洗后的玻璃基底表面上;将步骤(1)制备的涂覆液通过旋涂的方式均匀覆盖在硅模板表面,具体旋涂方式的旋涂次数为1次,先以每分钟1500转的速率旋涂5s,再以每分钟8000转的速率旋涂20s,最后以每分钟1500转的速率旋涂5s,之后将旋涂有涂覆液的硅模板以温度为75℃干燥20min,从而在硅模板表面上形成涂覆液的薄膜;
步骤(3)制备具有柔性的多级梯度结构表面:准备厚度为1mm、宽为25mm的VHB胶带,先将VHB胶带拉伸,并维持50%的应变量,然后将步骤(2)制得的掩盖板旋涂有涂覆液薄膜的一面与拉伸后的VHB胶带紧密贴合,在温度为80℃的烘箱中处理2个小时;之后将玻璃基底与硅模板揭下,复制了硅模板梯度结构的涂覆液薄膜便与VHB胶带紧密贴合;最后释放对VHB胶带的拉力,紧贴在VHB胶带表面上的聚二甲基硅氧烷薄膜便由于收缩力在其表面上产生屈曲与梯度相结合的多级结构;
步骤(4)制备遮挡板:使用三维绘图软件绘制出一个等边梯形,梯形上短边长25mm,下长边长82.8mm,高50mm,两腰长115mm且与上下边夹角分别为120°和60°,取一厚度0.3mm、尺寸与上述等边梯形相同的铜片,将铜片沿梯形的高折叠使之夹角呈90°,即折成一楔形的遮挡板;
步骤(5)制备化学梯度与柔性多级梯度结构相结合的表面:将步骤(4)制得的遮挡板的三角形长边处覆盖在步骤(3)制备的具有柔性的多级梯度结构表面上,遮挡板的楔形开口方向为VHB胶带上柱子更密集的方向;将其放置在等离子表面处理机中处理60min后取出,将遮挡板移去后即得到化学梯度与柔性多级梯度结构相结合的表面;
步骤(6)将至少3条通过步骤(1)至(5)制得的化学梯度与柔性多级梯度结构相结合的表面,按照表面柱子由疏到密的顺序,将至少3条上述结构的表面从上至下排列成一个“Y”字型,组装成一个微反应器;至少两种反应流体会先汇集于交叉口反应,之后再流向竖直的流道。
根据本发明所述的制备方法制备的一种可调控的液滴自驱动微反应器,在柔性多级梯度结构表面的基础上,结合了材料表面的化学性能变化形成的化学梯度,进一步增强了材料表面驱动液滴定向运输的能力。同时改变了材料的物理结构与化学结构:屈曲上的柱状结构从左到右其梯度变化为由疏到密,从而致使材料的疏水性从左到右由强变弱;经过等离子处理后的材料由于遮挡板的作用,其受到的反应程度从左到右其梯度变化为由小到大,材料本身为疏水性,经过处理后会变为亲水性,从而致使材料的疏水性从左到右由强变弱。两者的结合极大的提高了材料对于液滴的定向驱动能力,排成“Y”字型后,两种反应流体会先汇集于交叉口反应,之后再流向竖直的流道。并且由于是以柔性的VHB胶带为基底制备的多级结构,还可以通过对基底的拉伸来实现多级结构排列密度的变化,从而实现对液滴定向驱动速度的控制,从而来调控反应进行的速率。
本发明的有益效果是:
1)使材料的物理梯度与化学梯度相结合,进一步提高的材料定向驱动液滴的能力。
2)以通过对柔性基底的拉伸来改变梯度结构的排布密度,改变了材料表面的疏水性程度,从而可以对反应流体流动速率进行调控,操作简单,无需外部辅助设备。
3)通过设计能使得液滴充分混合和快速运输,从而提高微反应器效率。
4)制备方法经济,操作便捷。
附图说明
图1为具有柔性的多级梯度结构表面的制备示意图,图中标号为:1为VHB胶带,2为涂覆液薄膜,3为硅模板,4为玻璃基底,5为屈曲与梯度相结合的多级结构。
图2为多级结构表面等离子处理示意图,其中6为遮挡板。
具体实施方式
下面结合附图进一步说明本发明。
参照附图。实施例1 本实施例包括以下步骤:
步骤(1)制备涂覆液:5g聚二甲基硅氧烷(PDMS)涂覆液的预聚物与0.5g交联剂混合搅拌均匀,之后放置在真空干燥箱中用真空泵抽取20min,去除溶液中的气泡,制得聚二甲基硅氧烷的涂覆液;
步骤(2)制备掩盖板:取一片长50mm、宽25mm、厚1mm的硅模板3,利用三维绘图软件绘制出梯度结构排布图,所述梯度结构排布图是以直径为10μm、深40μm的单元孔在模板上呈梯度分布,所述梯度分布方式以沿模板长边为准,以第一个1mm的距离内单元孔间距为10μm,在第二个1mm的距离内单元孔间距增至20μm并以此类推;然后以绘制的梯度结构排布图为参照,对硅模板进行雕刻处理;选用的基底为玻璃基底,并对其进行预清洗,即将玻璃基底依次在丙酮、无水酒精、去离子水中超声10~20min,超声频率为50~100Hz,之后用水洗净并进行干燥处理;然后将处理好的硅模板紧密贴合在预清洗后的玻璃基底表面上;将步骤(1)制备的涂覆液通过旋涂的方式均匀覆盖在硅模板表面,具体旋涂方式的旋涂次数为1次,先以每分钟1500转的速率旋涂5s,再以每分钟8000转的速率旋涂20s,最后以每分钟1500转的速率旋涂5s,之后将旋涂有涂覆液的硅模板以温度为75℃干燥20min,从而在硅模板3表面上形成涂覆液薄膜2;
步骤(3)制备具有柔性的多级梯度结构表面:准备厚度为1mm、宽为25mm的VHB胶带1,先将VHB胶带拉伸,并维持50%的应变量,然后将步骤(2)制得的掩盖板旋涂有涂覆液薄膜2的一面与拉伸后的VHB胶带紧密贴合,在温度为80℃的烘箱中处理2个小时;之后将玻璃基底与硅模板揭下,复制了硅模板梯度结构的涂覆液薄膜便与VHB胶带紧密贴合;最后释放对VHB胶带的拉力,紧贴在VHB胶带表面上的聚二甲基硅氧烷薄膜便由于收缩力在其表面上产生屈曲与梯度相结合的多级结构5;
步骤(4)制备遮挡板6:使用三维绘图软件绘制出一个等边梯形,梯形上短边长25mm,下长边长82.8mm,高50mm,两腰长115mm且与上下边夹角分别为120°和60°,取一厚度0.3mm、尺寸与上述等边梯形相同的铜片,将铜片沿梯形的高折叠使之夹角呈90°,即折成一楔形的遮挡板;
步骤(5)制备化学梯度与柔性多级梯度结构相结合的表面:将步骤(4)制得的遮挡板的三角形长边处覆盖在步骤(3)制备的具有柔性的多级梯度结构表面上,遮挡板的楔形开口方向为VHB胶带上柱子更密集的方向;将其放置在等离子表面处理机中处理60min后取出,将遮挡板移去后即得到化学梯度与柔性多级梯度结构相结合的表面。
步骤(6)将3条通过步骤(1)至(5)制得的化学梯度与柔性多级梯度结构相结合的表面,按照表面柱子由疏到密的顺序,将3条上述结构的表面从上至下排列成一个“Y”字型,组装成一个微反应器;所述的“Y”字型排列,为两种液体混合反应的微反应器,可以视情况再增加所需的流道。反应液体首先流向“Y”字型中间处汇集混合,然后再流向“Y”字型的末端。
实施例2本实施例与实施例1的不同之处在于:适当对基底进行拉伸,可以使得材料表面柱子排列变得更加稀疏,从而轻微改变了材料表面的疏水性,进而对流体的流动速度产生影响。
本方法制备的一种可调控的液滴自驱动微反应器,材料表面上具有屈曲结构,在屈曲结构上还具有呈梯度分布的柱状结构,且材料表面具有化学梯度,润湿性由疏水性逐渐变为亲水性。液体在材料表面不同长度方向上接触角不同,从而滴落在“Y”字型上端的反应流体会受到表面张力的驱动发生定向移动,汇集于“Y”字型交叉口反应,最后于竖直流道上流出。

Claims (1)

1.一种可调控的液滴自驱动微反应器的制备方法,其特征在于包括以下步骤:
步骤(1)制备涂覆液:将聚二甲基硅氧烷的预聚物与交联剂以质量为10:1的比例混合搅拌均匀,之后放置在真空干燥箱中用真空泵抽取20min,去除溶液中的气泡,制得聚二甲基硅氧烷的涂覆液;
步骤(2)制备掩盖板:取一片长50mm、宽25mm、厚1mm的硅模板,利用三维绘图软件绘制出梯度结构排布图,所述梯度结构排布图是以直径为10μm、深40μm的单元孔在模板上呈梯度分布,所述梯度分布方式以沿模板长边为准,以第一个1mm的距离内单元孔间距为10μm,在第二个1mm的距离内单元孔间距增至20μm并以此类推;然后以绘制的梯度结构排布图为参照,对硅模板进行雕刻处理;选用的基底为玻璃基底,并对其进行预清洗,即将玻璃基底依次在丙酮、无水酒精、去离子水中超声10~20min,超声频率为50~100Hz,之后用水洗净并进行干燥处理;然后将处理好的硅模板紧密贴合在预清洗后的玻璃基底表面上;将步骤(1)制备的涂覆液通过旋涂的方式均匀覆盖在硅模板表面,具体旋涂方式的旋涂次数为1次,先以每分钟1500转的速率旋涂5s,再以每分钟8000转的速率旋涂20s,最后以每分钟1500转的速率旋涂5s,之后将旋涂有涂覆液的硅模板以温度为75℃干燥20min,从而在硅模板表面上形成涂覆液的薄膜;
步骤(3)制备具有柔性的多级梯度结构表面:准备厚度为1mm、宽为25mm的VHB胶带,先将VHB胶带拉伸,并维持50%的应变量,然后将步骤(2)制得的掩盖板旋涂有涂覆液薄膜的一面与拉伸后的VHB胶带紧密贴合,在温度为80℃的烘箱中处理2个小时;之后将玻璃基底与硅模板揭下,复制了硅模板梯度结构的涂覆液薄膜便与VHB胶带紧密贴合;最后释放对VHB胶带的拉力,紧贴在VHB胶带表面上的聚二甲基硅氧烷薄膜便由于收缩力在其表面上产生屈曲与梯度相结合的多级结构;
步骤(4)制备遮挡板:使用三维绘图软件绘制出一个等边梯形,梯形上短边长25mm,下长边长82.8mm,高50mm,两腰长115mm且与上下边夹角分别为120°和60°,取一厚度0.3mm、尺寸与上述等边梯形相同的铜片,将铜片沿梯形的高折叠使之夹角呈90°,即折成一楔形的遮挡板;
步骤(5)制备化学梯度与柔性多级梯度结构相结合的表面:将步骤(4)制得的遮挡板的三角形长边处覆盖在步骤(3)制备的具有柔性的多级梯度结构表面上,遮挡板的楔形开口方向为VHB胶带上柱子更密集的方向;将其放置在等离子表面处理机中处理60min后取出,将遮挡板移去后即得到化学梯度与柔性多级梯度结构相结合的表面;
步骤(6)将至少3条通过步骤(1)至(5)制得的化学梯度与柔性多级梯度结构相结合的表面,按照表面柱子由疏到密的顺序,将至少3条上述结构的表面从上至下排列成一个“Y”字型,组装成一个微反应器;至少两种反应流体会先汇集于交叉口反应,之后再流向竖直的流道。
CN201710325224.3A 2017-05-10 2017-05-10 一种可调控的液滴自驱动微反应器的制备方法 Active CN107159072B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710325224.3A CN107159072B (zh) 2017-05-10 2017-05-10 一种可调控的液滴自驱动微反应器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710325224.3A CN107159072B (zh) 2017-05-10 2017-05-10 一种可调控的液滴自驱动微反应器的制备方法

Publications (2)

Publication Number Publication Date
CN107159072A true CN107159072A (zh) 2017-09-15
CN107159072B CN107159072B (zh) 2019-03-19

Family

ID=59812578

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710325224.3A Active CN107159072B (zh) 2017-05-10 2017-05-10 一种可调控的液滴自驱动微反应器的制备方法

Country Status (1)

Country Link
CN (1) CN107159072B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114700004A (zh) * 2022-05-20 2022-07-05 东莞理工学院 一种皂膜式微化学反应器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1654311A (zh) * 2005-03-09 2005-08-17 吉林大学 利用软刻技术构造非紧密堆积胶体球有序排列的方法
CN102515091A (zh) * 2011-12-22 2012-06-27 哈尔滨工业大学 用于塑料功能性微结构表面批量化生产的采用软光刻技术复制塑料功能性微结构表面的方法
CN104401933A (zh) * 2014-11-04 2015-03-11 天津大学 一种去润湿和模板相结合构筑多级有序微结构的方法
WO2015038767A1 (en) * 2013-09-12 2015-03-19 Western Michigan University Research Foundation Microfluidic systems with microchannels and a method of making the same
CN105085952A (zh) * 2015-08-20 2015-11-25 中国科学院深圳先进技术研究院 可拉伸的柔性超疏液薄膜及制备方法与液滴无损转移方法
CN105833814A (zh) * 2016-04-27 2016-08-10 浙江工业大学 一种液滴自驱动式微反应器的制备方法及其微反应器
CN105906835A (zh) * 2016-07-06 2016-08-31 东南大学 一种孔洞梯度改变的生物材料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1654311A (zh) * 2005-03-09 2005-08-17 吉林大学 利用软刻技术构造非紧密堆积胶体球有序排列的方法
CN102515091A (zh) * 2011-12-22 2012-06-27 哈尔滨工业大学 用于塑料功能性微结构表面批量化生产的采用软光刻技术复制塑料功能性微结构表面的方法
WO2015038767A1 (en) * 2013-09-12 2015-03-19 Western Michigan University Research Foundation Microfluidic systems with microchannels and a method of making the same
CN104401933A (zh) * 2014-11-04 2015-03-11 天津大学 一种去润湿和模板相结合构筑多级有序微结构的方法
CN105085952A (zh) * 2015-08-20 2015-11-25 中国科学院深圳先进技术研究院 可拉伸的柔性超疏液薄膜及制备方法与液滴无损转移方法
CN105833814A (zh) * 2016-04-27 2016-08-10 浙江工业大学 一种液滴自驱动式微反应器的制备方法及其微反应器
CN105906835A (zh) * 2016-07-06 2016-08-31 东南大学 一种孔洞梯度改变的生物材料的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114700004A (zh) * 2022-05-20 2022-07-05 东莞理工学院 一种皂膜式微化学反应器
CN114700004B (zh) * 2022-05-20 2023-06-02 东莞理工学院 一种皂膜式微化学反应器

Also Published As

Publication number Publication date
CN107159072B (zh) 2019-03-19

Similar Documents

Publication Publication Date Title
CN107213929B (zh) 一种基于界面效应的微纳颗粒分离***
WO2003059499A1 (en) Microfluidic streak mixers
WO2008143923A1 (en) Microfluidic self-sustaining oscillating mixers and devices and methods utilizing same
CN109603935B (zh) 一种基于***式毛细管的微流控芯片加工方法
CN109847817B (zh) 一种微流控芯片及其制备方法
CN109453827A (zh) 基于亲液和/或疏液的微阵列实现流量控制的微流控芯片
CN103723676A (zh) 一种微流体通道的制备方法
CN107159072B (zh) 一种可调控的液滴自驱动微反应器的制备方法
CN110075934A (zh) 一种3d打印微流控器件及其大通量制备单分散乳液的方法
CN102719359A (zh) 一种细胞培养装置及其应用
CN110208073B (zh) 基于光热蒸发的微流控样品浓缩装置及使用方法
CN105521750B (zh) 基于聚焦声表面波的压电驱动微流体反应芯片
CN104190482B (zh) 以感光干膜为抗腐蚀掩膜制作玻璃微流体装置的方法
CN107824105B (zh) 一种基于移动气泡的可调节溶液浓度梯度的微混合器
GB2472506A (en) A Counter-flow filtrating unit and fluid processing device
CN104923324A (zh) 一种基于光敏树脂固化成型的pdms微流控芯片制备方法
CN101716473B (zh) 芯片内微混合器及其制作方法
Agnihotri et al. Controlling interfacial mixing zone for microfluidic flow of liquid streams
WO2007074906A1 (ja) マイクロ流体デバイスおよび物質分離方法
CN114452911B (zh) 一种超长纳米线和超长纳米线异质结材料的加工方法和装置
CN217140437U (zh) 一种高稳定性的液滴分选***及包含该***的微流控芯片
CN106391152A (zh) 通道上下两壁面指定位置可变形的微流控芯片
CN115463626A (zh) 亲疏水图案化基底环流微通道反应器及其制备方法
CN111632534B (zh) 基于单孔光纤的光热微流混合器
CN209362517U (zh) 一种管内液滴制备芯片结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant