CN107065567A - A kind of automatic stopping control system that control is constrained based on adaptive neural network - Google Patents

A kind of automatic stopping control system that control is constrained based on adaptive neural network Download PDF

Info

Publication number
CN107065567A
CN107065567A CN201710363924.1A CN201710363924A CN107065567A CN 107065567 A CN107065567 A CN 107065567A CN 201710363924 A CN201710363924 A CN 201710363924A CN 107065567 A CN107065567 A CN 107065567A
Authority
CN
China
Prior art keywords
mrow
msub
mfrac
mover
alpha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710363924.1A
Other languages
Chinese (zh)
Inventor
许德智
宋晓麒
邓竞
颜文旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201710363924.1A priority Critical patent/CN107065567A/en
Publication of CN107065567A publication Critical patent/CN107065567A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

The invention discloses a kind of automatic stopping control system that control is constrained based on adaptive neural network, belong to intelligent automobile technical field, the present invention includes the path planning based on ultrasonic sensor, the PID controller based on RBF neural, dynamic constrained limitation, Full Vehicle Dynamics model, the observer based on RBF neural and anti-saturation compensator.Using said structure, it is contemplated that input constraint restrictive condition, whole system has complete control thinking.In the case where meeting reality, verified through simulation example, the present invention has good tracking performance, robustness and adaptability.

Description

A kind of automatic stopping control system that control is constrained based on adaptive neural network
Technical field
The present invention relates to a kind of automatic stopping control system that control is constrained based on adaptive neural network, belong to intelligent vapour Car technical field.
Background technology
For many drivers, in urban compact region, parking is a kind of painful experience.Big city parking space Limited, automobile is driven into narrow space turns into a required skill.Few situations for having stopped car without taking some twists and turns, Parking may smoothly not cause traffic jam, driver's neurolysis, or occur situations such as cause vehicle bumper to be hit curved.From Dynamic stopping technical can effectively solve the problem that above mentioned problem, makes automotive safety and rapidly stops to designated area.
Automatic stopping technology is in progressively ripe process.The automatic parking system of prior art, due to wheel turning angle Saturation problem and cause it is similar can not tracking fixed valure the problem of, this causes unnecessary trouble to quick parking.
The content of the invention
The present invention first purpose be to provide a kind of automatic stop process, methods described using wheel turning angle as object, Anti-saturation compensator, RBF observers, PID controller, dynamic constrained module are controlled to the parking path of vehicle;The RBF Observer is to PID controller and anti-saturation compensator input signal, it is ensured that the two normal work;The PID controller controls car The actual value of wheel steering angle is consistent with predetermined value, and angle control of the anti-saturation compensator to PID controller is repaiied Just, the dynamic constrained module enters row constraint to the angle and rate of change of wheel steering.
In one embodiment of the invention, the PID controller is based on RBF neural, and it is described as:
Wherein netjRepresent the output of the first layer of RBF neural, oijRepresent that input layer is input to jth i-th The weighted value of individual intermediate node, xcj(k) it is three inputs, e (k)-e (k-1), e (k), e (k) -2e (k-1)+e (k- is corresponded to respectively 2), wherein e (k) is φ*(k)-φ (k-1)-ε (k), φ*(k), the Vehicular turn angle needed for φ (k) expressions system and reality Steering angle, ε (k) represents thermal compensation signal, α0(k) it is the Vehicular turn angle at the k moment without constraint, α (k) is after constrained The Vehicular turn angle at k moment, KjCorrespondence Kp, Ki, KdParameter, ηbFor parameter learning speed.
In one embodiment of the invention, the anti-saturation compensator is described as:
Wherein, ε (k) is the anti-saturation compensator signal at k moment, and μ is the positive number less than 1, and α (k-1) is the k-1 moment Vehicular turn angle, α0(k) it is the Vehicular turn angle at the k moment without constraint,Obtained by RBF neural Jacobian information.
In one embodiment of the invention, the constraints of the dynamic constrained module is:
Wherein, TsThe systematic sampling time is represented,The minimum and maximum rate of change at Vehicular turn angle is represented respectively, αmin, αmaxThe minimum and maximum value at Vehicular turn angle is represented respectively.
In one embodiment of the invention, in the dynamic constrained condition, the excursion of body corner for -45~ 45 °, vehicle body angular rate of change scope is -20~20 °/s.
In one embodiment of the invention, the kinetic model of the vehicle is:
Wherein, u represents speed, LwRepresent vehicle antero posterior axis wheelbase.
In one embodiment of the invention, the RBF observers are described as follows:
Make X=[x1,x2,…xn]TFor the input vector of neutral net, G=[g1,g2,…,gj,…gm]TFor RBF nerve nets The radial direction base vector of network, gjStructure be:
Wherein Fj=[fj1,fj2,…,fji,…fjn]T, i=1,2 ... n represent node j center vector.Dj=[d1, d2,…,dm]TFor the sound stage width vector of neutral net, djThe sound stage width parameter of j nodes is represented, is positive number.Define the power of neutral net Weight vector is S=[s1,s2,…,sj…,sm]T, it is identified network and is output as:
Specifically iterative algorithm is:
dj(k)=dj(k-1)+ηΔdj(k)+κ(dj(k-1)-dj(k-2))
fji(k)=fji(k-1)+ηΔfji(k)+κ(fji(k-1)-fji(k-2))
The recognizer of Jacobian information is:
Second object of the present invention is to provide a kind of automatic stopping control system, contains PID controller, dynamic constrained mould Block, anti-saturation compensator, RBF observers and ultrasonic sensor, by wiredly and/or wirelessly connecting;The supersonic sensing Device is arranged on vehicle, and wheel steering angle signal is transmitted to PID controller;It is defeated that the dynamic constrained module receives PID controller The wheel steering angle signal gone out, and the amplitude and rate of change that are turned to it enter row constraint, and the steering angle signal after constraint is inputted To anti-saturation compensator;The RBF observers transmit Jacobian information to anti-saturation compensator and PID controller respectively;
In one embodiment of the invention, the PID controller based on RBF neural, the PID control Device is based on RBF neural, and it is described as:
Wherein netjRepresent the output of the first layer of RBF neural, oijRepresent that input layer is input to jth i-th The weighted value of individual intermediate node, xcj(k) it is three inputs, e (k)-e (k-1), e (k), e (k) -2e (k-1)+e (k- is corresponded to respectively 2), wherein e (k) is φ*(k)-φ (k-1)-ε (k), φ*(k), the Vehicular turn angle needed for φ (k) expressions system and reality Steering angle, ε (k) represents thermal compensation signal, α0(k) it is the Vehicular turn angle at the k moment without constraint, α (k) is after constrained The Vehicular turn angle at k moment, KjCorrespondence Kp, Ki, KdParameter, ηbFor parameter learning speed.
In one embodiment of the invention, described dynamic constrained module is output as the Vehicular turn after constraint Angle, the amplitude turned to for limiting wheel and rate of change, it is ensured that vehicle meets actual Vehicular turn feelings in Turning travel Condition, it is ensured that safety, in one embodiment of the invention, the constraints of the dynamic constrained module is:
Wherein, TsThe systematic sampling time is represented,The minimum and maximum rate of change at Vehicular turn angle is represented respectively, αmin, αmaxThe minimum and maximum value at Vehicular turn angle is represented respectively.
In one embodiment of the invention, the excursion of the body corner is -45~45 °, vehicle body angular rate of change Scope is -20~20 °/s.
In one embodiment of the invention, described anti-saturation compensator, it is output as dynamic thermal compensation signal, uses With compensate because dynamic constrained module exist and caused by output do not follow or follow excessively slow situation.
In one embodiment of the invention, the vehicle is output as the body corner of vehicle, its act on be to based on The observer of RBF neural, Jacobian information necessary to obtain system.
In one embodiment of the invention, the Jacobian information is automobile body angle for wheel turning angle Partial derivative.
Third object of the present invention is to provide the vehicle using the automatic stop process.
The present invention also provides application of the automatic stop process in intelligent automobile field.
Beneficial effect:A kind of automatic stopping for constraining control based on adaptive neural network proposed by the present invention controls system System, realizes the estimation of Jacobian information first with the observer technology based on RBF neural, base is devised based on this In the PID controller of RBF neural, input constraint condition is with the addition of on the basis of this controller, and add anti-full Saturated phenomenon produced problem is tackled with compensator, whole control system is more conformed to actual conditions, enhances system Reliability.Reduce client and find parking stall and the trouble stopped, improve the utilization rate of time.
Brief description of the drawings
Fig. 1 is automatic stopping Control System Design block diagram proposed by the invention;
Fig. 2 is automatic parking path planning schematic diagram of the invention;
Fig. 3 is the given figure in path under one embodiment of the present invention;
Fig. 4 is the pid parameter estimate schematic diagram under one embodiment of the present invention;
Fig. 5 is the RBF observer weights estimation value schematic diagrames under one embodiment of the present invention;
Fig. 6 is the Jacobian information under one embodiment of the present invention and the estimate schematic diagram of compensator signal;
Fig. 7 is the output response comparison schematic diagram of the invention under two kinds of embodiments;PIDNN is controlled for the PID of the present invention Output under device control processed;PID is the output under traditional PID controller control;
Fig. 8 is the PID controller that steering angle comparison schematic diagram PIDNN of the present invention under two kinds of embodiments is the present invention Output under control;PID is the output under traditional PID controller control.
Embodiment
Embodiment 1
The a kind of of the present invention constrains the automatic stopping control system of control with Vehicular turn angle based on adaptive neural network For object, the angle control method of the PID controller based on RBF neural is modified with reference to anti-saturation compensator, if Count block diagram as shown in Figure 1.
The automatic stopping control system mainly includes:Path planning module, it is the PID controller based on RBF neural, dynamic Modal constraint module, anti-saturation compensator, Full Vehicle Dynamics model and the observer based on RBF neural.RBF observers are exported Jacobian information is to PID controller and anti-saturation compensator;The PID controller calculates the reality for obtaining wheel turning angle Value, the input of the anti-saturation compensator is the difference of the wheel turning angle through affined wheel turning angle and without constraint, is led to The processing of anti-saturation compensator is crossed, the angle that PID controller is exported is modified;The dynamic constrained module is to wheel steering Angle and the wheel turning angle that enters after row constraint, and output constraint of rate of change, then the signal is transferred to vehicle, obtains actual Body corner.
