CN107101324B - 一种变频空调负荷群的一致性控制方法 - Google Patents

一种变频空调负荷群的一致性控制方法 Download PDF

Info

Publication number
CN107101324B
CN107101324B CN201710243572.6A CN201710243572A CN107101324B CN 107101324 B CN107101324 B CN 107101324B CN 201710243572 A CN201710243572 A CN 201710243572A CN 107101324 B CN107101324 B CN 107101324B
Authority
CN
China
Prior art keywords
conditioner
convertible frequency
frequency air
temperature
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710243572.6A
Other languages
English (en)
Other versions
CN107101324A (zh
Inventor
张天伟
王蓓蓓
胡晓青
仇知
林凯颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201710243572.6A priority Critical patent/CN107101324B/zh
Publication of CN107101324A publication Critical patent/CN107101324A/zh
Application granted granted Critical
Publication of CN107101324B publication Critical patent/CN107101324B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明公开了一种变频空调负荷群的一致性控制方法,如下:给出领导智能体变频空调的温度改变量并采用一致性算法将其传递给其他智能体变频空调;判断修改后的温度是否超过预设温度区间,若超过则将温度设为预设温度区间上限或下限,若未超过则直接设为修改后的温度;计算变频空调温度下应该保持的压缩机频率并得出其功率;计算变频空调群目标功率与实际功率的差值,若其绝对值小于允许误差值则结束,若其不小于允许误差值则根据该差值修正领导智能体变频空调的温度改变量并重复上述步骤。本发明提出的一种变频空调负荷群的一致性控制策略,充分考虑了变频空调的分布特性,保证了功率目标分配的公平性,丰富了变频空调群的控制方式。

Description

一种变频空调负荷群的一致性控制方法
技术领域
本发明涉及空调控制技术领域,特别是一种变频空调负荷群的一致性控制方法。
背景技术
随着社会经济以及空调设备技术的不断提高,变频空调凭借节能省电且降温迅速的设备特点,销量持续增长,其市场占有率甚至达到了60%。与此同时,由于空调的大量使用,夏季负荷峰谷差凸显,且对于变频空调的控制策略研究较少。变频空调虽然数量较多,但是分布较为分散,因此如何高效地对变频空调资源进行控制并达到需要的目标功率是本发明亟需解决的重要问题。
发明内容
本发明所要解决的技术问题是克服现有技术的不足,而提供一种变频空调负荷群的一致性控制方法,其将空调温度改变量作为一致性变量,采用一致性算法将分布广泛的变频空调资源联系起来,提高了资源利用的经济性,更为充分地利用了变频空调资源。
本发明为解决上述技术问题采用以下技术方案:
根据本发明提出的一种变频空调负荷群的一致性控制方法,包括以下步骤:
步骤1、给定变频空调负荷群受控后预期达到的目标功率,给定变频空调负荷群的目标功率和实际功率的允许误差值;
步骤2、变频空调负荷群中的所有变频空调均有初始温度,给出作为领导智能体的变频空调的温度改变量;
步骤3、采用一致性算法将作为领导智能体的变频空调的温度改变量传递给其余变频空调,其余变频空调为非领导智能体;
步骤4、将各个变频空调的初始温度与温度改变量相加求得所有变频空调温度,判断各个变频空调温度是否在预设的温度区间[Tmin,Tmax]内,若不在预设的温度区间内则执行步骤5,若在预设的温度区间内则执行步骤6;
步骤5、变频空调温度大于预设的温度区间上限Tmax则将变频空调温度设为温度区间上限Tmax,变频空调温度小于预设温度区间下限Tmin则将变频空调温度设为温度区间下限Tmin
步骤6、将变频空调负荷群中的所有变频空调温度值设为自身初始温度与接收到的温度改变量之和;
步骤7、计算各个变频空调在各自的温度下的压缩机频率,根据该计算出的压缩机频率对压缩机的频率进行修改;
步骤8、由各个变频空调的压缩机频率求得各个变频空调的功率;
步骤9、将各个变频空调的功率进行相加得出变频空调负荷群的实际功率,计算变频空调负荷群的目标功率与实际功率的差值;
步骤10、判断变频空调负荷群的目标功率与实际功率的差值的绝对值是否小于允许误差值,若不小于允许误差值则执行步骤11,若小于允许误差值则结束对变频空调负荷群的控制;
步骤11、根据变频空调负荷群的目标功率与实际功率的差值对作为领导智能体的变频空调的温度改变量进行修正,并重复执行步骤2至步骤10。
作为本发明所述的一种变频空调负荷群的一致性控制方法进一步优化方案,步骤3具体如下:
(1)根据各个变频空调之间的连接拓扑图形成邻接矩阵A;若存在n台变频空调,则邻接矩阵A应为一个n×n的矩阵,邻接矩阵中的元素为a(i,j),其中,i,j=1,...,n,对角线元素值均为0,非对角线的数值a(i,j)中的i≠j,非对角线的数值a(i,j)为第i个变频空调与第j个变频空调之间的连接边数;
(2)根据变频空调负荷群中各个变频空调之间的连接拓扑图形成的邻接矩阵A得到拉普拉斯矩阵L,L为一个n×n的矩阵,拉普拉斯矩阵中的元素为l(i,j),
l(i,j)=-a(i,j) (2)
(3)根据形成的拉普拉斯矩阵L形成行随机矩阵D,D为一个n×n的矩阵,行随机矩阵中的元素为d(i,j),
(4)假设第k个变频空调作为领导智能体,1≤k≤n,在t时刻收到温度改变量ΔTk后,t+1时刻传递到其余变频空调的温度改变量为:
ΔTj(t)为t时刻第j台变频空调的温度改变量,公式(4)为作为非领导智能体的变频空调通过与直接连接的变频空调相互通信来确定自身的温度改变量。
作为本发明所述的一种变频空调负荷群的一致性控制方法进一步优化方案,步骤7中的各个变频空调在各自的温度下的压缩机频率计算过程为:
(1)制冷量与室温关系
采用一阶经典等效热参数模型建立变频空调制冷量与室温的联系,变频空调的工作状态是连续的,即一旦工作则不会存在停止运行状态,因此变频空调作用下的一阶经典等效热参数模型为:
其中,为t+1时刻的室内空气温度;为t+1时刻室外温度;为t时刻的变频空调制冷量;R为变频空调所处房间的等效热阻;C为变频空调所处房间的等效热容,e为自然底数,公式(5)即反映制冷量与室温的关系;
(2)变频空调制冷量与压缩机频率的关系
采用二次函数对压缩机频率与变频空调制冷量的关系进行描述,具体的函数表达式为:
其中,fair为变频空调压缩机频率;a、b和c表示制冷量与压缩机频率的一次关系常数,其值随着不同的变频空调类型有所不同,Qair为变频空调制冷量;
(3)计算变频空调温度对应的压缩机频率
确定变频空调温度Ts下对应的变频压缩机频率应该了解室外温度Tout,并假设预设的一段时间内室外温度不随时间而变化,从而求得维持室内温度保持为变频空调温度所需的压缩机频率;因此针对式(5)中的各变量满足的关系为:
将式(7)和式(8)代入式(5)中得到:
将式(6)与式(9)结合得到:
其中,fair即为在变频空调温度Ts下的压缩机频率。
作为本发明所述的一种变频空调负荷群的一致性控制方法进一步优化方案,步骤8中变频空调的功率计算为:
其中,Pair即为在变频空调温度为Ts且室外温度为Tout下的变频空调功率,m和n表示变频空调功率与压缩机频率的一次关系常数,其值随着不同的变频空调类型有所不同。
作为本发明所述的一种变频空调负荷群的一致性控制方法进一步优化方案,步骤9中的变频空调负荷群的目标功率与实际功率的差值计算为:
其中,ΔP(t)为t时刻的变频空调群负荷群的目标功率与实际功率之间的差值,Pgoal为变频空调负荷群的目标功率,为第i台变频空调t时刻的功率值。
作为本发明所述的一种变频空调负荷群的一致性控制方法进一步优化方案,步骤11中作为领导智能体的变频空调的温度改变量修正方法为:
其中,ΔTi(t+1)为t+1时刻的变频空调的温度改变量,λ为修正系数,k代表作为领导智能体的变频空调序号。
本发明采用以上技术方案与现有技术相比,具有以下技术效果:
(1)本发明提供的方法,可实现对分布广泛、数量众多的变频空调的有效利用;各台变频空调作为一个智能体,通过与邻近智能体通信即可获取控制中心发出的控制指令,在本发明中即为变频空调温度改变量,从而改变自身运行状态,实现目标功率,而不需要每台变频空调均与控制中心直接相连,只需保证每台变频空调与控制中心直接有至少一条通路即可获取到控制中心发布的指令;
(2)通过本发明提供的一种变频空调负荷群的一致性控制方法可以有效降低控制变频空调群的成本,经济有效地利用变频空调资源并使得变频空调温度在预设的温度区间内,选择温度改变量作为一致性变量可以保证功率目标分配的公平性,使得实现目标功率时对各变频空调的影响程度相同。
附图说明
图1是本发明的变频空调负荷群的一致性控制方法总流程图。
图2为10台变频空调连接拓扑图。
图3为变频空调对应压缩机工况下室温变化过程。
图4为迭代过程中十台变频空调负荷群功率变化示意图。
图5为迭代过程中十台变频空调的温度变化示意图。
具体实施方式
下面结合附图和具体的实施例对本发明技术方案作进一步的详细描述,以使本领域的技术人员可以更好的理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例按照本发明所述步骤进行:
一种变频空调负荷群的一致性控制策略,包括以下步骤(如图1所示是本发明的变频空调负荷群的一致性控制方法的总流程图):
步骤1、给定变频空调负荷群受控后预期达到的目标功率,给定变频空调负荷群的目标功率和实际功率的允许误差值;
步骤2、变频空调负荷群中的所有变频空调均有初始温度,给出作为领导智能体的变频空调的温度改变量;
步骤3、采用一致性算法将作为领导智能体的变频空调的温度改变量传递给其余变频空调,其余变频空调为非领导智能体;
步骤4、将各个变频空调的初始温度与温度改变量相加求得所有变频空调温度,判断各个变频空调温度是否在预设的温度区间[Tmin,Tmax]内,若不在预设的温度区间内则执行步骤5,若在预设的温度区间内则执行步骤6;
步骤5、变频空调温度大于预设的温度区间上限Tmax则将变频空调温度设为温度区间上限Tmax,变频空调温度小于预设温度区间下限Tmin则将变频空调温度设为温度区间下限Tmin
步骤6、将变频空调负荷群中的所有变频空调温度值设为自身初始温度与接收到的温度改变量之和;
步骤7、计算各个变频空调在各自的温度下的压缩机频率,根据该计算出的压缩机频率对压缩机的频率进行修改;
步骤8、由各个变频空调的压缩机频率求得各个变频空调的功率;
步骤9、将各个变频空调的功率进行相加得出变频空调负荷群的实际功率,计算变频空调负荷群的目标功率与实际功率的差值;
步骤10、判断变频空调负荷群的目标功率与实际功率的差值的绝对值是否小于允许误差值,若不小于允许误差值则执行步骤11,若小于允许误差值则结束对变频空调负荷群的控制;
步骤11、根据变频空调负荷群的目标功率与实际功率的差值对作为领导智能体的变频空调的温度改变量进行修正,并重复执行步骤2至步骤10。
下面进行具体介绍:
(1)步骤2中作为领导智能体的变频空调的温度改变量的设置为:
将变频空调负荷群中的每一个变频空调个体视为智能体,可以独立进行信息的接收传递、由温度的改变量获知自身压缩机需要设定的频率并能改变自身的压缩机频率。作为领导智能体的变频空调应有至少一条到达任意变频空调的通路,从而其余变频空调均能收到温度改变量的信息。对于领导智能体的温度改变量初值设为0。
具体的,变频空调群的初始温度均设为25℃,领导智能体变频空调以及非领导智能体空调的温度改变量均设为0摄氏度。
(2)步骤3中采用一致性算法传递领导智能体变频空调收到的温度改变量的具体过程为:
1)根据变频空调负荷群个体之间的连接拓扑图形成邻接矩阵A。若存在n台变频空调,则邻接矩阵A应为一个n×n的矩阵。邻接矩阵中的元素a(i,j),其中i,j=1,...,n,对角线元素值均为0。非对角线的数值a(i,j),其中i≠j,为变频空调i与变频空调j之间的连接边数。对于一般有限简单拓扑图来说a(i,j)是一个0-1矩阵。
具体的,以十台变频空调为例,具体的连接拓扑图如图2所示,其中3号智能体为领导智能体。则由10台空调的连接拓扑图形成的邻接矩阵为10×10的一个矩阵,具体的表达式为:
2)根据变频空调负荷群个体之间的连接拓扑图形成的邻接矩阵A得到拉普拉斯矩阵L。L同样为一个n×n的矩阵,拉普拉斯矩阵中的元素l(i,j),其中i,j=1,...,n。
l(i,j)=-a(i,j) (2)
具体的,根据图2连接拓扑图形成的拉普拉斯矩阵为:
3)根据形成的拉普拉斯矩阵L形成行随机矩阵D。D同样为一个n×n的矩阵,行随机矩阵中的元素d(i,j),其中i,j=1,...,n。
具体的,根据图2连接拓扑图形成的行随机矩阵为:
4)第k个领导智能体变频空调,1≤k≤n,在收到t时刻的温度改变量ΔTk后,t+1时刻传递到非领导智能体变频空调的温度改变量为:
由于作为领导智能体的变频空调温度改变量ΔTk需要由上级控制中心通过功率差值进行修正后才能确定,因此不适用于公式(4)。公式(4)的物理含义为作为非领导智能体的变频空调通过与直接连接的作为智能体的变频空调相互通信来确定自身的温度改变量,而不需要直接与作为领导智能体的变频空调通信。
(3)步骤5中的变频空调温度超过预设的温度区间的处理方式:
Ts=Tmax,Ts0+ΔT>Tmax (5)
Ts=Tmin,Ts0+ΔT<Tmin (6)
式(5)和式(6)中[Tmin,Tmax]为变频空调对应的预设的温度区间,Ts为变频空调当前温度,Ts0为初始温度,ΔT为当前接收到的温度改变量。
具体的,式(5)和式(6)中的参数设为:变频空调对应的预设的温度区间为[22,28],Ts0为25℃。
(4)步骤6中的变频空调温度设为:
Ts=Ts0+ΔT,Tmin≤Ts0+ΔT≤Tmax (7)
(5)步骤7中的变频空调压缩机频率计算过程为:
1)建立制冷量与室温关系
采用一阶经典等效热参数模型建立变频空调制冷量与室温的联系,变频空调的工作状态是连续的,即一旦工作则不会存在停止运行状态,因此变频空调作用下的一阶经典等效热参数模型为:
其中为t+1时刻的室内空气温度,℃;为t+1时刻室外温度,℃;为t时刻的变频空调制冷量,kW;R为变频空调所处房间的等效热阻,℃/kW;C为变频空调所处房间的等效热容,kWh/℃。
空调制冷量与功率的关系可以采用能效比来进行联系,具体的公式如下:
Qair=ηairPair (9)
其中ηair为空调能效比;Pair为空调功率,kW。将公式(8)与公式(9)联系起来可得出变频空调功率与室温的关系。
2)建立空调功率、制冷量与压缩机频率的关系
对于压缩机频率与空调功率的关系采用一次函数对其进行描述,采用二次函数对压缩机频率与空调制冷量的关系进行描述,具体的函数表达式为:
Pair=nfair+m (10)
其中fair为变频空调压缩机频率,Hz;m和n表示空调功率与压缩机频率的一次关系常数,其值随着不同的空调类型有所不同;a、b和c表示制冷量与压缩机频率的一次关系常数,其值随着不同的空调类型有所不同。
3)计算温度对应的变频空调压缩机频率
确定空调温度Ts下对应的变频压缩机频率应该了解室外温度Tout,并假设短时间内室外温度不随时间而变化,从而求得维持室内温度保持为空调温度所需的压缩机频率。因此针对式(8)中的各变量应该满足的关系为:
将式(12)和式(13)代入式(8)中可得:
将式(14)与式(11)结合可得:
式中fair即为在变频空调温度Ts下的压缩机频率,变频空调在该频率下工作的意义在于:不管室温的初始状态如何,在长时间运行之后室温可以维持在变频空调温度Ts附近。
具体的,式(8)至式(15)中的参数设为:室外温度Tout为32℃,变频空调所处房间的等效热阻R在[4.0,4.1]的范围内随机产生,变频空调所处房间的等效热容C在[0.16,0.18]内随机产生,制冷量与压缩机频率的一次关系常数a、b、c分别在[-0.3×10-3,-0.23×10-3]、[0.050,0.055]、[0.2,0.25]范围内随机产生。假设室内温度初始值为26℃,变频空调的温度为25℃,则采用上述参数和式(15)可计算该情况下的压缩机频率,在求出的压缩机频率工况下室温的变化过程如图3所示。
(6)步骤8中的变频空调的功率计算为:
式中Pair即为在变频空调温度为Ts且室外温度为Tout下的变频空调功率。
具体的,式(16)中的参数设为:空调功率与压缩机频率的一次关系常数m、n在[0.05,0.06]、[0.015,0.018]范围内随机产生。
(7)步骤9中的变频空调负荷群目标功率与实际功率的差值计算为:
式中ΔP(t)为t时刻的变频空调群目标功率与实际功率之间的差值,Pgoal为变频空调群的目标功率,为第i台变频空调t时刻的变频空调功率值。
具体的,式(17)中目标功率Pgoal设为3kW。
(8)步骤11中的领导智能体变频空调温度改变量修正方法为:
式中ΔTi(t+1)为t+1时刻的变频空调温度改变量,λ为修正系数,根据现实情况可进行调节设定,k代表对应领导智能体的变频空调序号。
具体地,目标功率与实际功率间差值ΔP的判断允许误差值为0.05kW,λ设为0.1,考虑到实际的通讯速度,在进行离散次数的迭代中设定每次迭代所需要的时间为0.01s,图4和图5为本策略具体实施效果,其中图4为在迭代过程中十台变频空调的总体功率变化示意图。从图中可以看出在接近3s的时间里变频空调群从初始功率值到达了目标功率,反应速度还是相对较快的,可以满足速度要求不是特别高的功率调节任务。图5为在迭代过程中十台变频空调的温度变化量示意图。从图中可以看出,十台变频空调的温度改变量趋于一致,并且变频空调温度均未超出预设的温度区间,在实现功率调节目标的同时保证了任务分配的公平性,即对各变频空调的影响相对统一。由此可以看出,本发明给出的变频空调负荷群的一致性控制策略能很好地保证目标功率任务分配的公平性,有效地将分布广泛的变频空调资源结合起来,无须将每台变频空调都与领导智能体变频空调相连,从而高效公平地实现目标功率。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替代,都应当视为属于本发明的保护范围。

Claims (6)

1.一种变频空调负荷群的一致性控制方法,其特征在于,包括以下步骤:
步骤1、给定变频空调负荷群受控后预期达到的目标功率,给定变频空调负荷群的目标功率和实际功率的允许误差值;
步骤2、变频空调负荷群中的所有变频空调均有初始温度,给出作为领导智能体的变频空调的温度改变量;
步骤3、采用一致性算法将作为领导智能体的变频空调的温度改变量传递给其余变频空调,其余变频空调为非领导智能体;
步骤4、将各个变频空调的初始温度与温度改变量相加求得所有变频空调温度,判断各个变频空调温度是否在预设的温度区间[Tmin,Tmax]内,若不在预设的温度区间内则执行步骤5,若在预设的温度区间内则执行步骤6;
步骤5、变频空调温度大于预设的温度区间上限Tmax则将变频空调温度设为温度区间上限Tmax,变频空调温度小于预设温度区间下限Tmin则将变频空调温度设为温度区间下限Tmin
步骤6、将变频空调负荷群中的所有变频空调温度值设为自身初始温度与接收到的温度改变量之和;
步骤7、计算各个变频空调在各自的温度下的压缩机频率,根据该计算出的压缩机频率对压缩机的频率进行修改;
步骤8、由各个变频空调的压缩机频率求得各个变频空调的功率;
步骤9、将各个变频空调的功率进行相加得出变频空调负荷群的实际功率,计算变频空调负荷群的目标功率与实际功率的差值;
步骤10、判断变频空调负荷群的目标功率与实际功率的差值的绝对值是否小于允许误差值,若不小于允许误差值则执行步骤11,若小于允许误差值则结束对变频空调负荷群的控制;
步骤11、根据变频空调负荷群的目标功率与实际功率的差值对作为领导智能体的变频空调的温度改变量进行修正,并重复执行步骤2至步骤10。
2.根据权利要求1所述的一种变频空调负荷群的一致性控制方法,其特征在于,步骤3具体如下:
(1)根据各个变频空调之间的连接拓扑图形成邻接矩阵A;若存在n台变频空调,则邻接矩阵A应为一个n×n的矩阵,邻接矩阵中的元素为a(i,j),其中,i,j=1,...,n,对角线元素值均为0,非对角线的数值a(i,j)中的i≠j,非对角线的数值a(i,j)为第i个变频空调与第j个变频空调之间的连接边数;
(2)根据变频空调负荷群中各个变频空调之间的连接拓扑图形成的邻接矩阵A得到拉普拉斯矩阵L,L为一个n×n的矩阵,拉普拉斯矩阵中的元素为l(i,j),
l(i,j)=-a(i,j) (2)
(3)根据形成的拉普拉斯矩阵L形成行随机矩阵D,D为一个n×n的矩阵,行随机矩阵中的元素为d(i,j),
(4)假设第k个变频空调作为领导智能体,1≤k≤n,在t时刻收到温度改变量ΔTk后,t+1时刻传递到其余变频空调的温度改变量为:
ΔTj(t)为t时刻第j台变频空调的温度改变量,公式(4)为作为非领导智能体的变频空调通过与直接连接的变频空调相互通信来确定自身的温度改变量。
3.根据权利要求1所述的一种变频空调负荷群的一致性控制方法,其特征在于,步骤7中的各个变频空调在各自的温度下的压缩机频率计算过程为:
(1)制冷量与室温关系
采用一阶经典等效热参数模型建立变频空调制冷量与室温的联系,变频空调的工作状态是连续的,即一旦工作则不会存在停止运行状态,因此变频空调作用下的一阶经典等效热参数模型为:
其中,为t+1时刻的室内空气温度;为t+1时刻室外温度;为t时刻的变频空调制冷量;R为变频空调所处房间的等效热阻;C为变频空调所处房间的等效热容,e为自然底数,公式(5)即反映制冷量与室温的关系;
(2)变频空调制冷量与压缩机频率的关系
采用二次函数对压缩机频率与变频空调制冷量的关系进行描述,具体的函数表达式为:
其中,fair为变频空调压缩机频率;a、b和c表示制冷量与压缩机频率的一次关系常数,其值随着不同的变频空调类型有所不同,Qair为变频空调制冷量;
(3)计算变频空调温度对应的压缩机频率
确定变频空调温度Ts下对应的变频压缩机频率应该了解室外温度Tout,并假设预设的一段时间内室外温度不随时间而变化,从而求得维持室内温度保持为变频空调温度所需的压缩机频率;因此针对式(5)中的各变量满足的关系为:
将式(7)和式(8)代入式(5)中得到:
将式(6)与式(9)结合得到:
其中,fair即为在变频空调温度Ts下的压缩机频率。
4.根据权利要求3所述的一种变频空调负荷群的一致性控制方法,其特征在于,步骤8中变频空调的功率计算为:
其中,Pair即为在变频空调温度为Ts且室外温度为Tout下的变频空调功率,m和n表示变频空调功率与压缩机频率的一次关系常数,其值随着不同的变频空调类型有所不同。
5.根据权利要求1所述的一种变频空调负荷群的一致性控制方法,其特征在于,步骤9中的变频空调负荷群的目标功率与实际功率的差值计算为:
其中,ΔP(t)为t时刻的变频空调群负荷群的目标功率与实际功率之间的差值,Pgoal为变频空调负荷群的目标功率,为第i台变频空调t时刻的功率值。
6.根据权利要求5所述的一种变频空调负荷群的一致性控制方法,其特征在于,步骤11中作为领导智能体的变频空调的温度改变量修正方法为:
其中,ΔTi(t+1)为t+1时刻的变频空调的温度改变量,λ为修正系数,k代表作为领导智能体的变频空调序号。
CN201710243572.6A 2017-04-14 2017-04-14 一种变频空调负荷群的一致性控制方法 Active CN107101324B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710243572.6A CN107101324B (zh) 2017-04-14 2017-04-14 一种变频空调负荷群的一致性控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710243572.6A CN107101324B (zh) 2017-04-14 2017-04-14 一种变频空调负荷群的一致性控制方法

Publications (2)

Publication Number Publication Date
CN107101324A CN107101324A (zh) 2017-08-29
CN107101324B true CN107101324B (zh) 2019-03-26

Family

ID=59675337

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710243572.6A Active CN107101324B (zh) 2017-04-14 2017-04-14 一种变频空调负荷群的一致性控制方法

Country Status (1)

Country Link
CN (1) CN107101324B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112484257A (zh) * 2020-12-04 2021-03-12 东南大学 一种大规模变频空调群双层一致性控制方法
CN113219930A (zh) * 2021-05-21 2021-08-06 上海交通大学 一种基于粒子群算法的变频空调二阶等效热参数模型在线辨识方法
CN116345451B (zh) * 2023-05-26 2023-08-11 电子科技大学 一种变频类温控负荷的运行控制方法、装置和终端设备
CN117327578A (zh) * 2023-09-26 2024-01-02 湖南安泰康成生物科技有限公司 细胞培养装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103062869A (zh) * 2012-12-24 2013-04-24 江苏春兰空调设备有限公司 一种模块式中央空调的群控***及控制方法
CN105020859B (zh) * 2015-08-04 2017-11-17 深圳供电局有限公司 一种基于等舒适度损失原则的中央空调负荷削减调温方法
CN105042800B (zh) * 2015-09-01 2017-11-07 东南大学 基于需求响应的变频空调负荷建模与运行控制方法

Also Published As

Publication number Publication date
CN107101324A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
CN107101324B (zh) 一种变频空调负荷群的一致性控制方法
CN109631282B (zh) 一种中央空调***控制方法及其***、设备、存储介质
CN110288164B (zh) 一种建筑空调制冷站***预测控制方法
CN108413567B (zh) 基于物联网的中央空调节费优化方法与***
AU2010362490B2 (en) Energy-saving optimized control system and method for refrigeration plant room
CN109523137A (zh) 考虑楼宇热负荷需求响应的园区综合能源优化调度方法
CN105091209B (zh) 一种基于空调负荷预测的控制***及方法
CN101655272A (zh) 一种网络中央空调节能控制管理***及其方法
CN103912957A (zh) 空调机组的控制方法、控制装置及空调机组
CN107092991A (zh) 一种智能电网自适应经济调度分配方法
CN102734890A (zh) 中央空调冷冻水的模糊控制方法、装置及中央空调***
CN108168052A (zh) 一种中央空调制冷***最优启停控制方法
CN112361566B (zh) 空调***智能控制方法以及相关装置
CN107906810A (zh) 一种多冷水机组联合运行的海水冷却***节能群控方法
CN110454959A (zh) 一种空调节能控制方法和装置
CN117689178B (zh) 复合式地源热泵***长周期运行调度优化方法和装置
CN104236020A (zh) 一种空调***的控制方法及装置
CN108253519A (zh) 基于电采暖的用电控制方法
Xing et al. Chiller–pump system optimisation method for minimum energy operation based on multi-objective evolutionary algorithm
CN117267910B (zh) 中央空调制冷***负荷柔性调节方法、装置、设备及介质
CN114543274A (zh) 一种建筑中央空调温湿度优化控制方法及***
CN111415036B (zh) 一种中央空调***并联冷机负荷优化分配方法
CN107763799A (zh) 一种建筑空调柔性控制***
CN112923533B (zh) 基于多智能体的中央空调***层级分布式优化控制方法
CN110595008A (zh) 一种地源热泵空调***多设备协同优化方法及***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant