CN107036992B - 基于分析物催化纳米颗粒合成反应的Ag+比色检测方法 - Google Patents

基于分析物催化纳米颗粒合成反应的Ag+比色检测方法 Download PDF

Info

Publication number
CN107036992B
CN107036992B CN201710189683.3A CN201710189683A CN107036992B CN 107036992 B CN107036992 B CN 107036992B CN 201710189683 A CN201710189683 A CN 201710189683A CN 107036992 B CN107036992 B CN 107036992B
Authority
CN
China
Prior art keywords
solution
phenylenediamine
gold nano
nano grain
analyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710189683.3A
Other languages
English (en)
Other versions
CN107036992A (zh
Inventor
张云
聂瑾芳
杨娟华
覃忠祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Technology
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN201710189683.3A priority Critical patent/CN107036992B/zh
Publication of CN107036992A publication Critical patent/CN107036992A/zh
Application granted granted Critical
Publication of CN107036992B publication Critical patent/CN107036992B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本发明公开了一种基于分析物催化纳米颗粒合成反应的Ag+比色检测方法。该方法利用低浓度邻苯二胺可有效介导表面带负电荷的金纳米颗粒凝集导致反应溶液发生由红变蓝的反应。少量Ag+即能高效、特异地氧化邻苯二胺为2,3‑二氨基吩嗪,同时Ag+自身被还原生成纳米银颗粒,纳米银颗粒进一步催化邻苯二胺氧化生成2,3‑二氨基吩嗪,从而抑制上述变色反应。金纳米颗粒凝集程度反比于样本中Ag+浓度。因此,通过肉眼观察反应溶液颜色变化能够实现Ag2+的定性或半定量检测。借助紫外可见分光光度计则能够实现Ag2+的定量检测。本发明能够直接推广应用于医学诊断、环境监测、食品安全等诸多领域里各类型样本中Ag2+分析物的简单、经济、快速、灵敏、特异的分析检测。

Description

基于分析物催化纳米颗粒合成反应的Ag+比色检测方法
技术领域
本发明属于纳米化学传感技术领域,具体涉及一种基于分析物催化纳米颗粒合成反应的Ag+比色检测方法。
背景技术
银离子(Ag+)广泛应用于摄影、影像、电器、医药等领域。但Ag+能通过食物链富集于人体,高浓度此种重金属离子能破坏酶的活性,并可与各种代谢物的胺类、咪唑类、羧基等功能基团结合,严重影响、损害人类的健康,甚至导致死亡。目前传统的Ag+定量检测方法主要包括电感耦合等离子体质谱法、原子吸收光谱法、原子发射光谱法、原子荧光光谱法等。然而,这些方法普遍存在操作繁琐费时、所使用的仪器价格昂贵且体积庞大、分析成本较高、不能用于现场分析等问题。利用选择性电极的Ag+定量检测方法尽管具有操作简单、成本相对经济等优点,但其主要不足在于检测灵敏度(μM水平)较低。
发明内容
本发明的目的是针对现有技术的不足,提供一种基于分析物催化纳米颗粒合成反应的简单高灵敏Ag+比色检测方法。
本发明的思路:低浓度邻苯二胺可有效介导表面带负电荷的金纳米颗粒凝集导致反应溶液发生由红变蓝的颜色改变反应。而少量的Ag+即能高效、特异地氧化邻苯二胺为2,3-二氨基吩嗪,同时金属离子自身被还原生成纳米银颗粒,而该纳米颗粒可进一步催化邻苯二胺氧化生成2,3-二氨基吩嗪,从而抑制上述溶液变色反应。金纳米颗粒凝集导致反应溶液发生颜色改变的程度反比于样本中Ag+浓度。因此,通过肉眼观察反应溶液的颜色变化即可实现Ag+的简单高灵敏定性或半定量检测。若借助紫外可见分光光度计则可进一步实现目标金属离子分析物的准确定量检测。
具体步骤为:
步骤一,将Ag+样本溶液与邻苯二胺溶液混合,邻苯二胺被Ag+氧化为2,3-二氨基吩嗪,同时Ag+自身被还原生成纳米银颗粒,而该纳米银颗粒能够进一步催化邻苯二胺氧化生成2,3-二氨基吩嗪,制得反应溶液。
步骤二,向步骤一制得的反应溶液中加入表面呈负电荷性质的金纳米颗粒红色溶液,制得混合溶液,混合溶液中剩余的邻苯二胺将介导表面呈负电荷性质的金纳米颗粒凝集,金纳米颗粒的凝集程度与样本溶液中Ag+的浓度呈反比,肉眼观测该混合溶液的颜色变化进行定性或半定量分析,或使用光度计进行定量分析,即实现Ag+比色检测。
所述表面呈负电荷性质的金纳米颗粒通过以下任意一种方式获得:金纳米颗粒在原位合成中表面吸附了还原剂的阴离子或者金纳米颗粒合成完成后被进一步修饰上可电离呈负电荷性质的分子。
所述光度计为台式光度计和便携式光度计中的一种。
与现有的Ag+检测方法相比,本发明的突出优点在于:
1)整个Ag+分析过程中的操作极为简单,未经专业技能培训的操作人员也能开展实验;2)通过协同邻苯二胺有效介导金纳米颗粒凝集反应和Ag+高效、特异氧化邻苯二胺为2,3-二氨基吩嗪,同时金属离子自身被还原生成纳米银颗粒,而该纳米银颗粒能够进一步催化邻苯二胺氧化生成2,3-二氨基吩嗪,显著提高方法的检测灵敏度;3)仅需肉眼观测溶液颜色的改变,即可实现Ag+的高灵敏定性或半定量分析,或可通过借助便携式光度计进一步实现分析物的准确定量检测,在极大降低分析成本的同时还能用于Ag+样本的现场分析和即时检测;4)本发明能够直接推广应用于医学诊断、环境监测、食品安全等诸多领域里各类型样本中Ag+分析物的简单、经济、快速、超灵敏、特异的定性与定量检测。
附图说明
图1为本发明实施例1和实施例2中基于分析物催化纳米颗粒合成反应的Ag+比色检测方法的原理示意图。
图中标记:1-1—无色超纯水;1-2—邻苯二胺;2—检测试管;3-1—超纯水;3-2—Ag+;4—2,3-二氨基吩嗪;5—纳米银颗粒;6-1—红色溶液;6-2—金纳米颗粒;7—肉眼;8—便携式分光光度计。
图2为本发明实施例1中使用基于分析物催化纳米颗粒合成反应的Ag+比色检测方法分别检测(A)10 μM Ag+样本溶液与(B)空白样(超纯水)所得比色结果的比较。
图3为本发明实施例2中使用基于分析物催化纳米颗粒合成反应的Ag+比色检测方法分析一系列含有不同浓度Ag+的样本溶液时在700 nm处的吸收强度值(A700)与Ag+浓度的Log值(LogC Ag+)之间的工作曲线。
具体实施方式
以下实施例将对本发明予以进一步的说明,但并不因此而限制本发明。
实施例1:
使用基于分析物催化纳米颗粒合成反应的简单高灵敏Ag+比色检测方法分别检测10 μM Ag+样本溶液与空白样(超纯水)。
如图1所示,本实施例的具体步骤为:步骤一,在1个1.5 mL的塑料检测试管中加入250 μL 2 μM的邻苯二胺溶液(由电阻率为18.2 MΩ·cm的超纯水配制),随后往该溶液中滴加250 μL 10 μM Ag+ 样本溶液(由电阻率为18.2 MΩ·cm的超纯水配制的硝酸银溶液),并摇动试管使两种溶液混合均匀后置于50℃下反应60 min,制得反应溶液;步骤二,在上述反应溶液中继续加入500 μL红色金纳米颗粒溶液(粒径约15 nm,由柠檬酸钠还原氯金酸制得,且制备好的金纳米颗粒表面因吸附了柠檬酸根阴离子而呈负电荷性),并摇动试管使溶液混合均匀,5 min后,肉眼观测溶液的颜色变化。
根据相同的步骤,分析空白样,即超纯水(电阻率为18.2 MΩ·cm),并肉眼观测溶液的颜色变化。从图2可以看出,检测空白样得到的是蓝色溶液,而检测10 μM Ag+分析物所得的是红色溶液。这是因为检测空白样时,邻苯二胺在其水溶液中电离后呈正电荷性,可以通过介导表面带负电荷的金纳米颗粒发生凝集,导致反应溶液产生由红变蓝的颜色变化。而当样本中存在Ag+时,Ag+可以高效、特异地氧化邻苯二胺为2,3-二氨基吩嗪,同时金属离子自身被还原生成纳米银颗粒,而该纳米颗粒可进一步催化邻苯二胺氧化生成2,3-二氨基吩嗪。由于该产物不能导致金纳米颗粒发生凝集,整个反应溶液依然保持金纳米颗粒溶液的原始红色。图2中的对比实验结果表明,本发明的简单超灵敏的Ag+比色检测方法切实可行。
实施例2:
使用基于分析物催化纳米颗粒合成反应的简单高灵敏Ag+比色检测方法分析浓度范围为9.7 nM~5 μM的Ag+样本溶液。具体实施过程如下:
如图1所示,本实施例中每个Ag+样本溶液分析的具体步骤为:步骤一,在1个1.5mL的塑料检测试管中加入250 μL 2 μM的邻苯二胺溶液(由电阻率为18.2 MΩ·cm的超纯水配制),随后往该溶液中滴加250 μL 某一浓度Ag+样本溶液(由电阻率为18.2 MΩ·cm的超纯水配制的硝酸银溶液),并摇动试管使两种溶液混合均匀后置于50℃下反应60 min,制得反应溶液;步骤二,在上述反应溶液中继续加入500 μL红色金纳米颗粒溶液(粒径约15nm,由柠檬酸钠还原氯金酸制得,且制备好的金纳米颗粒表面因吸附了柠檬酸根阴离子而呈负电荷性),并摇动试管使溶液混合均匀,5 min后,肉眼观测溶液的颜色变化,并使用紫外-可见分光光度计量测该溶液在700 nm处的吸收强度值(A700)。将所有样本的A700值对Ag+浓度的Log值(LogC Ag+)作图(图3),即完成Ag+的定量测定。
由图3可知,随着Ag+浓度的增加,相应的A700值逐渐减少。这是因为,当样本中Ag+浓度较大时,分析物可以高效、特异地氧化邻苯二胺为2,3-二氨基吩嗪,同时金属离子自身被还原生成纳米银颗粒,而该纳米颗粒可进一步催化邻苯二胺氧化生成2,3-二氨基吩嗪。此时,剩余的邻苯二胺分子不足以通过静电作用介导金纳米颗粒发生凝集,含有较多自由分散的金纳米颗粒的相应混合溶液在700 nm处的吸收强度值,即A700值较小。此外,图3显示,新方法量测所有Ag+样本所得A700值与Ag+浓度的Log值(LogC Ag+)在两个浓度范围(即9.7~165 nM和0.16~5 μM)内呈现良好的线性关系。

Claims (1)

1.一种基于分析物催化纳米颗粒合成反应的Ag+比色检测方法,其特征在于具体步骤为:
步骤一,将Ag+样本溶液与邻苯二胺溶液混合,邻苯二胺被Ag+氧化为2,3-二氨基吩嗪,同时Ag+自身被还原生成纳米银颗粒,而该纳米银颗粒能够进一步催化邻苯二胺氧化生成2,3-二氨基吩嗪,制得反应溶液;
步骤二,向步骤一制得的反应溶液中加入表面呈负电荷性质的金纳米颗粒红色溶液,制得混合溶液,混合溶液中剩余的邻苯二胺将介导表面呈负电荷性质的金纳米颗粒凝集,金纳米颗粒的凝集程度与样本溶液中Ag+的浓度呈反比,肉眼观测该混合溶液的颜色变化进行定性或半定量分析,或使用光度计进行定量分析,即实现Ag+比色检测;
所述表面呈负电荷性质的金纳米颗粒通过以下任意一种方式获得:金纳米颗粒在原位合成中表面吸附了还原剂的阴离子或者金纳米颗粒合成完成后被进一步修饰上可电离呈负电荷性质的分子;
所述光度计为台式光度计和便携式光度计中的一种。
CN201710189683.3A 2017-03-28 2017-03-28 基于分析物催化纳米颗粒合成反应的Ag+比色检测方法 Active CN107036992B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710189683.3A CN107036992B (zh) 2017-03-28 2017-03-28 基于分析物催化纳米颗粒合成反应的Ag+比色检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710189683.3A CN107036992B (zh) 2017-03-28 2017-03-28 基于分析物催化纳米颗粒合成反应的Ag+比色检测方法

Publications (2)

Publication Number Publication Date
CN107036992A CN107036992A (zh) 2017-08-11
CN107036992B true CN107036992B (zh) 2019-10-18

Family

ID=59533733

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710189683.3A Active CN107036992B (zh) 2017-03-28 2017-03-28 基于分析物催化纳米颗粒合成反应的Ag+比色检测方法

Country Status (1)

Country Link
CN (1) CN107036992B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109900654B (zh) * 2019-04-08 2021-05-18 西北师范大学 水溶性吩嗪染料在识别和吸附去除水样中铜离子的应用
CN111965150B (zh) * 2020-07-30 2022-12-20 济南大学 一种基于原位生成的2,3-二氨基吩嗪荧光检测碱性磷酸酶的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103439267A (zh) * 2013-08-28 2013-12-11 中国科学院宁波材料技术与工程研究所 一种二价汞离子的检测试剂组合及检测方法
CN106442514A (zh) * 2016-11-24 2017-02-22 桂林理工大学 一种简单超灵敏的二价铜离子比色检测方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103439267A (zh) * 2013-08-28 2013-12-11 中国科学院宁波材料技术与工程研究所 一种二价汞离子的检测试剂组合及检测方法
CN106442514A (zh) * 2016-11-24 2017-02-22 桂林理工大学 一种简单超灵敏的二价铜离子比色检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Label-free fluorescence detection of mercury ions based on the regulation of the Ag autocatalytic reaction;Haichao Dai等;《Analyst》;20151231;第3616-3622页(参见摘要) *
Mechanism of Preparing Spherical Nano-sized Silver Particles via o-Phenylenediamine Reduction Process in Water-NMPD Mixed Solution System;Li Tao 等;《Rare Metal Materials and Engineering》;20150531;第1071-1074页 *

Also Published As

Publication number Publication date
CN107036992A (zh) 2017-08-11

Similar Documents

Publication Publication Date Title
CN106442514B (zh) 一种简单超灵敏的二价铜离子比色检测方法
Bhanjana et al. Zinc oxide quantum dots as efficient electron mediator for ultrasensitive and selective electrochemical sensing of mercury
Lin et al. Silver nanoprobe for sensitive and selective colorimetric detection of dopamine via robust Ag–catechol interaction
Zhang et al. Sensitive paper-based analytical device for fast colorimetric detection of nitrite with smartphone
Xie et al. A trigger-based aggregation of aptamer-functionalized gold nanoparticles for colorimetry: An example on detection of Escherichia coli O157: H7
Wang et al. Electrochemiluminescence of a nanoAg–carbon nanodot composite and its application to detect sulfide ions
Hu et al. Selective colorimetric detection of glutathione based on quasi-stable gold nanoparticles assembly
Sun et al. Rapid determination of toxic rhodamine B in food samples using exfoliated graphene-modified electrode
CN107036992B (zh) 基于分析物催化纳米颗粒合成反应的Ag+比色检测方法
CN106442515B (zh) 一种简单的银离子目视定量检测方法
CN103439267A (zh) 一种二价汞离子的检测试剂组合及检测方法
CN111707719A (zh) 聚l-半胱氨酸和还原氧化石墨烯负载纳米银修饰的玻碳电极及其应用
Pang et al. DNA-templated copper nanoclusters as a fluorescent probe for fluoride by using aluminum ions as a bridge
Yang et al. On–off–on fluorescence sensing of glutathione in food samples based on a graphitic carbon nitride (gC 3 N 4)–Cu 2+ strategy
Moreno et al. Analytical nanometrological approach for screening and confirmation of titanium dioxide nano/micro-particles in sugary samples based on Raman spectroscopy–capillary electrophoresis
Li et al. Dual modes of fluorescence sensing and smartphone readout for sensitive and visual detection of mercury ions in Porphyra
CN109557153A (zh) 三电极型Pb(II)电化学传感器、制备方法及其应用
CN201773104U (zh) 一种检测多种重金属的检测卡
Pawar et al. A quantum dot-based dual fluorescent probe for recognition of mercuric ions and N-acetylcysteine:“On–Off–On” approach
CN106932390A (zh) 基于分析物催化聚合反应的Hg2+比色检测方法
CN107037095B (zh) 一种电位选择比率光电化学生物传感器构建的方法
CN105866212B (zh) 一种选择性地同时检测汞离子、铜离子的电化学传感器及其制备方法
Peng et al. Cu (Ⅱ) triggering redox-regulated anti-aggregation of gold nanoparticles for ultrasensitive visual sensing of iodide
CN105466989B (zh) 一种酱油中铅的电化学检测方法
KR101681114B1 (ko) 표면개질 나노입자 및 이를 이용한 아연이온의 비색검출센서

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170811

Assignee: Guilin Qiyun New Materials Co.,Ltd.

Assignor: GUILIN University OF TECHNOLOGY

Contract record no.: X2023980044906

Denomination of invention: Ag+colorimetric detection method based on analyte catalyzed nanoparticle synthesis reaction

Granted publication date: 20191018

License type: Common License

Record date: 20231101