CN107120833A - 一种热泵热管复合的太阳能热水器控制***及运行方法 - Google Patents

一种热泵热管复合的太阳能热水器控制***及运行方法 Download PDF

Info

Publication number
CN107120833A
CN107120833A CN201710288172.7A CN201710288172A CN107120833A CN 107120833 A CN107120833 A CN 107120833A CN 201710288172 A CN201710288172 A CN 201710288172A CN 107120833 A CN107120833 A CN 107120833A
Authority
CN
China
Prior art keywords
heat pump
water
heat pipe
temperature
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710288172.7A
Other languages
English (en)
Other versions
CN107120833B (zh
Inventor
李舒宏
董科枫
张政
张小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201710288172.7A priority Critical patent/CN107120833B/zh
Publication of CN107120833A publication Critical patent/CN107120833A/zh
Application granted granted Critical
Publication of CN107120833B publication Critical patent/CN107120833B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/42Cooling means
    • H02S40/425Cooling means using a gaseous or a liquid coolant, e.g. air flow ventilation, water circulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

本发明公开了一种热泵热管复合的太阳能热水器控制***及运行方法,该***有变频压缩机驱动的热泵模式和以工质泵驱动的热管模式两种工作模式,***在实时跟踪环境工况和水箱温度的联网控制器控制下,能实现全程热泵模式、全程热管模式和先热管后热泵的混合模式三种制热水模式;联网控制器根据天气预报、采集到的环境工况和水箱水温数据决定启动时间、制热水模式和切换模式的时机;在热泵模式中,***能根据实时的环境参数和水箱温度动态调节压缩机变容量运行,膨胀阀控制光伏蒸发器过热度始终保持较小值;热管和热泵模式的复合运行模式以及跟踪环境工况的变容量控制,使得该***既满足用户的全年生活热水需求,又跟随环境条件高效节能运行。

Description

一种热泵热管复合的太阳能热水器控制***及运行方法
技术领域
本发明涉及压缩机变容量控制、光伏热泵/热管复合热水器的技术,尤其涉及一种利用控制器和传感器根据从网络获取的天气预报数据和采集的环境参数,决定***启动时间、热泵/热管运行模式和切换时机,控制光伏热泵模式变容量运行的装置及方法。
背景技术
随着人们生活水平的不断提高,普通家庭对生活热水的需求也越来越大,生活热水的能耗的比重也不断增大,因此,实现高效节能的生活热水供应成为亟待解决的问题。
太阳能热水器是解决家庭生活热水需求的有效手段。传统的太阳能热水器在阴雨天气或冬季太阳辐射较弱的天气必须依靠电加热才能满足用户制取生活用水的需求,但是电加热制取生活热水的能效远低于使用热泵制取生活热水的能效。
光伏热泵热水器是一种将光伏电池板和热泵热水器结合的光伏光热一体化装置。它能在有限的面积内同时满足光伏发电和光热制取生活热水,热泵***保证了***全年都能制取满足要求的生活热水。
太阳能电池板在吸收太阳辐射发电时,仅10%-18%的能量转化为电能,其余能量则转化为热能。太阳能电池的光电转换效率与电池片温度负相关,太阳能电池电池温度每升高1℃,光电效率下降约0.4%。在较强阳光下,电池片温度很容易达到50-70℃,如果吸收这些热量、降低电池片温度则能让发电效率保持在较高水平。
太阳能是一种时空分布不均匀、受天气影响较大的可再生能源。使用太阳能集热器作为热泵热源时,随着太阳高度角变化、云层不规律遮挡,太阳辐射时刻都在变化。现有太阳能热泵热水器***或光伏热泵***大多采用定频压缩机或仅在机组启动前根据太阳辐射和环境温度数据设定本次运行的压缩机工作频率。定频运行的***应对变化太阳辐射环境的能力不足。在辐射显著增强时,定频运行的***制热水速度变快,但是造成缩短的时间内光伏电池没有降温运行,也没有抓住有利时机降低运行频率,综合来看全天***净发电量减少。在辐射显著减弱时,也无法及时作出调整,可能无法在规定的运行时间内完成制热水任务。
压缩机变频技术能调节压缩机运行频率以调节压缩机吸气量,改变热泵热水器***的吸热能力,进而改变热泵***的蒸发温度,以满足热泵***制取生活热水的时间限制、调节光伏电池工作温度以及***节能运行的目的。
太阳能热泵热水器在辐射强度较高时,蒸发温度过高时,定频启动会造成压缩机过载,造成太阳能热泵热水器在某些辐射较强的工况下无法使用。如果采用变频压缩机,在较低频率下启动,则能避免压缩机过载。然而这种工况下,压缩机也不能以过低的频率启动,否则热泵***中的节流阀处压力倒挂,***也无法正常运行。
在气温较高、辐射较强的夏季晴天,光伏太阳能热泵热水器需要的制取热水的时间只需要在2小时以内,造成大量时间光伏组件没有得到冷却,热泵的运行却仍消耗较多的电能。工质泵驱动的环形热管是利用循环工质在高温处吸收热量气化,通过工质泵克服管道阻力,在低温处冷凝放出热量的一种传热环路。太阳辐射较强时,光伏集热蒸发板的温度远高于水箱水温,如能采用工质泵驱动的环形热管模式进行制热水过程,一方面可以避免压缩机启动方面的过载或压力倒挂,另一方面可以用耗能比压缩机更小的工质泵就完成制热水任务。然而同等工质流量下,工质泵驱动的环形热管模式的加热速率小于压缩机驱动的热泵模式的加热速率。天气条件也不一定能支持仅靠环形热管运行完成制热水任务。因此,需要热泵/热管复合运行来满足制热水任务的时间限制。
从上述分析可知,光伏太阳能热泵/热管复合热水器***能在工作期间降低光伏组件的工作温度、提高光伏组件的发电量,同时热泵模式保证全年条件下的生活热水供应,热管模式有利于有利工况下进一步降低制热水运行能耗,具有占地面积小的优点。跟踪环境工况变化的热泵/热管模式选择策略和根据环境工况的热泵模式变容量运行控制对光伏太阳能热泵/热管复合热水器的适应环境变化、控制工作时间和提高性能系数具有重要作用。因此,研究能跟踪环境工况的变容量光伏太阳能热泵/热管复合热水器***及方法具有重要意义。
发明内容
针对上述存在的问题,本发明目的在于提供一种跟踪环境工况的变容量的热泵热管复合的太阳能热水器控制***及运行方法。
为了达到上述目的,本发明采用的技术方案如下:一种热泵热管复合的太阳能热水器控制***,所述的控制***安装在太阳能热水器的光伏集热蒸发板与保温冷凝水箱之间,控制***包括核心控制组件、环境工况和水箱温度传感组件、热泵与热管的模式切换组件、热泵模式变容量控制组件。
本发明的核心控制组件为联网控制器4;所述的环境工况和水箱温度传感组件包括太阳辐射强度传感器3,环境温度传感器2和水箱水温传感器6;所述的热泵与热管的模式切换组件包括压缩机支路,旁路截止阀11、9,膨胀阀支路,旁路截止阀14、16;所述的热泵模式变容量控制组件包括变频器5,变频压缩机12,膨胀阀13,膨胀阀配套的温度压力传感器8。
本发明的光伏太阳能热泵循环中,光伏集热蒸发板出口与压缩机支路截止阀、变频压缩机、保温冷凝水箱、储液罐、膨胀阀支路截止阀、膨胀阀依次连接,最后回到光伏集热蒸发板入口形成环路,各部件间采用铜管连接,循环介质为制冷剂,所述保温水箱内部有供制冷剂放热的管道,所述光伏集热板内有供制冷剂从光伏电池吸热的管道。
光伏太阳能热管循环与光伏太阳能热泵循环共用光伏集热蒸发器和保温冷凝水箱,光伏集热蒸发板出口与压缩机旁路截止阀、工质泵、保温冷凝水箱、储液罐、膨胀阀旁路截止阀依次连接,最后回到光伏集热蒸发器入口形成环路,各部件间采用铜管连接,循环介质与热泵循环相同。
传感联网控制***与光伏太阳能热泵循环和光伏太阳能热管循环共用压缩机支路、旁路截止阀和膨胀阀支路、旁路截止阀,太阳辐射强度传感器、环境温度传感器、水箱温度传感器作为传感部分与联网控制器连接,变频器、膨胀阀、工质泵、压缩机支路及旁路截止阀、膨胀阀支路及旁路截止阀作为执行机构与联网控制器连接,变频压缩机与变频器连接,联网传感器与互联网连接。
本发明公开了一种热泵热管复合的太阳能热水器控制***的运行方法;所述的运行方法包括如下步骤:
1)***启动前,联网控制器中存储有已制定好的热管模式控制策略表和热泵模式控制策略表;
2)联网控制器访问互联网,获得当天当地气象预报数据;根据当月日照时长设定最大制热水时间,根据当日气象预报数据设定开机时间,同时采集水箱水温,确定当天完成制热水任务需要的时间;
3)***启动时,联网控制器根据实时采集的太阳辐射强度、环境温度和水箱水初温数据,选择启动不同的工作模式:全程热泵模式,全程热管模式或先热管后热泵模式;
4)在热泵模式下,根据实时采集的数据,联网控制器控制光伏太阳能热泵热水器变容运行;
5)水温达到预定温度,则控制器控制***停机。
本发明的该方法主要依托联网控制器,该联网控制器可为PLC、单片机、计算机或其他具有联网、存储、采集和输出功能的集成控制元件。
本发明的联网控制器的功能主要进行两方面的工作:
一方面是获取天气预报数据、获取实时太阳辐射强度、环境温度和水箱温度数据,控制复合热水器***的启动时间、运行模式和切换时机,
另一方面是根据实时太阳辐射强度、环境温度和水箱温度,控制热泵模式的变容量运行。为了做好这两方面的工作,联网控制器中存储有已制定好的热管模式控制策略表和热泵模式控制策略表,
热管模式控制策略表中存储有根据产品特性得到的在各种环境工况下能在规定时间内完成制热水任务的最低初始水箱水温,热泵模式控制策略表中存储有根据产品特性得到的在各种环境工况和水箱温度组合下能在规定时间内完成制热水任务的最低运行频率。
启动前,联网控制器访问互联网获得当天当地气象预报数据,采集水箱水温确定当天完成制热水任务需要的时间。启动时,联网控制器采集传感器部分得到的太阳辐射强度、环境温度和水箱水初温数据,如果太阳辐射强度很高且水箱水初始温度不超出环境温度很多,则将当前环境工况与热管模式控制策略表进行比对,若最低初始水箱水温不低于当前水箱水初温,则进一步调取当天天气预报数据,若在预定制热水任务期间全部是晴天,则联网控制器设定全程热管运行模式。若在上述比对中最低初始水箱水温高于当前水箱水初温或在预定制热水任务区间内有多云天气,则转为先热管后热泵的复合运行模式。若太阳辐射强度不高或水箱水初温超出环境温度很多,则直接转为全程热泵运行模式。
热管运行模式通过联网控制器开启压缩机旁路截止阀、膨胀阀旁路截止阀和工质泵,关闭压缩机支路截止阀、膨胀阀支路截止阀,制冷剂在光伏集热蒸发器中吸热,通过工质泵输送到保温冷凝水箱中放热并回到光伏集热蒸发器中继续吸热形成循环。
热泵运行模式通过联网控制器开启压缩机支路截止阀、膨胀阀支路截止阀、变频压缩机和膨胀阀,关闭压缩机旁路截止阀、膨胀阀旁路截止阀,制冷剂在光伏集热蒸发器中吸热,经过压缩机压缩后输送到保温冷凝水箱放热冷凝,经过膨胀阀重新变为低温低压的状态继续在光伏集热蒸发器的循环过程。
联网控制器无论在何种运行模式都实时采集环境工况数据和水箱水温数据。在先热管后热泵的运行模式下,联网控制器控制热管模式切换热泵模式的时机。
热管模式运行过程中,如果联网控制器采集到的太阳辐射强度变弱,不足以支持高效的环形热管模式,则联网控制器立刻切换***为热泵模式,即使太阳辐射强度保持较强,但是根据启动时的判断无法在预定时间内完成制热水任务,则当水箱水温超过环境温度一定程度后,联网控制器自动切换***为热泵模式。
在热泵模式下,联网控制器控制光伏太阳能热泵热水器的跟踪环境工况的变容量高效运行。一方面,联网控制器实时根据环境工况和水箱温度的组合查询比对热泵模式控制策略表,联网控制器根据查询到的最低运行频率控制变频器输出最低运行频率,变频压缩机在变频器规定的频率下运行,另一方面,联网控制器根据膨胀阀配套的安装在蒸发器出口的温度、压力传感器控制膨胀阀开度,保持光伏集热蒸发器的较低过热度值,两方面结合实现热泵模式的跟踪环境工况的变容量高效运行。
水温达到预定温度,则控制器控制***停机。此方法可以实现光伏热泵热水***节能运行,也保证***完成制热水任务,满足用户需求。
本发明的优点在于:
1)此方法在非变频光伏热泵热水器的基础上增加有限部件,连接改造简便可靠,可在非变频光伏热泵热水器基础上改造升级;
2)采用实时变频调节动态适应环境参数变化,既节约热泵***运行能耗,也能保证光伏电池保持较高的发电效率、在辐射较弱时保证完成制热水任务;
3)热管模式或先热管后热泵的混合运行模式能避免单纯热泵模式在某些工况下启动阶段的蒸发冷凝压力倒挂现象,也能节约***能耗。
附图说明
图1为本发明***连接的示意图;
图2为本发明***运行的工艺流程图;
图3为本发明的实施例6中的当日的天气情况;
图4为本发明的实施例6中的实施过程图。
其中,1光伏集热蒸发板、2环境温度传感器、3太阳辐射传感器、4联网控制器、5变频器、6水温传感器、7保温冷凝水箱、8膨胀阀用蒸发器出口的温度压力传感器、9压缩机旁路截止阀、10工质泵、11压缩机支路截止阀、12变频压缩机、13膨胀阀、14膨胀阀支路截止阀、15储液罐、16膨胀阀旁路截止阀。
具体实施方式
下面结合附图说明和具体实施方式对本发明作进一步详细的描述。
本发明中的热管模式控制策略表与热泵模式控制策略表为客户在固定太阳辐射强度和环境温度在模拟程序中制定的控制表。
实施例1:如图1所示,本发明的***包括光伏太阳能热泵循环、光伏太阳能热管循环和传感联网控制***。光伏太阳能热泵循环中,光伏集热蒸发板1出口与压缩机支路截止阀11、变频压缩机12、保温冷凝水箱7、储液罐15、膨胀阀支路截止阀14、膨胀阀13依次连接,最后回到光伏集热蒸发板1入口形成环路,各部件间采用铜管连接,循环介质为制冷剂,所述保温水箱内部有供制冷剂放热的管道,所述光伏集热板内有供制冷剂从光伏电池吸热的管道。
光伏太阳能热管循环与光伏太阳能热泵循环共用光伏集热蒸发器1和保温冷凝水箱7,光伏集热蒸发板1出口与压缩机旁路截止阀9、工质泵10、保温冷凝水箱7、储液罐15、膨胀阀旁路截止阀16依次连接,最后回到光伏集热蒸发器1入口形成环路,各部件间采用铜管连接,循环介质与热泵循环相同。
传感联网控制***与光伏太阳能热泵循环和光伏太阳能热管循环共用压缩机支路、旁路截止阀11、9和膨胀阀支路、旁路截止阀14、16,太阳辐射强度传感器3、环境温度传感器2、水箱温度传感器6作为传感部分与联网控制器4连接,变频器5、膨胀阀13、工质泵10、压缩机支路及旁路截止阀11、9、膨胀阀支路及旁路截止阀14、16作为执行机构与联网控制器4连接,变频压缩机12与变频器5连接,联网传感器4与互联网连接。
实施例2:如图1和2所示,该***能在联网控制器的控制下实现两种运行模式:
1)热管运行模式通过联网控制器4开启压缩机旁路截止阀9、膨胀阀旁路截止阀16和工质泵10,关闭压缩机支路截止阀11、膨胀阀支路截止阀14,制冷剂在光伏集热蒸发器1中吸热,通过工质泵10输送到保温冷凝水箱7中放热并回到光伏集热蒸发器1中继续吸热形成循环。
2)热泵运行模式通过联网控制器4开启压缩机支路截止阀9、膨胀阀支路截止阀14、变频压缩机12和膨胀阀13,关闭压缩机旁路截止阀9、膨胀阀旁路截止阀16,制冷剂在光伏集热蒸发器1中吸热,经过压缩机12压缩后输送到保温冷凝水箱7放热冷凝,经过膨胀阀13重新变为低温低压的状态继续在光伏集热蒸发器1的循环过程。
实施例3:如图1所示,联网控制器4是该***的核心部件,改联网控制器可以是PLC、单片机、计算机或其他具有联网、存储、采集和输出功能的集成控制元件。环境温度传感器2、水箱水温传感器6可以是热电偶、热电阻等温度传感器,太阳辐射传感器3可以是太阳总辐射表等能量化辐射强度大小的元件。联网控制器4能实时采集环境温度传感器2、太阳辐射传感器3和水箱温度传感器6的信号,联网控制器4能通过输出信号控制压缩机旁路、支路截止阀9、11,膨胀阀支路、旁路截止阀14、15,工质泵10的开关通断。联网控制器4能通过通讯方式或端子控制方式设定变频器5的输出电频率,能通过通讯方式或端子控制方式设定膨胀阀13和膨胀阀配套的温度、压力传感器8控制的光伏集热蒸发器1的过热度。
实施例4:如图1所示,变频器5输入电网交流电,根据联网控制器4提供的运行频率输出一定频率的电流驱动压缩机12变频运行。膨胀阀13根据膨胀阀配套的温度压力传感器8检测蒸发器出口制冷剂状态,根据内置PID算法自动调节膨胀阀阀芯的开度大小,保证光伏集热蒸发器1的过热度与联网控制器4设置的过热度相同。
实施例5:如图1和2所示,本发明***运行方法的详细控制流程如下:
1、启动前,联网控制器4联网获取日期、当天当地天气预报、水箱水初温数据;
随后根据当月日照时长设定最大制热水时长,冬天最大制热水时长小,夏天最大制热水时长大;
随后根据天气预报设定开机时间,若是完全晴天或少云天气,以12点半为中心按预定时间设定启动时间,若是多云,以12点15分为中心按预定时间设定启动时间,若是阴天或更差,以12点为中心按预定时间设定启动时间。
2、启动时,采集启动时的太阳辐射强度、环境温度和水箱水初温。
若辐射强度大于700W/m2且水箱水初温不高于环境温度5℃以上,则进一步判断,否则按全程热泵模式启动机组。
若上一步符合,此时若水箱初始水温不小于热管运行策略表查得的最低水箱水初温,且在预定制热水时长内都是晴天,则按全程热管模式启动机组;
任何一项要求不符合则按先热管后热泵模式启动机组。
3、在运行过程中,无论何种运行模式,联网控制器4每分钟采集当前太阳辐射强度、环境温度和水箱水温数据。
1)全程热管模式时,若水箱水温达到预设水温则关机结束整个制热水流程,否则继续热管模式制热水过程。
2)全程热泵模式时,联网控制器4采集各传感器的数据后,查询热泵模式控制策略表,得出当前环境工况下满足预定制热水时间限制的最低运行频率f,随后设定变频器5运行在新的频率f,若水箱水温达到预设水温则关机结束整个制热水流程,否则继续热泵模式制热水过程。
3)先热管后热泵模式时,若采集环境数据和水箱温度数据后,太阳辐射强度大于700W/m2且水温不高于环境温度10℃以上,则仍然继续热管模式制取热水,若某次任何一项不满足,则转为热泵模式继续制热水过程。
:实施例6:如图3和4所示,本发明***运行方法的实施流程如下:
1、启动前,联网控制器4联网获取日期为2017年3月15日当日的天气情况如图3所示:
其中水箱水初温为12.73℃,随后根据3月份的日照时长设定最大制热水时长,在本实施例中,为了方便说明,此处最大制热水时长设定为300min,随后根据天气预报设定开机时间,其当日天气为晴天和少云的天气,故以12:30为中心设定启动时间,启动时间为10点整;***中制定热泵模式控制策略表需用部分节选如下表所示:
热泵模式控制策略表
2)启动时,发现10点整启动时的太阳辐射强度超过700W/m2、环境温度为13℃,水箱水初温为12.73℃。因此发现其辐射强度大于700W/m2且水箱水初温不高于环境温度5℃以上,***判定为先热管后热泵模式启动。
3)联网控制器每分钟采集当前太阳辐射强度、环境温度和水箱水温数据;其采集的数据如图4所示:
若太阳辐射持续大于700W/m2且水温不高于环境温度10℃以上,则仍然以热管模式制取热水,由于12:30时太阳辐射首次下降到700W/m2以下,因此若12:30前水温未达到环境温度10℃以上,则持续热管模式,直到12:30切换热泵模式,若12:30前已达到环境温度10℃以上,则在温度达标时立刻切换热泵模式。
切换热泵模式后,联网控制器采集各传感器的数据后,查询热泵模式控制策略表,得出当前环境工况下满足预定制热水时间限制的最低运行频率f,随后设定变频器运行在新的频率f,若水箱水温达到预设水温,则关机结束整个制热水流程;否则继续热泵模式制热水过程。
从实施例6中可知:天气预报基本预测准确了当天的天气情况,但是其精度无法满足光伏太阳能热泵热水器实时变容量运行的需求。通过本发明的***跟随太阳辐射值的变化实时调节压缩机运行频率,配合电子膨胀阀完成了实时变容量运行的任务,跟随效果优异。
需要说明的是,上述仅仅是本发明的较佳实施例,并非用来限定本发明的保护范围,在上述实施例的基础上所做出的任意组合或等同变换均属于本发明的保护范围。

Claims (10)

1.一种热泵热管复合的太阳能热水器控制***,其特征在于,所述的控制***安装在太阳能热水器的光伏集热蒸发板与保温冷凝水箱之间,控制***包括核心控制组件、环境工况和水箱温度传感组件、热泵与热管的模式切换组件、热泵模式变容量控制组件;
所述的核心控制组件为联网控制器4;
所述的环境工况和水箱温度传感组件包括太阳辐射强度传感器3,环境温度传感器2和水箱水温传感器6;
所述的热泵与热管的模式切换组件包括压缩机支路,旁路截止阀11、9,膨胀阀支路,旁路截止阀14、16;
所述的热泵模式变容量控制组件包括变频器5,变频压缩机12,膨胀阀13,膨胀阀配套的温度压力传感器8。
2.根据权利要求1所述的热泵热管复合的太阳能热水器控制***,其特征在于,所述的控制***内设有光伏太阳能热泵循环管路,光伏太阳能热管循环管路和传感联网控制***。
3.根据权利要求2所述的热泵热管复合的太阳能热水器控制***,其特征在于,所述的光伏太阳能热泵循环管路,其经光伏集热蒸发板的出口依次连接压缩机支路截止阀、变频压缩机、保温冷凝水箱、储液罐、膨胀阀支路截止阀和膨胀阀,最后连接到光伏集热蒸发板的入口;
所述的光伏太阳能热管循环管路,其经光伏集热蒸发板的出口依次连接压缩机旁路截止阀、工质泵、保温冷凝水箱、储液罐、膨胀阀旁路截止阀和膨胀阀旁路截止阀,最后连接到光伏集热蒸发器的入口。
4.根据权利要求2所述的热泵热管复合的太阳能热水器控制***,其特征在于,所述的传感联网控制***包括传感机构和执行机构,传感机构和执行机构均连接在联网控制器上,联网控制器连接在互联网上,所述的变频器连接在变频压缩机上;
所述的传感机构包括旁路截止阀、膨胀阀支路、旁路截止阀,太阳辐射强度传感器、环境温度传感器、水箱温度传感器;
所述的执行机构包括变频器、膨胀阀、工质泵、压缩机支路及旁路截止阀、膨胀阀支路及旁路截止阀。
5.根据权利要求3所述的热泵热管复合的太阳能热水器控制***,其特征在于,所述的光伏太阳能热泵循环管路与光伏太阳能热管循环管路内,各部件之间均采用铜管连接,管路内的循环介质相同。
6.一种根据权利要求1所述的热泵热管复合的太阳能热水器控制***的运行方法,其特征在于,所述的运行方法包括如下步骤:
1)***启动前,联网控制器中存储有已制定好的热管模式控制策略表和热泵模式控制策略表;
2)联网控制器访问互联网,获得当天当地气象预报数据;根据当月日照时长设定最大制热水时间,根据当日气象预报数据设定开机时间,同时采集水箱水温,确定当天完成制热水任务需要的时间;
3)***启动时,联网控制器根据实时采集的太阳辐射强度、环境温度和水箱水初温数据,选择启动不同的工作模式:全程热泵模式,全程热管模式或先热管后热泵模式;
4)在热泵模式下,根据实时采集的数据,联网控制器控制光伏太阳能热泵热水器变容运行;
5)水温达到预定温度,则控制器控制***停机。
7.根据权利要求6中所述的热泵热管复合的太阳能热水器控制***的运行方法,其特征在于,所述的热管模式控制策略表中,其存储有根据产品特性得到的在各种环境工况下能在规定时间内完成制热水任务的最低初始水箱水温;
所述的热泵模式控制策略表中,其存储有根据产品特性得到的在各种环境工况和水箱温度组合下能在规定时间内完成制热水任务的最低运行频率。
8.根据权利要求6中所述的热泵热管复合的太阳能热水器控制***的运行方法,其特征在于,所述的***启动时,选择启动不同工作模式的方法如下:
1)确定启动时的环境工况和水箱水温数据;
2)若辐射强度大于700W/m2且水箱水初温不高于环境温度5℃以上,则进一步判断,否则按全程热泵模式启动机组;
3)若上一步符合,此时若水箱初始水温不小于热管运行策略表查得的最低水箱水初温,且在预定制热水时长内都是晴天,则按全程热管模式启动机组;
4)上一步任何一项要求不符合,则按先热管后热泵模式启动机组。
9.根据权利要求8中所述的热泵热管复合的太阳能热水器控制***的运行方法,其特征在于,热管模式切换热泵模式时机方法的步骤为:
1)采集每个周期的环境工况和水温数据;
2)若太阳辐射强度大于700W/m2且水温不高于环境温度10℃以上,则仍然继续热管模式制取热水,若某次任何一项不满足,则转为热泵模式继续制热水过程。
10.根据权利要求6中所述的热泵热管复合的太阳能热水器控制***的运行方法,其特征在于,所述联网控制器控制光伏太阳能热泵热水器变容运行的方法如下:
1)采集每个周期的环境工况和水温数据;
2)将当前周期环境工况和水温数据对比联网控制器内的控制策略表对比,查得这种环境工况和水温情况下,在剩余的预定制热水时长能完成制热水任务的最低运行频率f;
3)通过变频器或变频电路驱动变频压缩机按设定的运行频率f运行;
4)通过膨胀阀保持光伏蒸发器出口稳定较小的过热度。
CN201710288172.7A 2017-04-27 2017-04-27 一种热泵热管复合的太阳能热水器控制***及运行方法 Expired - Fee Related CN107120833B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710288172.7A CN107120833B (zh) 2017-04-27 2017-04-27 一种热泵热管复合的太阳能热水器控制***及运行方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710288172.7A CN107120833B (zh) 2017-04-27 2017-04-27 一种热泵热管复合的太阳能热水器控制***及运行方法

Publications (2)

Publication Number Publication Date
CN107120833A true CN107120833A (zh) 2017-09-01
CN107120833B CN107120833B (zh) 2020-06-09

Family

ID=59725082

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710288172.7A Expired - Fee Related CN107120833B (zh) 2017-04-27 2017-04-27 一种热泵热管复合的太阳能热水器控制***及运行方法

Country Status (1)

Country Link
CN (1) CN107120833B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108050714A (zh) * 2017-12-30 2018-05-18 广州星辰热能股份有限公司 一种基于物联网的多热源采暖设备及其控制方法
CN109307361A (zh) * 2018-10-10 2019-02-05 宁波市建筑设计研究院有限公司 空气源热泵的节能控制方法
CN109990492A (zh) * 2017-12-29 2019-07-09 青岛经济技术开发区海尔热水器有限公司 一种变频太阳能热泵热水器控制方法及***
CN109990479A (zh) * 2017-12-29 2019-07-09 青岛经济技术开发区海尔热水器有限公司 一种变频太阳能热泵热水器控制方法及***
CN109990463A (zh) * 2017-12-29 2019-07-09 青岛经济技术开发区海尔热水器有限公司 一种变频太阳能热泵热水器控制方法及***
CN109990491A (zh) * 2017-12-29 2019-07-09 青岛经济技术开发区海尔热水器有限公司 一种变频太阳能热泵热水器控制方法及***
CN110068035A (zh) * 2019-04-04 2019-07-30 国家电投集团西安太阳能电力有限公司 一种适用于高海拔寒冷地区的光伏热电联供***
CN110145876A (zh) * 2019-06-21 2019-08-20 常熟理工学院 一种基于热泵的太阳能光热光伏集成装置
CN110332710A (zh) * 2019-07-05 2019-10-15 大连民族大学 高尔夫球场整体专用余热回收***
CN112558658A (zh) * 2020-11-23 2021-03-26 北京奥德威特电力科技股份有限公司 面向家庭用户的边缘计算分布式多能控制***和方法
CN113218092A (zh) * 2021-05-11 2021-08-06 沈阳建筑大学 一种基于温度预测的太阳能集热器耦合***运行方法
WO2022269514A1 (en) * 2021-06-22 2022-12-29 Ben Shitrit Yoav System for heating water and methods thereof
CN116951537A (zh) * 2023-07-31 2023-10-27 广东微乐环保成套设备有限公司 一种太阳能集热蒸发器的控制方法及***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101178189A (zh) * 2006-11-10 2008-05-14 广州科力新能源有限公司 一种热泵热水器与太阳能热水器相结合的方法及其热水***
KR20140146900A (ko) * 2013-06-18 2014-12-29 사공명건 보일러 겸용 태양열 난방장치
CN104566966A (zh) * 2013-10-15 2015-04-29 珠海兴业绿色建筑科技有限公司 热管辅助式太阳能热泵***
CN204612185U (zh) * 2015-04-08 2015-09-02 上海沃特奇能源科技股份有限公司 一种太阳能与地源热泵复合热水***
CN106052122A (zh) * 2016-05-25 2016-10-26 珠海格力电器股份有限公司 一种预约加热方法、***和热泵热水器
CN106052162A (zh) * 2016-07-01 2016-10-26 顺德职业技术学院 热泵与太阳能热水器组合***预测控制方法
CN106123360A (zh) * 2016-07-01 2016-11-16 顺德职业技术学院 热泵与太阳能热水器组合***中太阳能得热量预测控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101178189A (zh) * 2006-11-10 2008-05-14 广州科力新能源有限公司 一种热泵热水器与太阳能热水器相结合的方法及其热水***
KR20140146900A (ko) * 2013-06-18 2014-12-29 사공명건 보일러 겸용 태양열 난방장치
CN104566966A (zh) * 2013-10-15 2015-04-29 珠海兴业绿色建筑科技有限公司 热管辅助式太阳能热泵***
CN204612185U (zh) * 2015-04-08 2015-09-02 上海沃特奇能源科技股份有限公司 一种太阳能与地源热泵复合热水***
CN106052122A (zh) * 2016-05-25 2016-10-26 珠海格力电器股份有限公司 一种预约加热方法、***和热泵热水器
CN106052162A (zh) * 2016-07-01 2016-10-26 顺德职业技术学院 热泵与太阳能热水器组合***预测控制方法
CN106123360A (zh) * 2016-07-01 2016-11-16 顺德职业技术学院 热泵与太阳能热水器组合***中太阳能得热量预测控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张政: "太阳能光伏光热一体化热泵/热管***性能研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109990479B (zh) * 2017-12-29 2022-06-14 青岛经济技术开发区海尔热水器有限公司 一种变频太阳能热泵热水器控制方法及***
CN109990463A (zh) * 2017-12-29 2019-07-09 青岛经济技术开发区海尔热水器有限公司 一种变频太阳能热泵热水器控制方法及***
CN109990491B (zh) * 2017-12-29 2022-06-17 青岛经济技术开发区海尔热水器有限公司 一种变频太阳能热泵热水器控制方法及***
CN109990479A (zh) * 2017-12-29 2019-07-09 青岛经济技术开发区海尔热水器有限公司 一种变频太阳能热泵热水器控制方法及***
CN109990492A (zh) * 2017-12-29 2019-07-09 青岛经济技术开发区海尔热水器有限公司 一种变频太阳能热泵热水器控制方法及***
CN109990491A (zh) * 2017-12-29 2019-07-09 青岛经济技术开发区海尔热水器有限公司 一种变频太阳能热泵热水器控制方法及***
CN108050714A (zh) * 2017-12-30 2018-05-18 广州星辰热能股份有限公司 一种基于物联网的多热源采暖设备及其控制方法
CN109307361A (zh) * 2018-10-10 2019-02-05 宁波市建筑设计研究院有限公司 空气源热泵的节能控制方法
CN110068035A (zh) * 2019-04-04 2019-07-30 国家电投集团西安太阳能电力有限公司 一种适用于高海拔寒冷地区的光伏热电联供***
CN110145876A (zh) * 2019-06-21 2019-08-20 常熟理工学院 一种基于热泵的太阳能光热光伏集成装置
CN110145876B (zh) * 2019-06-21 2024-06-25 常熟理工学院 一种基于热泵的太阳能光热光伏集成装置
CN110332710A (zh) * 2019-07-05 2019-10-15 大连民族大学 高尔夫球场整体专用余热回收***
CN112558658A (zh) * 2020-11-23 2021-03-26 北京奥德威特电力科技股份有限公司 面向家庭用户的边缘计算分布式多能控制***和方法
CN112558658B (zh) * 2020-11-23 2022-01-18 北京奥德威特电力科技股份有限公司 面向家庭用户的边缘计算分布式多能控制***和方法
CN113218092A (zh) * 2021-05-11 2021-08-06 沈阳建筑大学 一种基于温度预测的太阳能集热器耦合***运行方法
WO2022269514A1 (en) * 2021-06-22 2022-12-29 Ben Shitrit Yoav System for heating water and methods thereof
CN116951537A (zh) * 2023-07-31 2023-10-27 广东微乐环保成套设备有限公司 一种太阳能集热蒸发器的控制方法及***

Also Published As

Publication number Publication date
CN107120833B (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
CN107120833A (zh) 一种热泵热管复合的太阳能热水器控制***及运行方法
CN203375584U (zh) 冷热量储存式太阳能空调装置
CN110779239B (zh) 一种基于预测模型的太阳能-空气源热泵控制***及节能控制方法
CN109114804A (zh) 太阳能光伏-市电联合驱动的光伏光热一体化双源热泵热水***及其运行方法
CN205477785U (zh) 一种凝汽式汽轮机组的调峰蓄能***
CN103225861B (zh) 冷热量储存式太阳能空调装置
CN108332446A (zh) 一种低品位太阳能冷热电三联供***及其运行方法
CN105444246A (zh) 一种太阳能空气与热泵制热剂复合集热器供暖***
CN110567026B (zh) 一种储热罐耦合吸收式热泵的热电解耦***及运行方法
CN103836835B (zh) 太阳能热泵热电联产***
CN206001586U (zh) 一种差动控制太阳能供热***
CN206488341U (zh) 多能源互补智能控制暖通***
CN109099499A (zh) 一种热负荷峰谷控制的燃煤电厂高背压串联抽汽供热***及其工作方法
CN204757451U (zh) 一种太阳能辅助式热泵机组
CN102134870B (zh) 交互吸附式太阳能风能空气取水器
CN109539570A (zh) 一种适合高原地区的太阳能热电联供污水处理装置
CN108895512A (zh) 一种太阳能三联供装置
CN107860084A (zh) 一种低温余热驱动的温湿度独立控制***
CN206724514U (zh) 耦合式冷热联供智能微网***
CN203657076U (zh) 蓄热型集成热水整体群控节能装置
CN205102401U (zh) 一种复合热源热泵热水器
CN207247589U (zh) 应用于温室大棚的相变蓄热和太阳能结合换热***
CN207350614U (zh) 一种太阳能热泵多联供***
CN207162820U (zh) 一种分级利用热能的太阳能地源热泵***
CN104807244A (zh) 一种太阳能吸收式过冷压缩复合制冷***及其制冷方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200609

CF01 Termination of patent right due to non-payment of annual fee