Operated as follows by the method for emulation experiment:
Step one:Utilize ultrasonic sensor mensuration distance:
As shown in Fig. 2 wherein LvFor motor vehicle length, LwFor front and rear shaft length, WvFor vehicle width, LsFor length of parking, Δ D is the safe distance between two cars, and d is the distance of vehicle body center line and roadside-vehicle.Vehicle forward is detected by ultrasonic sensor To when having parking stall, vehicle has reached Q3At position, the parking path of vehicle is divided into four sections, 1) vehicle with form of straight lines after Move back process (i.e. Fig. 2 cathetus section Q3Q2Part);2) vehicle right turn process (i.e. curved section Q in Fig. 22Q1Part);3) vehicle is returned It is 0 to be diverted to steering angle, straight line fallback procedures (i.e. Fig. 2 cathetus section Q1Q0Part);4) vehicle turns left to draw back to automobile body Angle for 0 process (i.e. curved section Q in Fig. 20O parts).
Step 2, the design of the PID controller based on RBF neural.
Shown in typical PID controller design such as formula (1):
α0(k)=α (k-1)+kp(e(k)-e(k-1))+kie(k)+kd(e(k)-2e(k-1)+e(k-2)) (1)
Wherein α (k-1) is the Vehicular turn angle at k-1 moment, α0(k) it is the Vehicular turn angle at the k moment without constraint, e (k) it is φ*(k)-φ (k-1)-ε (k), is systematic error, φ*(k), the Vehicular turn angle needed for φ (k) expressions system and reality Steering angle, ε (k) represent thermal compensation signal, kp, ki, kdRespectively PID gain.
For the PID controller based on RBF neural, three intermediate nodes are defined, and define neutral net the Shown in one layer of output such as formula (2):
Wherein oijRepresent that input layer is input to the weighted value of j-th of intermediate node for i-th, it is carried out more by rule of iteration Replace, the o in this simulation exampleijInitial value be:
xcj(k) be three inputs, corresponded to respectively in this simulation example e (k)-e (k-1), e (k) and e (k) -2e (k-1)+ e(k-2).Shown in the output such as formula (3) for defining PID controller:
KjCorrespondence Kp, Ki, KdParameter, it is also to be substituted by rule of iteration, and initial value is set in this simulation example [25,0.7,0.3]T, y (netj) be defined as:
Therefore the derivative of above formula can be obtained is:
KjAnd o (k+1)ij(k+1) rule of iteration is as follows:
Wherein ηbFor parameter learning speed, it is set in this simulation example [- 0.1, -0.08, -0.15]T。oijInitial value For:
Step 3, sets up dynamic constrained condition, to obtain meeting actual Vehicular turn angle.
Dynamic constrained condition can be described as:
Wherein, TsThe systematic sampling time is represented, 0.02s is set in this simulation example, Sat () function is defined as:
Step 4, Full Vehicle Dynamics model is set up to obtain body corner.
Auto model can be described as:
Wherein u represents speed, LwRepresent vehicle antero posterior axis wheelbase.
Step 5, the design of the observer based on RBF neural
Make X=[x1,x2,…xn]TFor the input vector of neutral net, the radial direction base vector for choosing RBF neural is G =[g1,g2,…,gj,…gm]T, wherein gjFor Gaussian function, its structure is:
Wherein Fj=[fj1,fj2,…,fji,…fjn]T, i=1,2 ... n represent node j center vector.It is real in emulation F in examplejInitial value be
The sound stage width vector for defining neutral net is Dj=[d1,d2,…,dm]T, djThe sound stage width parameter of j nodes is represented, is just Number, the d in this simulation examplej(0) initial value is dj(0)=[7.15 7.15 7.15 7.15 7.15 7.15]T.Definition nerve The weight vectors of network are S=[s1,s2,…,sj…,sm]T, S (0) initial value is S (0)=[0.01 in this simulation example 0.01 0.01 0.01 0.01 0.01]T, can then be identified network and be output as:
And the iterative algorithm for exporting weight vectors, node base fat vector and intermediate node base vector can be by gradient descent method To obtain, specific iterative algorithm is as follows:
dj(k)=dj(k-1)+ηΔdj(k)+κ(dj(k-1)-dj(k-2)) (14)
fji(k)=fji(k-1)+ηΔfji(k)+κ(fji(k-1)-fji(k-2)) (16)
By (10) formula and (11) formula, the recognizer that can obtain control system Jacobian information is:
Step 6, the design of anti-saturation compensator, the anti-saturation compensator of design is described as:
Wherein, ε (k) is the compensator signal at k moment, and μ is the positive number less than 1,It is to be obtained by observer Jacobian information.
Automatic stopping is carried out using unmodified PID controller, as Figure 7-8, solid line is this to the response diagram of vehicle The emulation aircraft pursuit course that the method for invention is obtained, dotted line is the emulation obtained using existing unmodified PID controller Aircraft pursuit course, through being compared with unmodified PID controller, find automatic stopping control system proposed by the invention with Track faster, shows better performance.Simulation result shows that proposed method is effective.
Although the present invention is disclosed as above with preferred embodiment, it is not limited to the present invention, any to be familiar with this skill The people of art, without departing from the spirit and scope of the present invention, can do various changes and modification, therefore the protection model of the present invention Enclose being defined of being defined by claims.

Claims (10)

1. a kind of automatic stop process, it is characterised in that methods described is compensated using wheel turning angle as object by anti-saturation Device, RBF observers, PID controller, dynamic constrained module are controlled to the parking path of vehicle;The RBF observers to PID controller and anti-saturation compensator input Jacobian information;The PID controller calculates the reality for obtaining wheel turning angle Value, the anti-saturation compensator is modified to the angle of PID controller, angle of the dynamic constrained module to wheel steering The wheel turning angle entered with rate of change after row constraint, and output constraint.
2. according to the method described in claim 1, it is characterised in that the PID controller is based on RBF neural, it is described For:
<mrow> <msub> <mi>net</mi> <mi>j</mi> </msub> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>3</mn> </munderover> <msub> <mi>o</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>x</mi> <mrow> <mi>c</mi> <mi>j</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>&amp;alpha;</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>&amp;alpha;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>3</mn> </munderover> <msub> <mi>K</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <mi>y</mi> <mrow> <mo>(</mo> <msub> <mi>net</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>y</mi> <mrow> <mo>(</mo> <msub> <mi>net</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>1</mn> <mo>-</mo> <msup> <mi>exp</mi> <mrow> <mo>-</mo> <msub> <mi>net</mi> <mi>j</mi> </msub> </mrow> </msup> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>exp</mi> <mrow> <mo>-</mo> <msub> <mi>net</mi> <mi>j</mi> </msub> </mrow> </msup> </mrow> </mfrac> </mrow>
<mrow> <msup> <mi>y</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>net</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>y</mi> <mo>(</mo> <mrow> <msub> <mi>net</mi> <mi>j</mi> </msub> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow>
<mrow> <msub> <mi>K</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>K</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;eta;</mi> <mi>b</mi> </msub> <mi>e</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mfrac> <mrow> <mo>&amp;part;</mo> <mover> <mi>&amp;phi;</mi> <mo>^</mo> </mover> </mrow> <mrow> <mo>&amp;part;</mo> <mi>&amp;alpha;</mi> </mrow> </mfrac> <mi>y</mi> <mrow> <mo>(</mo> <msub> <mi>net</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>o</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>o</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;eta;</mi> <mi>b</mi> </msub> <mi>e</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mfrac> <mrow> <mo>&amp;part;</mo> <mover> <mi>&amp;phi;</mi> <mo>^</mo> </mover> </mrow> <mrow> <mo>&amp;part;</mo> <mi>&amp;alpha;</mi> </mrow> </mfrac> <msub> <mi>K</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msup> <mi>y</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>net</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>x</mi> <mrow> <mi>c</mi> <mi>j</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow>
Wherein netjRepresent the output of the first layer of RBF neural, oijRepresent that input layer is input in j-th for i-th The weighted value of intermediate node, xcj(k) it is three inputs, e (k)-e (k-1), e (k), e (k) -2e (k-1)+e (k-2) is corresponded to respectively, Wherein e (k) is φ*(k)-φ (k-1)-ε (k), φ*(k), the Vehicular turn angle needed for φ (k) expressions system and actual steering Angle, ε (k) represents thermal compensation signal, α0(k) it is the Vehicular turn angle at the k moment without constraint, when α (k) is the k after constrained The Vehicular turn angle at quarter, KjCorrespondence Kp, Ki, KdParameter, ηbFor parameter learning speed.
3. according to the method described in claim 1, it is characterised in that the anti-saturation compensator is described as:
<mrow> <mi>&amp;epsiv;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>&amp;mu;</mi> <mi>&amp;epsiv;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <mover> <mi>&amp;phi;</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>&amp;alpha;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mi>&amp;alpha;</mi> <mn>0</mn> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>-</mo> <mi>&amp;alpha;</mi> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow>
Wherein, ε (k) is the anti-saturation compensator signal at k moment, and μ is the positive number less than 1, and α (k-1) is the vehicle at k-1 moment Steering angle, α0(k) it is the Vehicular turn angle at the k moment without constraint,For the Jacobian obtained by RBF neural Information.
4. according to the method described in claim 1, it is characterised in that the constraints of the dynamic constrained module is:
<mrow> <mi>&amp;alpha;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>S</mi> <mi>a</mi> <mi>t</mi> <mrow> <mo>{</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mi>&amp;alpha;</mi> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>S</mi> <mi>a</mi> <mi>t</mi> <mrow> <mo>{</mo> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>&amp;alpha;</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>&amp;alpha;</mi> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mover> <mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>&amp;alpha;</mi> <mi>min</mi> </msub> </mrow> <mo>&amp;CenterDot;</mo> </mover> <mo>,</mo> <mover> <mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>&amp;alpha;</mi> <mi>max</mi> </msub> </mrow> <mo>&amp;CenterDot;</mo> </mover> </mrow> <mo>}</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>min</mi> </msub> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>max</mi> </msub> </mrow> <mo>}</mo> </mrow> </mrow>
<mrow> <mi>S</mi> <mi>a</mi> <mi>t</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mi>a</mi> <mo>(</mo> <mi>x</mi> <mo>&amp;le;</mo> <mi>a</mi> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <mi>x</mi> <mo>(</mo> <mi>a</mi> <mo>&lt;</mo> <mi>x</mi> <mo>&lt;</mo> <mi>b</mi> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <mi>b</mi> <mo>(</mo> <mi>x</mi> <mo>&amp;GreaterEqual;</mo> <mi>b</mi> <mo>)</mo> </mtd> </mtr> </mtable> </mfenced> </mrow>
Wherein, TsThe systematic sampling time is represented,The minimum and maximum rate of change at Vehicular turn angle, α are represented respectivelymin, αmaxThe minimum and maximum value at Vehicular turn angle is represented respectively;A, b represent minimum value and maximum respectively.
5. method according to claim 4, it is characterised in that in the dynamic constrained condition, the excursion of body corner For -45~45 °, vehicle body angular rate of change scope is -20~20 °/s.
6. according to the method described in claim 1, it is characterised in that the kinetic model of the vehicle is:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>T</mi> <mi>s</mi> </msub> <mi>u</mi> <mi> </mi> <mi>cos</mi> <mrow> <mo>(</mo> <mrow> <mi>&amp;phi;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>y</mi> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>y</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>T</mi> <mi>s</mi> </msub> <mi>u</mi> <mi> </mi> <mi>sin</mi> <mrow> <mo>(</mo> <mrow> <mi>&amp;phi;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&amp;phi;</mi> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>&amp;phi;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>T</mi> <mi>s</mi> </msub> <mi>u</mi> <mi> </mi> <mi>tan</mi> <mrow> <mo>(</mo> <mrow> <mi>&amp;phi;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>L</mi> <mi>w</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein, u represents speed, LwRepresent vehicle antero posterior axis wheelbase.
7. according to the method described in claim 1, it is characterised in that the RBF observers are described as follows:
Make X=[x1,x2,…xn]TFor the input vector of neutral net, G=[g1,g2,…,gj,…gm]TFor RBF neural Radial direction base vector, gjStructure be:
<mrow> <msub> <mi>g</mi> <mi>j</mi> </msub> <mo>=</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <mrow> <mo>|</mo> <mo>|</mo> <mi>X</mi> <mo>-</mo> <msub> <mi>F</mi> <mi>j</mi> </msub> <mo>|</mo> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> <mrow> <mn>2</mn> <msubsup> <mi>d</mi> <mi>j</mi> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>,</mo> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mi>m</mi> </mrow>
Wherein Fj=[fj1,fj2,…,fji,…fjn]T, i=1,2 ... n represent node j center vector;Dj=[d1,d2,…, dm]TFor the sound stage width vector of neutral net, djThe sound stage width parameter of j nodes is represented, is positive number;Define the weight vectors of neutral net For S=[s1,s2,…,sj…,sm]T, it is identified network and is output as:
Specifically iterative algorithm is:
<mrow> <msub> <mi>s</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>s</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;eta;</mi> <mrow> <mo>(</mo> <mi>&amp;phi;</mi> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>-</mo> <mover> <mi>&amp;phi;</mi> <mo>^</mo> </mover> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>)</mo> </mrow> <msub> <mi>g</mi> <mi>j</mi> </msub> <mo>+</mo> <mi>&amp;kappa;</mi> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mi>j</mi> </msub> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> <mo>-</mo> <msub> <mi>s</mi> <mi>j</mi> </msub> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mn>2</mn> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>&amp;Delta;d</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>&amp;eta;</mi> <mrow> <mo>(</mo> <mi>&amp;phi;</mi> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>-</mo> <mover> <mi>&amp;phi;</mi> <mo>^</mo> </mover> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>)</mo> </mrow> <msub> <mi>s</mi> <mi>j</mi> </msub> <msub> <mi>g</mi> <mi>j</mi> </msub> <mfrac> <mrow> <mo>|</mo> <mo>|</mo> <mi>X</mi> <mo>-</mo> <msub> <mi>F</mi> <mi>j</mi> </msub> <mo>|</mo> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> <msubsup> <mi>d</mi> <mi>j</mi> <mn>3</mn> </msubsup> </mfrac> </mrow>
dj(k)=dj(k-1)+ηΔdj(k)+κ(dj(k-1)-dj(k-2))
<mrow> <msub> <mi>&amp;Delta;f</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>&amp;eta;</mi> <mrow> <mo>(</mo> <mi>&amp;phi;</mi> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>-</mo> <mover> <mi>&amp;phi;</mi> <mo>^</mo> </mover> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>)</mo> </mrow> <msub> <mi>s</mi> <mi>j</mi> </msub> <mfrac> <mrow> <msub> <mi>x</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>f</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> </msub> </mrow> <msubsup> <mi>d</mi> <mi>j</mi> <mn>2</mn> </msubsup> </mfrac> </mrow>
fji(k)=fji(k-1)+ηΔfji(k)+κ(fji(k-1)-fji(k-2))
The recognizer of Jacobian information is:
<mrow> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>&amp;phi;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>&amp;alpha;</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <mover> <mi>&amp;phi;</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>&amp;alpha;</mi> </mrow> </mfrac> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <msub> <mi>s</mi> <mi>j</mi> </msub> <msub> <mi>g</mi> <mi>j</mi> </msub> <mfrac> <mrow> <msub> <mi>f</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> </mrow> <msubsup> <mi>d</mi> <mi>j</mi> <mn>2</mn> </msubsup> </mfrac> <mo>.</mo> </mrow>
8. one kind application any methods describeds of claim 1-7 realize self-stopping automatic stopping control system, its feature exists In containing PID controller, dynamic constrained module, anti-saturation compensator, RBF observers and ultrasonic sensor, by wired And/or wireless connection;The ultrasonic sensor is arranged on vehicle, and wheel steering angle signal is transmitted to PID controller;It is described Dynamic constrained module receives the wheel steering angle signal of PID controller output, and the amplitude and rate of change turned to it is carried out about Beam, the steering angle signal after constraint is inputted to anti-saturation compensator;The RBF observers respectively to anti-saturation compensator and PID controller transmits Jacobian information.
9. the vehicle of the application any methods describeds of claim 1-7.
10. any methods describeds of claim 1-7 are in the application of intelligent automobile field.
CN201710363924.1A 2017-05-22 2017-05-22 A kind of automatic stopping control system that control is constrained based on adaptive neural network Pending CN107065567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710363924.1A CN107065567A (en) 2017-05-22 2017-05-22 A kind of automatic stopping control system that control is constrained based on adaptive neural network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710363924.1A CN107065567A (en) 2017-05-22 2017-05-22 A kind of automatic stopping control system that control is constrained based on adaptive neural network

Publications (1)

Publication Number Publication Date
CN107065567A true CN107065567A (en) 2017-08-18

Family

ID=59611037

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710363924.1A Pending CN107065567A (en) 2017-05-22 2017-05-22 A kind of automatic stopping control system that control is constrained based on adaptive neural network

Country Status (1)

Country Link
CN (1) CN107065567A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107697065A (en) * 2017-10-16 2018-02-16 北方工业大学 Automatic parking control method for general parking scene
CN108197704A (en) * 2017-12-29 2018-06-22 贵州航天南海科技有限责任公司 A kind of stereo garage control method
CN109086492A (en) * 2018-07-11 2018-12-25 大连理工大学 A kind of wire frame representation of body structure threedimensional model and deformation method and system
CN109188912A (en) * 2018-10-12 2019-01-11 国网浙江省电力有限公司绍兴供电公司 A kind of control method for energy storage device in grid-connected distributed energy resource system
CN109921924A (en) * 2019-02-14 2019-06-21 电子科技大学 A kind of intelligent automobile multilayer stereoscopic joint control system modeling method
CN110310500A (en) * 2019-06-19 2019-10-08 中汽研(天津)汽车工程研究院有限公司 A kind of autonomous valet parking system and method based on GRNN network
US20220204018A1 (en) * 2020-12-29 2022-06-30 GM Global Technology Operations LLC Vehicle control using neural network controller in combination with model-based controller
CN114701875A (en) * 2022-03-08 2022-07-05 中国人民解放军空军工程大学 Guiding device and method for loading and unloading of railway vehicle under light condition
US11613249B2 (en) 2018-04-03 2023-03-28 Ford Global Technologies, Llc Automatic navigation using deep reinforcement learning
CN116461499A (en) * 2023-03-02 2023-07-21 合众新能源汽车股份有限公司 Parking control method and device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105818712A (en) * 2016-03-17 2016-08-03 电子科技大学 Self-adaptive starting control method for four-wheel hub electric automobile
CN206797381U (en) * 2017-05-22 2017-12-26 江南大学 A kind of automatic stopping control system and automobile

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105818712A (en) * 2016-03-17 2016-08-03 电子科技大学 Self-adaptive starting control method for four-wheel hub electric automobile
CN206797381U (en) * 2017-05-22 2017-12-26 江南大学 A kind of automatic stopping control system and automobile

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JING DENG 等: "Adaptive neural network automatic parking constrained control via anti-windup compensator", 《ADVANCES IN MECHANICAL ENGINEERING》 *
WENXU YAN 等: "Data-driven automatic parking constrained control for four-wheeled mobile vehicles", 《INTERNATIONAL JOURNAL OF ADVANCED ROBOTICS SYSTEMS》 *
王健 等: "基于线性扩张状态观测器的平行泊车路径跟踪", 《华南理工大学学报(自然科学版)》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107697065A (en) * 2017-10-16 2018-02-16 北方工业大学 Automatic parking control method for general parking scene
CN108197704A (en) * 2017-12-29 2018-06-22 贵州航天南海科技有限责任公司 A kind of stereo garage control method
US11613249B2 (en) 2018-04-03 2023-03-28 Ford Global Technologies, Llc Automatic navigation using deep reinforcement learning
CN109086492B (en) * 2018-07-11 2022-12-13 大连理工大学 Wire frame representation and deformation method and system for three-dimensional model of vehicle body structure
CN109086492A (en) * 2018-07-11 2018-12-25 大连理工大学 A kind of wire frame representation of body structure threedimensional model and deformation method and system
CN109188912A (en) * 2018-10-12 2019-01-11 国网浙江省电力有限公司绍兴供电公司 A kind of control method for energy storage device in grid-connected distributed energy resource system
CN109921924B (en) * 2019-02-14 2021-07-13 电子科技大学 Modeling method for intelligent automobile multilayer three-dimensional network connection control system
CN109921924A (en) * 2019-02-14 2019-06-21 电子科技大学 A kind of intelligent automobile multilayer stereoscopic joint control system modeling method
CN110310500A (en) * 2019-06-19 2019-10-08 中汽研(天津)汽车工程研究院有限公司 A kind of autonomous valet parking system and method based on GRNN network
US20220204018A1 (en) * 2020-12-29 2022-06-30 GM Global Technology Operations LLC Vehicle control using neural network controller in combination with model-based controller
US11834066B2 (en) * 2020-12-29 2023-12-05 GM Global Technology Operations LLC Vehicle control using neural network controller in combination with model-based controller
CN114701875A (en) * 2022-03-08 2022-07-05 中国人民解放军空军工程大学 Guiding device and method for loading and unloading of railway vehicle under light condition
CN116461499A (en) * 2023-03-02 2023-07-21 合众新能源汽车股份有限公司 Parking control method and device
CN116461499B (en) * 2023-03-02 2024-01-02 合众新能源汽车股份有限公司 Parking control method and device

Similar Documents

Publication Publication Date Title
CN107065567A (en) A kind of automatic stopping control system that control is constrained based on adaptive neural network
Hu et al. Lane keeping control of autonomous vehicles with prescribed performance considering the rollover prevention and input saturation
Polack et al. The kinematic bicycle model: A consistent model for planning feasible trajectories for autonomous vehicles?
Ni et al. Envelope control for four-wheel independently actuated autonomous ground vehicle through AFS/DYC integrated control
CN110286681B (en) Dynamic automatic driving track-changing planning method for curvature-variable curve
Erlien et al. Safe driving envelopes for shared control of ground vehicles
Wnag et al. Path planning and stability control of collision avoidance system based on active front steering
CN107697065B (en) Automatic parking control method for general parking scene
Zhao et al. Emergency steering evasion assistance control based on driving behavior analysis
Lee A preview steering autopilot control algorithm for four-wheel-steering passenger vehicles
Attia et al. Coupled longitudinal and lateral control strategy improving lateral stability for autonomous vehicle
CN111791898B (en) Automatic driving automobile collision avoidance control method based on cooperation type game
CN107380162B (en) Collision avoidance method is cooperateed with based on function distribution and Multi-Objective Fuzzy Decision
Yuan et al. Mixed local motion planning and tracking control framework for autonomous vehicles based on model predictive control
CN110161854A (en) A kind of highway heavy truck formation longitudinal driving control method
Ali et al. Urban platooning using a flatbed tow truck model
Fergani et al. Full vehicle dynamics control based on LPV/ℋ∞ and flatness approaches
Zhai et al. Bilateral control of vehicle Steer-by-Wire system with variable gear-ratio
CN107878453A (en) A kind of automobile emergency collision avoidance integral type control method for hiding dynamic barrier
CN107856733A (en) It is a kind of to hide dynamic barrier control method towards man-machine harmonious automobile
Zhang et al. Minimum time lane changing problem of vehicle handling inverse dynamics considering the driver’s intention
Chen et al. Ribbon model based path tracking method for autonomous ground vehicles
Teng et al. Car following model based on driving risk field for vehicle infrastructure cooperation
CN107963120A (en) A kind of rubber tire low-floor intelligent track train automatic steering control method
Tagne et al. Passivity analysis and design of passivity-based controllers for trajectory tracking at high speed of autonomous vehicles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170818

RJ01 Rejection of invention patent application after publication