CN107134341B - 一种垂直取向强磁性介质薄膜及其制备方法 - Google Patents

一种垂直取向强磁性介质薄膜及其制备方法 Download PDF

Info

Publication number
CN107134341B
CN107134341B CN201710266362.9A CN201710266362A CN107134341B CN 107134341 B CN107134341 B CN 107134341B CN 201710266362 A CN201710266362 A CN 201710266362A CN 107134341 B CN107134341 B CN 107134341B
Authority
CN
China
Prior art keywords
ferromagnetism
layer
vertical orientation
dielectric
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710266362.9A
Other languages
English (en)
Other versions
CN107134341A (zh
Inventor
崔伟斌
王强
张同博
钟辉
周小倩
付艳请
于德东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201710266362.9A priority Critical patent/CN107134341B/zh
Publication of CN107134341A publication Critical patent/CN107134341A/zh
Application granted granted Critical
Publication of CN107134341B publication Critical patent/CN107134341B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/14Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing iron or nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/16Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/26Thin magnetic films, e.g. of one-domain structure characterised by the substrate or intermediate layers
    • H01F10/28Thin magnetic films, e.g. of one-domain structure characterised by the substrate or intermediate layers characterised by the composition of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/26Thin magnetic films, e.g. of one-domain structure characterised by the substrate or intermediate layers
    • H01F10/30Thin magnetic films, e.g. of one-domain structure characterised by the substrate or intermediate layers characterised by the composition of the intermediate layers, e.g. seed, buffer, template, diffusion preventing, cap layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/20Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/20Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by evaporation
    • H01F41/205Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by evaporation by laser ablation, e.g. pulsed laser deposition [PLD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/22Heat treatment; Thermal decomposition; Chemical vapour deposition

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Thin Magnetic Films (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

本发明涉及一种强磁性介质薄膜,具体涉及一种垂直取向强磁性介质薄膜及其制备方法。本发明的技术方案如下:一种垂直取向强磁性介质薄膜,包括依次层叠的衬底、缓冲层、垂直取向强磁性介质层和保护层,所述衬底为单晶、多晶或非晶基片,所述缓冲层材质为具有六方晶体结构的无机非金属氮化物陶瓷,所述垂直取向强磁性介质层为钐钴薄膜、铝镍钴薄膜、鉄铂薄膜、铁钯薄膜、钴铂薄膜和/或钴钯薄膜,所述保护层为过渡金属、氮化物膜体材料或氧化物膜体材料。本发明提供的垂直取向强磁性介质薄膜及其制备方法,具有体积小、垂直磁化方向、作为存储单元的晶粒尺寸小、矫顽力大、稳定性高等优点,制备工艺简单,应用领域更广。

Description

一种垂直取向强磁性介质薄膜及其制备方法
技术领域
本发明涉及一种强磁性介质薄膜,具体涉及一种垂直取向强磁性介质薄膜及其制备方法。
背景技术
高磁晶各向异性材料具有机械能与电磁能相互转化的功能。利用其能量转换功能和磁的各种物理效应,如磁共振效应、磁力学效应、磁化学效应、磁生物效应、磁电阻效应、霍尔效应等,可将高磁晶各相异性材料做成各种形式的功能器件。这些功能器件已经成为计算机、通讯网络、航空航天、交通、家电和信息记录等高新技术领域的核心功能器件。
在信息存储领域,提高垂直磁记录介质密度在于不断缩小磁介质中晶粒的粒径。另一方面,缩小磁性晶粒的粒径使记录的磁化(信号)的热稳定性下降。因此,要求使用具有更高结晶磁各向异性的材料作为记录材质。代表性的材料有L10有序FePt、CoPt、FePd、CoPd等合金。
除了含有贵金属的材料,稀土-过渡金属间化合物,如钐钴合金,被认为是潜在替代材料。但是钐钴合金薄膜的易磁化方向通常为沿面内方向。A.Singh et al在Growth ofepitaxial SmCo5films on Cr/MgO(100)(Appl.Phys.Lett.,87(2005)072505)中采用单晶MgO(100)基片实现了Sm-Co合金薄膜的面内取向。但是这种面内取向的薄膜不适合垂直磁记录方式。
为了制备沿基片法相取向生长的Sm-Co薄膜时,通常使用昂贵的Al2O3(0001)单晶基片并且使用贵金属Ru作为缓冲层,采取外延生长方法;但这种方法制备的薄膜矫顽力较低,只有1.35T的室温矫顽力,最主要的是Al2O3(0001)单晶基片成本很高。而采用金属缓冲层,比如Cu、Pt(J.Appl.Phys.,100,053913(2006))、TiW合金(J.Magn.Magn.Mater.,324(2012)3658)、Ti(Sayama et al,Thin films of SmCo5with very high perpendicularmagnetic anisotropy,Appl.Phys.Lett.85(2004)5640)、Ta(J.S.Chen,Highly texturedSmCo5(001)thin film with high coercivity,J.Appl.Phys.104(2009)093905)以及Ni-W合金(L.N.Zhang et al,A study on magnetic properties and structure ofSmCo5thin films on Ni–W underlayers,J.Magn.Magn.Mater.,322(2010)3737)等材料,所得Sm-Co基磁性薄膜或者矫顽力很低(室温矫顽力不超过1T),或者沿薄膜法向的矩形度差。
发明内容
本发明提供一种垂直取向强磁性介质薄膜及其制备方法,具有体积小、垂直磁化方向、作为存储单元的晶粒尺寸小、矫顽力大、稳定性高等优点,制备工艺简单,应用领域更广。
本发明的技术方案如下:
一种垂直取向强磁性介质薄膜,包括依次层叠的衬底、缓冲层、垂直取向强磁性介质层和保护层,所述衬底为单晶、多晶或非晶基片,所述缓冲层材质为具有六方晶体结构的无机非金属氮化物陶瓷,所述垂直取向强磁性介质层为钐钴薄膜、铝镍钴薄膜、鉄铂薄膜、铁钯薄膜、钴铂薄膜和/或钴钯薄膜,所述保护层为过渡金属、氮化物膜体材料或氧化物膜体材料。
所述的垂直取向强磁性介质薄膜,其中所述衬底材料为玻璃、石英、Si、SiO2、Al2O3或MgO。
所述的垂直取向强磁性介质薄膜,其中所述缓冲层材料为具有六方结构的AlN或掺杂M(M为Ti、V、Cr、Mn、Cu、Zn、Ga、Nb、Zr、Hf、Ta、W等过渡族金属)的(Al1-xMx)N,其中0≤X<1。
所述的垂直取向强磁性介质薄膜,其中所述保护层材料为Ru、Ti、Cr、Ta、Mo、SiO2或SiNx
所述的垂直取向强磁性介质薄膜,其中所述缓冲层的厚度为1~100nm,所述垂直取向强磁性介质层的厚度为10~500nm,所述保护层的厚度为1~50nm。
一种上述的垂直取向强磁性介质薄膜的制备方法,包括如下步骤:
(1)将衬底清洁干燥;
(2)真空条件下采用磁控溅射、多弧离子镀、脉冲激光沉积、电子束蒸发或原子层沉积的方式在衬底表面制备缓冲层;
(3)真空条件下采用磁控溅射、多弧离子镀、脉冲激光沉积、电子束蒸发或原子层沉积的方式在所述缓冲层表面制备垂直取向强磁性介质层,获得颗粒、岛状、团簇状或连续膜的微观形貌;
(4)真空条件下采用镀膜技术在所述垂直取向强磁性介质层表面制备保护层。
所述的垂直取向强磁性介质薄膜的制备方法,其优选方案为,所述步骤(3)中,背地真空度优于1*10-4Pa,沉积时采用Ar气氛,沉积气压在0.1~100Pa。
所述的垂直取向强磁性介质薄膜的制备方法,其优选方案为,所述步骤(4)中通过磁控溅射、多弧离子镀、脉冲激光沉积、电子束蒸发或原子层沉积的方式制备保护层。
本发明的有益效果为:本发明的非贵金属基的氮化物缓冲层,能够调控垂直取向强磁性介质层的取向和磁性,获得了具有颗粒、岛状、团簇装、连续膜等不同微观形貌的垂直取向强磁性介质薄膜,并获得了室温高达2.92T的矫顽力和优良矩形度;解决了依赖于单晶Al2O3基片才能实现垂直取向、优异矩形度和高矫顽力等磁性指标的问题。本发明将高磁晶各向异性薄膜的尺寸减至纳米尺度,该多层膜结构具有体积小、垂直磁化方向、作为存储单元的晶粒尺寸小、矫顽力大、稳定性高等优点。此外,本发明采用的方法制备的介质薄膜工艺简单,应用领域更广。
附图说明
图1为透射电镜照片,其中图1a为厚度50nm垂直取向强磁性介质层的横截面形貌照片;图1b为厚度100nm垂直取向强磁性介质层的横截面形貌照片;图1c中为图1b中方框标示的层错结构放大图;图1d为厚度100nm垂直取向强磁性介质层的横截面内形貌的明场像;图1e为厚度100nm垂直取向强磁性介质层的横截面内形貌的暗场像;
图2为Si基片/AlN(10nm)/SmCo3.5Cu0.5/Ru(20nm)films的垂直取向强磁性介质薄膜沿薄膜面内(IP)和法相(OOP)方向的磁滞回线及初始磁化曲线图;其中:图2a中SmCo3.5Cu0.5层厚度为20nm;图2b中SmCo3.5Cu0.5层厚度为50nm;图2c中SmCo3.5Cu0.5层厚度为100nm;图2d中SmCo3.5Cu0.5层厚度为200nm。
具体实施方式
一种上述的垂直取向强磁性介质薄膜的制备方法,包括如下步骤:(1)将热氧化Si基片清洁干燥;
(2)真空条件下在热氧化Si基片表面上采用射频反应溅射制备AlN缓冲层,溅射腔内气氛为0.05~50Pa的N2和0.05~50Pa的Ar混合气氛,靶材为纯度高于99.99%的Al靶,温度为100℃,AlN缓冲层厚度为1~100nm;
(3)真空条件下采用磁控溅射方法在AlN缓冲层表面制备垂直取向强磁性介质层,垂直取向强磁性介质层成分为SmCo3.5Cu0.5,气氛为0.05~50Pa的纯度高于99.9%的Ar气,温度为350℃,沉积时间依据沉积速度和所需磁膜厚度确定,沉积时间为1分钟至60分钟之间,厚度为10nm-500nm之间,结合磁膜厚度和沉积温度获得颗粒、岛状、团簇状或连续膜的微观形貌;如图1所示,在图1a和图1b中,给出的是厚度为50nm和100nm的薄膜的横截面形貌照片,从晶粒中的明暗条形衬度可以看到高密度层错;图1b中由白色方框标示的放大的层错结构在图1c中展示;图1b所示厚度为100nm的薄膜的面内形貌的明场像和暗场像在图1d和图1e所示,可以看到典型的多晶形貌,暗场像显示出易轴垂直取向;
(4)真空条件下采用多弧离子镀在所述垂直取向强磁性介质层表面制备Ru保护层,其厚度为20nm。
上述制备的垂直取向强磁性介质薄膜都具有c轴沿薄膜法相方向的取向排列微观织构,SmCo3.5Cu0.5磁性层厚度为20nm、50nm、100nm和200nm的垂直取向强磁性介质薄膜的磁滞回线如图2a-d所示,在厚度≦100nm时,矫顽力在1.5T以上,其中在厚度为50nm时,性能最优,获得了2.92T的室温最大矫顽力,并具有良好的矩形度。

Claims (7)

1.一种垂直取向强磁性介质薄膜,其特征在于,包括依次层叠的衬底、缓冲层、垂直取向强磁性介质层和保护层,所述衬底为单晶、多晶或非晶基片;所述缓冲层材质为具有六方晶体结构的无机非金属氮化物陶瓷,所述缓冲层材料为AlN或(Al1-xMx)N,其中M为过渡族金属Ti、V、Cr、Mn、Cu、Zn、Nb、Zr、Hf、Ta或W ,0≤X<1;所述垂直取向强磁性介质层为钐钴薄膜、铝镍钴薄膜、铁铂薄膜、铁钯薄膜、钴铂薄膜和/或钴钯薄膜,所述保护层为过渡金属、氮化物膜体材料或氧化物膜体材料;所述缓冲层能够调控垂直取向强磁性介质层的取向和磁性,获得具有颗粒、岛状、团簇状或连续膜的微观形貌的垂直取向强磁性介质层。
2.根据权利要求1所述的垂直取向强磁性介质薄膜,其特征在于,所述衬底为玻璃、石英、Si、Al2O3或MgO材料的单晶或多晶基片。
3.根据权利要求1所述的垂直取向强磁性介质薄膜,其特征在于,所述保护层材料为Ru、Ti、Cr、Ta、Mo、SiO2或SiNx
4.根据权利要求1所述的垂直取向强磁性介质薄膜,其特征在于,所述缓冲层的厚度为1~100nm,所述垂直取向强磁性介质层的厚度为10~500nm,所述保护层的厚度为1~50nm。
5.一种如权利要求1-4之一所述的垂直取向强磁性介质薄膜的制备方法,其特征在于,包括如下步骤:
(1)将衬底清洁干燥;
(2)真空条件下采用磁控溅射、多弧离子镀、脉冲激光沉积、电子束蒸发或原子层沉积的方式在衬底表面制备缓冲层;
(3)真空条件下采用磁控溅射、多弧离子镀、脉冲激光沉积、电子束蒸发或原子层沉积的方式在所述缓冲层表面制备垂直取向强磁性介质层,获得具有颗粒、岛状、团簇状或连续膜的微观形貌的垂直取向强磁性介质层;
(4)真空条件下采用镀膜技术在所述垂直取向强磁性介质层表面制备保护层。
6.根据权利要求5所述的垂直取向强磁性介质薄膜的制备方法,其特征在于,所述步骤(3)中,背底真空度优于1×10-4 Pa,沉积时采用Ar气氛,沉积气压在0.1~100Pa。
7.根据权利要求5所述的垂直取向强磁性介质薄膜的制备方法,其特征在于,所述步骤(4)中通过磁控溅射、多弧离子镀、脉冲激光沉积、电子束蒸发或原子层沉积的方式制备保护层。
CN201710266362.9A 2017-04-21 2017-04-21 一种垂直取向强磁性介质薄膜及其制备方法 Active CN107134341B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710266362.9A CN107134341B (zh) 2017-04-21 2017-04-21 一种垂直取向强磁性介质薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710266362.9A CN107134341B (zh) 2017-04-21 2017-04-21 一种垂直取向强磁性介质薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN107134341A CN107134341A (zh) 2017-09-05
CN107134341B true CN107134341B (zh) 2018-11-27

Family

ID=59715072

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710266362.9A Active CN107134341B (zh) 2017-04-21 2017-04-21 一种垂直取向强磁性介质薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN107134341B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111441012B (zh) * 2020-04-22 2021-12-17 南京理工大学 一种低磁死层厚度的磁性薄膜材料及其制备方法
CN111554463B (zh) * 2020-05-11 2021-09-24 电子科技大学 一种宽频低涡流损耗的人工导体
CN114635113B (zh) * 2022-03-09 2023-04-07 北京科技大学 一种高亮度银白色电磁波透过复合薄膜的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1941090A (zh) * 2005-09-27 2007-04-04 株式会社东芝 磁记录介质和磁记录装置
CN1958839A (zh) * 2006-11-23 2007-05-09 上海应用技术学院 一种制备l10有序合金薄膜的方法
CN101399312A (zh) * 2007-09-26 2009-04-01 株式会社东芝 磁阻元件以及磁性存储器
CN104685566A (zh) * 2012-10-10 2015-06-03 富士电机株式会社 磁记录介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1941090A (zh) * 2005-09-27 2007-04-04 株式会社东芝 磁记录介质和磁记录装置
CN1958839A (zh) * 2006-11-23 2007-05-09 上海应用技术学院 一种制备l10有序合金薄膜的方法
CN101399312A (zh) * 2007-09-26 2009-04-01 株式会社东芝 磁阻元件以及磁性存储器
CN104685566A (zh) * 2012-10-10 2015-06-03 富士电机株式会社 磁记录介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《Perpendicular magnetic anisotropy of CoPt–AlN composite film with nano-fiber structure》;C.C.CHEN etal;《Applied Physics A-MATERIALS SCIENCE & PROCESSING》;20050630;第81卷(第1期);第127-130页 *

Also Published As

Publication number Publication date
CN107134341A (zh) 2017-09-05

Similar Documents

Publication Publication Date Title
US9842636B2 (en) Perpendicular magnetization film, perpendicular magnetization film structure, magnetoresistance element, and perpendicular magnetic recording medium
CN107134341B (zh) 一种垂直取向强磁性介质薄膜及其制备方法
Uehara Microstructure and permanent magnet properties of a perpendicular anisotropic NdFeB/Ta multilayered thin film prepared by magnetron sputtering
Ding et al. High coercivity in SiO 2-doped CoFe 2 O 4 powders and thin films
WO2004086427A1 (ja) 垂直磁気異方性を有するFePt磁性薄膜とその製造方法
Crisan et al. Direct formation of L10 FePt in as-cast FePt-based magnetic nanocomposite ribbons without post-synthesis annealing
US6805980B2 (en) Thin permanent-magnet film and process for producing the same
US4933059A (en) Process for preparing anisotropic rare earth magnet material
Sellmyer et al. Advances in rare-earth-free permanent magnets
JP6353901B2 (ja) 磁性材料
Uehara et al. Improved perpendicular anisotropy and permanent magnet properties in Co-doped Nd-Fe-B films multilayered with Ta
US20020153066A1 (en) FePt magnet and manufacturing method thereof
JPWO2013141337A1 (ja) 高い垂直磁気異方性を示す極薄垂直磁化膜、その製造方法及び用途
Sharma et al. High coercivity characteristics of FePtB exchange-coupled nanocomposite thick film spring magnets produced by sputtering
CN110165045B (zh) W-b合金材料及基于自旋-轨道力矩的自旋电子器件
JPH07272929A (ja) 希土類元素−Fe−B系薄膜永久磁石
Sharma et al. Anomalous temperature dependence of coercivity at low temperature in $ L1_ {0} $ FePt thin films
CN108251799B (zh) 基于非晶SmCo的磁电耦合异质结结构及其制备方法和应用
CN1412791A (zh) 一种纳米复合稀土永磁薄膜材料及其制备
Shima et al. Microstructure and magnetic properties for highly coercive FePt sputtered films
Sun et al. Magnetic properties and microstructure studies of Sm–Fe magnetic thin films
Cadieu et al. The synthesis of Sm/sub 2/(Co, Fe, Zr)/sub 17/high energy product, 16 to 30 MGOe, thick sputtered films
CN114999801B (zh) 一种提高NdFeB基永磁厚膜矫顽力的方法
Okumoto et al. Effect of underlayer structure on the crystallographic and magnetic properties of Nd-Fe-B thin films
CN110735119B (zh) 一种磁控溅射制备巨大矫顽力Mn3Ga薄膜的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant