CN107144821B - 宽带数字阵雷达中基于时延波束形成的高效接收通道 - Google Patents

宽带数字阵雷达中基于时延波束形成的高效接收通道 Download PDF

Info

Publication number
CN107144821B
CN107144821B CN201710222859.0A CN201710222859A CN107144821B CN 107144821 B CN107144821 B CN 107144821B CN 201710222859 A CN201710222859 A CN 201710222859A CN 107144821 B CN107144821 B CN 107144821B
Authority
CN
China
Prior art keywords
module
filter
signal
channel
receiving channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710222859.0A
Other languages
English (en)
Other versions
CN107144821A (zh
Inventor
邹林
赫肯约翰逊
钱璐
丁凯
周云
于雪莲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201710222859.0A priority Critical patent/CN107144821B/zh
Publication of CN107144821A publication Critical patent/CN107144821A/zh
Application granted granted Critical
Publication of CN107144821B publication Critical patent/CN107144821B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/06Non-recursive filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H2017/0072Theoretical filter design
    • H03H2017/0081Theoretical filter design of FIR filters

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明提供一种宽带数字阵雷达中基于时延波束形成的高效接收通道,相对于传统接收通道结构中每个接收通道一组子滤波器组,本发明基于Farrow结构的通道滤波器的设计,使每个接收通道使用同样的L+1个子滤波器组,使整个结构的复杂度大幅度降低;由于多通道公用一组子滤波器,只需要修改分数时延模块中的分数延时因子就可以重构整个接收通道的频率响应特性,***的灵活性更好。

Description

宽带数字阵雷达中基于时延波束形成的高效接收通道
技术领域
本发明属于信号处理技术,具体涉及宽带数字阵雷达中多路接收通道的抽取和时延同步调整技术。
背景技术
为了获得更高的距离分辨率,提高对目标的辨识能力,宽带数字阵雷达WBDAR应运而生。它采用了宽带信号来获取目标信息,在获取更高的距离分辨率的同时,提升了对目标识别和区分的能力。但也使WBDAR需要利用实延时线TTD来进行区域范围内大角度电子扫描来取代移相器。与传统的TTD模拟方法相比较,采用数字延时滤波器的方法在降低额外的***损耗的同时,提供了连续可变的精确时延用来保证宽带波束朝向任意方向的目标,极大的弥补了模拟时延补偿的诸多缺点。
近年来,随着模拟和数字芯片的高速发展,使得WADAR的实现变得可行。但高速的信号速处理速度和大量的硬件资源消耗增加了***的复杂度和成本,从而限制了WBDAR的实现。因此如何优化***结构和减少处理过程的复杂度仍然是研究的重点。
在传统的WBDAR的接收通道中,主要结构通常包含微波放大器LNA、高速模数转换ADC模块、正交本振混频单元NCO、信号抽取模块(Decimation),幅度和相位加权模块(Magnitude&Phase Weighting)、整数延时模块(Unit Delay)可变分数延时VFD滤波器,如图1所示。M倍信号抽取模块由抗混叠滤波器和抽取模块构成。信号抽取和VFD滤波器的设计成为提高***的高效性和可重构性的关键因素。传统的通道接收结构中,天线接收信号经过微波放大器LNA输出射频信号再经ADC采样,以增加动态范围,减少接收机相位噪声,采样后的信号再经过正交本振的混频后,由抽取模块进行信号抽取,从而降低信号数据率,中间的幅度加权和相位加权是为了抑制接收波束旁瓣和补偿由多路通道射频信号到达时间差所引起的相位差。最后经过一个整数延时和分数延时VFD模块,最后输出相应的信号。VFD滤波器采用Farrow结构,如图2所示,由L+1个FIR子滤波器Gk(z)、L个延时单元、以及L个加法器级联而成,dk是分数延时因子,k=0,1,2…,L。需要注意的是,这里的抽取和VFD滤波器模块是分开的,这样的结构一定程度上增加了***的复杂度,降低了***的工作效率,同时***的可重构性差。
一个数字信号处理***中,乘法器和加法器数量成为了整个硬件的主要资源消耗,考虑到***可能工作在不同的频率,我们使用乘法速率和加法速率比率来评估***的复杂度,其中乘法速率Rm表示如下:
Figure GDA0002243595710000021
其中,M是抽取因子,Cm是乘法器数量。同理,加法速率Ra表示如下:
Figure GDA0002243595710000022
其中Ca是加法器数量。
在传统WBDAR通道接收结构中,在一级抽取的情况下,其乘法器数量Cmo和加法器数量Cao如下:
Cmo=N[N1+2+3+(L+1)(Ns+1)+2L], (3)
Cao=N[2N1+5+2Ns(L+1)+2L]+2N-2, (4)
其中,N1是抽取前抗混叠滤波器的阶数,Ns是VFD滤波器中子滤波器阶数,L是VFD滤波器中Farrow结构并行分支的数量,N是整个接收通道个数,这里只考虑偶数抗混叠滤波器和奇数阶子滤波器,其他阶数与此类似。
考虑2级抽取的情况下,Rmo和Rao表示如下:
Figure GDA0002243595710000023
Figure GDA0002243595710000024
其中,Ni,i=1,2分别代表1级抽取前以及2级抽取前抗混叠滤波器的阶数,Mi,i=1,2分别代表1级抽取与2级抽取中的抽取因子,整个接收通道的抽取因子M=M1M2
通过以上分析可以看出,传统的接收通道结构中,复杂度和高效性均没有达到理想状态,还有进一步优化的空间,同时它的可重构性和灵活性不足,这也是需要进一步改进的地方。
发明内容
本发明所要解决的技术问题是,在宽带数字阵雷达中提供一种高效的,灵活的,具有可重构性的接收通道结构。
本发明为解决上述技术问题所采用的技术方案是,宽带数字阵雷达中基于时延波束形成的高效接收通道,包括N路接收通道、2个一级加法器、2组FIR子滤波器组,N路接收通道中的N路I信号输出与1个一级加法器的输入端相连,N路接收通道中的N路Q信号与另一个1个一级加法器输入端相连,一级加法器的输出端分别与对应的1组FIR子滤波器组的输入端相连;I信号与Q信号表示互为正交的信号;每一路接收通道包括模数转换器、整数延时模块、正交本振混频单元、多相分解模块、分数时延模块、2个二级加法器、加权模块;模数转换器的输出端与整数延时模块的输入端相连,整数延时模块的输出端与正交本振混频单元的输入端相连,正交本振混频单元的I信号与Q信号经多相分解模块与分数时延模块的I信号与Q信号的输入端相连,分数时延模块的I信号输出端与1个二级加法器相连,分数时延模块的Q信号输出端与另1个二级加法器相连,2个二级加法器的输出端与加权模块输入端相连,加权模块中I信号输出为该路接收通道的I信号输出,加权模块中Q信号输出为该路接收通道的Q信号输出。
相对于传统接收通道结构中每个接收通道一组子滤波器组,本发明基于Farrow结构的通道滤波器的设计,使每个接收通道使用同样的L+1个子滤波器组,使整个结构的复杂度大幅度降低;由于多通道公用一组子滤波器,只需要修改分数时延模块中的分数延时因子就可以重构整个接收通道的频率响应特性,***的灵活性更好。
本发明的有益效果是,结构复杂度更低,灵活性和可重构性更强。
附图说明
图1为传统的WBDAR接收通道结构示意图;
图2为Farrow基本结构;
图3为本发明设计过程中通道滤波器的结构示意图;
图4为本发明接收通道结构示意图。
具体实施方式
本发明中的关键部分包含了基于Farrow结构的分数时延抽取器,以及与之功能实现相匹配的通道滤波器的设计。
实施例的总体结构如图4所示,包括N路接收通道、2个一级加法器、2组FIR子滤波器,N路接收通道中的N路I信号输出与1个一级加法器的输入端相连,N路接收通道中的N路Q信号与另一个1个一级加法器输入端相连,一级加法器的输出端分别与对应的1组FIR子滤波器的输入端相连;I信号与Q信号表示互为正交的信号;
每一路接收通道包括模数转换器、整数延时模块、正交本振混频单元、多相分解模块、分数时延模块、2个二级加法器、加权模块;模数转换器的输出端与整数延时模块的输入端相连,整数延时模块的输出端与正交本振混频单元的输入端相连,正交本振混频单元的I信号与Q信号经多相分解模块与分数时延模块的I信号与Q信号的输入端相连,分数时延模块的I信号输出端与1个二级加法器相连,分数时延模块的Q信号输出端与另1个二级加法器相连,2个二级加法器的输出端与加权模块输入端相连,加权模块中I信号输出为该路接收通道的I信号输出,加权模块中Q信号输出为该路接收通道的Q信号输出;
通道滤波器由分数时延模块、二级加法器和FIR子滤波器组组成,如图3所示;
M路多相分解模块用于完成一个M路多相分解,其主要作用是降低每一路信号的速率,使其降为原来的1/M;通道滤波器包含了M个分数时延加权模块,同时每一相分解因子又包含了L+1个并行乘法因子,用
Figure GDA0002243595710000041
表示,其中m=0,1,2…,M-1表示多相分解的M个因子,k=0,1,2…,L表示每个分解路中并行的L+1路乘法因子。二级加法器用于把这多相分解的M路中各自的L+1路并行分支信号相加求和。
FIR子滤波器组传递函数用Gk(z)表示,k=0,1,2…,L,其中每一个Gk(z)为一个子FIR滤波器的传递函数。通道滤波器要需要与分数时延抽取器结构相匹配,则需要设置合理的通道滤波器的分数延时因子与冲激响应。
理想情况下,通道滤波器的频率响应如下表示:
Figure GDA0002243595710000042
其中,Nc为整个通道滤波器的阶数,w为角频率,T为时间变量,ws为截止角频率,wsT=π/M,M为抽取因子,d为整个通道的分数延时系数。整个通道的多相分解结构的转移公式为:
Figure GDA0002243595710000043
其中,m为多相分解的分支变量,m=0,1...,M-1,z为z变量,Hm(zM)是每一个分支的转移公式。这里可以通过利用一个如图2所示的Farrow结构实现多相分解,转移公式为:
Figure GDA0002243595710000044
其中,dk为第k条并行分支的分数延时因子,Gk(z)是子滤波器组在z变换域的传递函数;
因此,整个通道的多相分解结构转移公式(7)可以改写为:
Figure GDA0002243595710000045
其中,
Figure GDA0002243595710000046
为多相分解第每m路第k条并行分支对应的分数延时因子,m=0,1...,M-1,k=0,1,2…,L。
一个阶数为Ns的FIR子滤波器与多相分解分支数M以及整个通道滤波器阶数N的关系可以用以下式子表示:
N=(Ns+1)M-1 (11)
再结合公式(7),(8)和(11),可以得出:
Figure GDA0002243595710000047
再把(11)带入(12)可以得出:
Figure GDA0002243595710000048
其中,dm为多相分解第m路的分数延时因子,d是整个通道的分数延时。此时可以得出整个通道滤波器多相分解后每一分支的冲激响应为:
Figure GDA0002243595710000051
其中,n=0,1…,N1,m=0,1…,M-1,N1为Farrow结构子滤波器的阶数,gk(n)是子滤波器时域冲激响应函数。
本发明结构的复杂度可以用***的乘法器和加法器的数量来表示,结果如下:
Cmn=2NLM+3N(L+1)+(Ns+1)(L+1), (15)
Can=2N(L+1)(M-1)+5N(L+1)+2(N-1)(L+1)+2(L+1)Ns+2L (16)
可以看出,本发明设计得到的基于时延波束形成的高效接收通道结构,使传统的宽带数字阵雷达中接收通道结构的实现复杂度大大降低。当N=8,M=2,Ns=5,N1=26,N2=0,L=3时,由(3)(4)公式可以推出传统的接收通道结构乘法运算率和加法运算率分别为Rmo=244,Rao=419,而本发明的接收通道结构中,满足同样配置下,当Ns=13时,由公式(15)(16)可以求出Rmn=124,Ran=195,明显优于传统结构。乘法器和加法器的使用数量降低,单位时间内需要完成的乘法运算和加法运算次数大大减少,降低了***实现的复杂度。
通过设计多相分解模块以及与之相匹配的通道滤波器,使整个接收通道结构的灵活性和可重构性大幅度增加。传统的通道接收结构需要预先配置大量的滤波器参数和分解因子以及分数延时因子,限制了整个接收结构的灵活性和可重构性。本发明的结构通过设计合适的基于多相分解和Farrow结构的通道滤波器,代替了传统的抗混叠滤波器以及VFD结构,减少了参数设置,同时灵活性更高,只需要修改通道滤波器的分数时延加权参数就可以改变通道的频率响应。
整个接收通道结构具体实现步骤如下:
步骤一、设置多相分解模块与通道滤波器代替传统的抗混叠滤波器以及VFD结构的功能。首先信号通过一个M路多相分解,然后进入设计的通道滤波器。通道滤波器的理想频率响应函数由公式(7)给出,按照公式(14)的冲激响应进行设计。通道滤波器的参数设置包含三部分,一是通道滤波器中分数时延因子的设置,参照公式(13),可以求出相应的分数延时因子dm;二是子滤波器组Gk(z)的阶数设置Ns;三是子滤波器组Gk(z)的系数设置。分数时延模块与加权模块对M组L+1路信号进行分数时延加权,再求和合并后,生成L+1路信号。
步骤二、先配置一路接收通道结构,低噪放模块LNA、数据采集模块ADC,整数时延模块(Unit Delay D0)依次串联,然后通过一个正交本振混频单元后,到达多相分解模块。
步骤三、经过多相分解模块、分数时延模块的信号再经过幅度和相位加权(weighting Wn)后生成L+1路信号,n=0,1...,N-1。
步骤四、一路接收通道设置完成后,再设置剩余的N-1路接收通道结构,每一路接收通道结构按照步骤一到步骤三设置。最后把N路接收通道的N(L+1)路信号通过第一级加法器进行求和合并,生成L+1路信号,分为I、Q两路进入各自对应的L+1子滤波器组,实现了N路通道共用一个子滤波器组。
经过上述步骤处理,即可得到符合要求的两路正交输出信号yI,yq

Claims (1)

1.宽带数字阵雷达中基于时延波束形成的高效接收通道,其特征在于,包括N路接收通道、2个一级加法器、2组FIR子滤波器组,N路接收通道中的N路I信号输出与1个一级加法器的输入端相连,N路接收通道中的N路Q信号与另一个1个一级加法器输入端相连,一级加法器的输出端分别与对应的1组FIR子滤波器组的输入端相连;I信号与Q信号表示互为正交的信号;每一路接收通道包括模数转换器、整数延时模块、正交本振混频单元、多相分解模块、分数时延模块、2个二级加法器、加权模块;模数转换器的输出端与整数延时模块的输入端相连,整数延时模块的输出端与正交本振混频单元的输入端相连,正交本振混频单元的I信号与Q信号经多相分解模块与分数时延模块的I信号与Q信号的输入端相连,分数时延模块的I信号输出端与1个二级加法器相连,分数时延模块的Q信号输出端与另1个二级加法器相连,2个二级加法器的输出端与加权模块输入端相连,加权模块中I信号输出为该路接收通道的I信号输出,加权模块中Q信号输出为该路接收通道的Q信号输出;
分数时延模块的分数延时因子为:
其中,dm为多相分解第m路的分数延时因子,d是整个通道的分数延时,M为整个通道滤波器的抽取因子,m为抽取模块的多相分解的分支变量,m=0,1...,M-1;通道滤波器由分数时延模块、二级加法器和FIR子滤波器组组成;
通道滤波器经过多相分解后,得到的多相分支滤波器冲激响应h(Mn+m),用Farrow结构表示为:
Figure FDA0002243595700000012
其中,Ns为Farrow结构FIR子滤波器的阶数n=0,1...,Ns,m=0,1...,M-1,gk(n)是FIR子滤波器时域冲激响应函数,
Figure FDA0002243595700000013
为多相分解第m路第k条并行分支对应的分数延时因子,m=0,1...,M-1,k=0,1,2...,L,L是通道滤波器中Farrow结构并行分支的数量。
CN201710222859.0A 2017-04-07 2017-04-07 宽带数字阵雷达中基于时延波束形成的高效接收通道 Active CN107144821B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710222859.0A CN107144821B (zh) 2017-04-07 2017-04-07 宽带数字阵雷达中基于时延波束形成的高效接收通道

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710222859.0A CN107144821B (zh) 2017-04-07 2017-04-07 宽带数字阵雷达中基于时延波束形成的高效接收通道

Publications (2)

Publication Number Publication Date
CN107144821A CN107144821A (zh) 2017-09-08
CN107144821B true CN107144821B (zh) 2020-01-14

Family

ID=59773805

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710222859.0A Active CN107144821B (zh) 2017-04-07 2017-04-07 宽带数字阵雷达中基于时延波束形成的高效接收通道

Country Status (1)

Country Link
CN (1) CN107144821B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108051785B (zh) * 2017-11-24 2020-06-16 电子科技大学 宽带数字阵列雷达接收通道的优化设计方法
CN108768343A (zh) * 2018-05-23 2018-11-06 成都玖锦科技有限公司 基于多相滤波器的高精度延时方法
CN108777569A (zh) * 2018-05-23 2018-11-09 成都玖锦科技有限公司 基于多相滤波器的任意延时方法
CN111367196B (zh) * 2020-03-05 2023-08-18 上海机电工程研究所 W波段宽带可变分数延时方法及***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101908858A (zh) * 2010-07-26 2010-12-08 四川九洲电器集团有限责任公司 一种宽带接收数字前端处理方法
CN102098509A (zh) * 2010-11-19 2011-06-15 浙江大学 基于Farrow结构的可重构插值滤波器
CN102542785A (zh) * 2011-11-25 2012-07-04 中国船舶重工集团公司第七二四研究所 多通道宽带电子信号同步采集***的设计与实现方法
US8442402B1 (en) * 2011-08-05 2013-05-14 Rockwell Collins, Inc. Wide band digital receiver: system and method
WO2014049384A1 (en) * 2012-09-26 2014-04-03 Renesas Mobile Corporation Method for digitizing an analogue signal for further demodulation in a radio receiving device
CN103969626A (zh) * 2014-05-20 2014-08-06 西安电子科技大学 基于全通型可变分数延时滤波器的宽带数字波束形成方法
CN104375132A (zh) * 2014-11-28 2015-02-25 中国电子科技集团公司第三十八研究所 数字阵列雷达多路模拟通道相对延时测量装置及方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010124523A1 (en) * 2009-04-29 2010-11-04 The University Of Hong Kong Methods or structures for reconstruction of substantially uniform samples from substantially nonuniform samples
US9048865B2 (en) * 2009-12-16 2015-06-02 Syntropy Systems, Llc Conversion of a discrete time quantized signal into a continuous time, continuously variable signal

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101908858A (zh) * 2010-07-26 2010-12-08 四川九洲电器集团有限责任公司 一种宽带接收数字前端处理方法
CN102098509A (zh) * 2010-11-19 2011-06-15 浙江大学 基于Farrow结构的可重构插值滤波器
US8442402B1 (en) * 2011-08-05 2013-05-14 Rockwell Collins, Inc. Wide band digital receiver: system and method
CN102542785A (zh) * 2011-11-25 2012-07-04 中国船舶重工集团公司第七二四研究所 多通道宽带电子信号同步采集***的设计与实现方法
WO2014049384A1 (en) * 2012-09-26 2014-04-03 Renesas Mobile Corporation Method for digitizing an analogue signal for further demodulation in a radio receiving device
CN103969626A (zh) * 2014-05-20 2014-08-06 西安电子科技大学 基于全通型可变分数延时滤波器的宽带数字波束形成方法
CN104375132A (zh) * 2014-11-28 2015-02-25 中国电子科技集团公司第三十八研究所 数字阵列雷达多路模拟通道相对延时测量装置及方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
A new approach for beamforming of wideband digital array radar based on variable fractional delay filter;Lin Zou等;《proceedings of the 2012 second international on electric information and control engineering》;20121231;全文 *
A reconfigurable FIR filter design using dynamic partial reconfiguration;Oh Y J等;《ISCAS 2006. Proceedings. 2006 IEEE International Symposium on Circuits and Systems》;20060911;全文 *
Farrow-Structure-Based Reconfigurable Bandpass Linear-Phase FIR Filters for Integer Sampling Rate Conversion;H. Johansson等;《IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS》;20110131;全文 *
基于Farrow滤波器的宽带数字波束形成技术研究及实现;彭宏涛等;《船舰电子对抗》;20150622;全文 *
宽带数字阵列雷达关键技术研究;邹林;《中国博士学位论文全文数据库》;20160215;全文 *
宽带数字阵列雷达波束形成的优化实现方法;邹林等;《电子科技大学学报》;20120531;第41卷(第3期);全文 *

Also Published As

Publication number Publication date
CN107144821A (zh) 2017-09-08

Similar Documents

Publication Publication Date Title
CN107144821B (zh) 宽带数字阵雷达中基于时延波束形成的高效接收通道
US20210167494A1 (en) Programmable beamforming system including element-level analog channelizer
CN101296014B (zh) 一种宽带数字波束形成方法
CN101304404B (zh) 一种宽带时域数字波束形成方法
US20070067376A1 (en) Complimentary discrete fourier transform processor
US20030076907A1 (en) Recursive resampling digital filter structure for demodulating 3G wireless signals
Lin et al. A new flexible filter bank for low complexity spectrum sensing in cognitive radios
WO2008149258A3 (en) Digital signal processing circuit and method comprising band selection
Harris et al. Polyphase analysis filter bank down-converts unequal channel bandwidths with arbitrary center frequencies
IL278048B1 (en) A method for zero-latency filtering and related devices
CN102148679B (zh) 低复杂度的宽带信号数字选频方法
Dudarin et al. Simple multiplierless CIC compensators providing minimum passband deviation
CN102647197B (zh) 多频段数字相控阵接收天线的信道化方法
CN107566024B (zh) 一种高效的基于时延波束形成的宽带数字阵列接收通道
CN108696464B (zh) 一种iq与4通道tiadc联合失真盲估计与修正方法
CN110690909B (zh) 一种低复杂度的动态非均匀信道化用户分离方法
US9306606B2 (en) Nonlinear filtering using polyphase filter banks
Harris et al. Cascade linear phase recursive half-band filters implement the most efficient digital down converter
EP1198882B1 (en) Reduced delay implementation of fourier transform based channelizers and de-channelizers
Slyusar et al. Forming the response of two-channel demodulators
Garg et al. FPGA implementation of high speed reconfigurable filter bank for multi-standard wireless communication receivers
Harris et al. An efficient channelizer tree for portable software defined radios
CN114337764B (zh) 一种基于多相dft数字信道化接收机的普适性方法及***
Swietach et al. Non-standard analysis filter bank design applied to hybrid filter bank architecture
Wadiwala et al. Design & Comparison of Lossless Polyphase Decomposition using Filter Bank for Onboard Digital Signal Processing Payload

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant