CN107026463A - 一种应用于光伏发电***的有源并联式混合储能*** - Google Patents

一种应用于光伏发电***的有源并联式混合储能*** Download PDF

Info

Publication number
CN107026463A
CN107026463A CN201610070869.2A CN201610070869A CN107026463A CN 107026463 A CN107026463 A CN 107026463A CN 201610070869 A CN201610070869 A CN 201610070869A CN 107026463 A CN107026463 A CN 107026463A
Authority
CN
China
Prior art keywords
power
energy
unit
inverter
power inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610070869.2A
Other languages
English (en)
Inventor
周雪松
林怡彤
马幼捷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Technology
Original Assignee
Tianjin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology filed Critical Tianjin University of Technology
Priority to CN201610070869.2A priority Critical patent/CN107026463A/zh
Publication of CN107026463A publication Critical patent/CN107026463A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/383
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种应用于光伏发电***的有源并联式混合储能***,其特征在于它包括混合储能***、双向整流/逆变器单元、DSP控制单元、功率变换器A、功率变换器B以及储能并网变流器单元;其优越性在于:①快速、精确的功率实时调节光伏发电***输出的波动功率;②具有高功率密度、高能量密度、长循环寿命的特性;③通过两个功率变换器,对能量进行精确分配;④利用计算机高速的数据计算和数据处理能力,大大提高了该控制***的可靠性。

Description

一种应用于光伏发电***的有源并联式混合储能***
(一)技术领域:
本发明属于电力电子技术以及电力***储能技术的交叉领域,特别是应用于光伏发电***的有源并联式混合储能***。
(二)背景技术:
近年来,随着传统能源的急剧消耗以及对环境污染的加剧,新能源产业得到极大关注和大力支持。光伏发电作为最廉价的能源之一,光伏发电得到了广泛的应用。然而,自然光受海拔、气候、温度、地形等多种自然因素的影响具很强的不可控性、波动性和间歇性,且难以进行准确预测和大量存储。随着光伏发电出力在电力***中所占比例的增加,光伏发电功率的波动性、间歇性以及不可控性会破坏电网原有的功率以及能量平衡,进而给电网在规划建设、运行调度和电能质量等方面带来巨大挑战。
在并网光伏***中配置适量的储能***,对风电场的输出功率进行调节,可提高光伏发电出力的可控性,使得光伏发电***成为灵活可控的电源。当光伏发电出力较大,但电网负荷较低时,由储能***对光伏发电***的输出功率进行长时间、大容量的能量存储;待电网负荷达到峰值且对光伏发电***的出力需求增加时,储能***将已存储的能量向电网输出,供用户使用。储能元件本身并不具备主动与光伏发电***进行精确功率交换的能力,需要加入充放电控制器,对储能元件的充放电功率进行精确控制。当前单一的储能装置不能完全满足工程的要求。将不同的储能方式进行有机组合,使不同储能方式的储能特性得以互补,可以提高储能***的整体性能,同时降低储能***的投资、运行成本。
常见的储能电池有铅酸电池、福镍电池、氢镍电池、埋离子电池等。从循环寿命、功率密度、能量密度三方面评价来看,每种电池都有其各自的优势与不足,总体来说普遍具有低比功率、高比能量、低循环使用寿命的特点,这就限制了电池储能***在负载脉动较大的场合的应用。超级电容器是近些年来新兴的一种电力储能器件,它具有循环使用寿命长、工作温度范围宽、充放电速度快、功率密度大,能量密度相对较低等特点。超级电容器的以上优点恰好可以与蓄电池的缺点进行有效的互补。
本专利提出了采用蓄电池和超级电容器混合使用储存电能的方式。该方式使得电池储能和超级电容器储能各自的优势得以互补其中蓄电池用以满足大容量电能吞吐的需求超级电容器用以满足尖峰功率吞吐的需求。采用混合储能方式在能够有效节省储能***投资及体积、重量的前提下,可大大提高储能***的整体性能,使其在国民经济各个生产生活领域有着广阔的应用前景。
(三)发明内容:
本发明的目的在于提供一种应用于光伏发电***的有源并联式混合储能***,它可以克服现有技术的不足,是一种结构简单、稳定性好、可控性强的混合储能***
本发明的技术方案:一种应用于光伏发电***的有源并联式混合储能***,包括光伏***,其特征在于它包括混合储能***、双向整流/逆变器单元、DSP控制器单元、功率变换器A、功率变换器B以及储能并网变流器单元;其中,所述混合储能***包括超导储能***以及蓄电池储能***,所述储能并网变流器单元的交流侧与电网直接连接,其直流侧与双向整流/逆变器单元连接;所述双向整流/逆变器单元与混合储能***单元连接;所述DSP控制器单元的输入端分别采集光伏***、功率变换器B以及混合储能***的输出信号,其输出端分别连接储能并网变流器单元、功率变换器A及功率变换器B的输入端。
所述双向整流/逆变器单元是由功率变换器A和功率变换器B构成;其中所述功率变换器A一侧与储能并网整流逆变器单元连接,另一侧分别与功率变换器B及超级电容储能单元连接;所述功率变换器B的另一侧与蓄电池储能单元连接。
所述储能***的双向整流/逆变器单元由可控整流电路组成;所述可控整流电路由可关断晶闸管或者绝缘栅双极型晶闸管类的大功率电力电子器件与二极管并联构成三相整流桥式电路;其直流侧与功率变换器A相连,交流侧与电网中光伏发电***的输出端连接。
所述功率变换器A和功率变换器B分别是由电容C1、电感L1、三极管G1、二极管D1、电容C2、二极管D2、三极管G2、电感L2和电容C3构成;其中,所述三极管G1和三极管G2呈反相连接;所述电容C2连接于三极管G1的集电极和三极管G2的集电极之间;所述二极管D1并联在三极管G1的集电极和发射极之间;所述电感L1一端连接三极管G1的集电极,另一端与储能并网整流逆变器单元的直流输出端E1连接;所述电容C1并联在电感L1和三极管G1两端;所述二极管D2并联在三极管G2的集电极和发射极之间;所述电感L2一端连接三极管G2的集电极,另一端与储能单元的直流输出端E2连接;所述电容C3并联在电感L2和三极管G2两端。
所述DSP控制单元是控制功率变换器A与B、以及储能并网整流逆变器单元的核心,是由TMS320F28335控制芯片、驱动电路和采样电路组成;所述采样电路的输入端采集电网交流侧三相电压、电流信号以及双向功率流变换器单元的输入端电压电流信号;所述驱动电路通过接受TMS320F28335控制芯片的驱动命令控制双向功率流变换器单元以及储能并网整流逆变器单元中电力电子开关器件的导通与关断。
所述DSP控制单元由电源转换芯片TPS767D318为其供电。
一种应用于光伏发电***的有源并联式混合储能***的工作方法,其特征在于它包括以下步骤:
①当光伏***发出的功率高于电网所需功率时,储能并网变流器单元开始工作,并处于整流状态;
②分别由功率变换器A和功率变换器B对溢出的电能进行重新分配;
③由超级电容器储能单元吸收电能中的高频能量,而蓄电池储能单元则吸收低频能量;
④当DSP控制器检测到光伏发电***发出的功率高出设定值时,DSP控制器控制变流电路使之处于整流状态,同时检测功率变换器A、功率变换器B的电感L1、电感L2的电流ILA、ILB以及蓄电池组端电压Ubat、超级电容器组端电压Ucap,控制两个功率变换器对过多的电能进行分配;超级电容器吸收高频能量,而蓄电池吸收低频能量。
所述步骤④中DSP控制器控制变流电路和功率变换器具体步骤包括以下几步:
①启动模数转换信号;
②对控制器进行初始化;
③对交流侧和直流侧以及超级电容和蓄电池的电压、电流通过传感器采样;
④将采样结果保存到相应的寄存器中;
⑤对采样结果进行计算,然后将控制信号传输到相应的元件中,对变流电路和两个功率变换器进行控制。
本发明的工作原理:在有源并联式混合储能***(APHESS)中,功率变换器A承担的任务为:精确控制APHESS充放电总功率Pwhole的大小及方向。当光伏发电***的实时输出功率Preal小于发电指令目标Pref时,功率变换器A控制APHESS以功率Pwhole=Pref-Preal释放能量,补偿光伏发电***输出功率的不足;当Preal大于Pref时,功率变换器A控制APHESS以功率Pwhole=Preal-Pref从光伏发电***中吸收能量,并进行储存。通过功率变换器A的控制,使得APHESS的吞吐功率能够满足实时调节光伏发电***输出的随机、无规则波动功率的需求。在APHESS中,功率变换器B承担的任务为:精确调节蓄电池充放电功率Pbat的大小及方向。通过功率变换器B可对蓄电池的充放电过程进行精确控制,有利于延长蓄电池的使用寿命。
在APHESS进行功率吞吐的过程中,超级电容器起到功率/能量缓冲器的作用。因此,功率变换器A与功率变换器B可以实现解耦控制,进而独立完成各自的控制目标。超级电容器充放电功率的大小|Pcap|为储能***充放电总功率与蓄电池充放电功率之间的差值
在Pwhole—定时,通过功率变换器B控制|Pbat|,可以实现|Pcap|的精确可控。即通过功率变换器B对蓄电池充放电功率的控制,可以实现APHESS的充放电总功率在蓄电池和超级电容器间的灵活分配。APHESS的结构组成为蓄电池和超级电容器发挥各自的储能优势,分别调节Pwave中的稳态波动功率Psteady和尖峰波动功率Ppeak奠定了基础。
此外,G1和G2是反相的中间连接储能电容C2。另外,G1与D1反相并联。同样G2与D2反相并联。其中,L1与L2和C1与C3用来平稳电压电流,过滤电压和电流的谐波。E1表示为接整流电路的直流侧,E2表示接储能装置。
功率流变换器(见图3)的输入输出电流方向可以使正,也可以是负。其特点是:输出输入电流没有脉动、电压可以再0与∞之间变化、开关晶体管发射集接地。
本发明的优越性在于:①储能电池与超级电容器有机结合,通过快速、精确的功率实时调节光伏发电***输出的波动功率;②通过对蓄电池和超级电容器所承担功率调节任务的合理分配,使储能***具有高功率密度、高能量密度、长循环寿命的特性;③通过两个功率变换器,对能量进行精确分配;④利用计算机高速的数据计算和数据处理能力,大大提高了该控制***的可靠性。
(四)附图说明:
图1为本发明所涉一种应用于光伏发电***的有源并联式混合储能***的总体结构示意图。
图2为本发明所涉一种应用于光伏发电***的有源并联式混合储能***的电路结构示意图。
图3为本发明所涉一种应用于光伏发电***的有源并联式混合储能***中功率变换器A和功率变换器B的电路结构示意图。
图4为本发明所涉一种应用于光伏发电***的有源并联式混合储能***的结构流程示意图。
(五)具体实施方式:
实施例:一种应用于光伏发电***的有源并联式混合储能***(见图1),包括光伏***,其特征在于它包括混合储能***、双向整流/逆变器单元、DSP控制器单元、功率变换器A、功率变换器B以及储能并网变流器单元;其中,所述混合储能***包括超导储能***以及蓄电池储能***,所述储能并网变流器单元的交流侧与电网直接连接,其直流侧与双向整流/逆变器单元连接;所述双向整流/逆变器单元与混合储能***单元连接;所述DSP控制器单元的输入端分别采集光伏***、功率变换器B以及混合储能***的输出信号,其输出端分别连接储能并网变流器单元、功率变换器A及功率变换器B的输入端。
所述双向整流/逆变器单元是由功率变换器A和功率变换器B构成;其中所述功率变换器A一侧与储能并网整流逆变器单元连接,另一侧分别与功率变换器B及超级电容储能单元连接;所述功率变换器B的另一侧与蓄电池储能单元连接。
所述储能***的双向整流/逆变器单元(见图2)由可控整流电路组成;所述可控整流电路由可关断晶闸管或者绝缘栅双极型晶闸管类的大功率电力电子器件与二极管并联构成三相整流桥式电路;其直流侧与功率变换器A相连,交流侧与电网中光伏发电***的输出端连接。
所述功率变换器A和功率变换器B分别是由电容C1、电感L1、三极管G1、二极管D1、电容C2、二极管D2、三极管G2、电感L2和电容C3构成(见图3);其中,所述三极管G1和三极管G2呈反相连接;所述电容C2连接于三极管G1的集电极和三极管G2的集电极之间;所述二极管D1并联在三极管G1的集电极和发射极之间;所述电感L1一端连接三极管G1的集电极,另一端与储能并网整流逆变器单元的直流输出端E1连接;所述电容C1并联在电感L1和三极管G1两端;所述二极管D2并联在三极管G2的集电极和发射极之间;所述电感L2一端连接三极管G2的集电极,另一端与储能单元的直流输出端E2连接;所述电容C3并联在电感L2和三极管G2两端。
所述DSP控制单元是控制功率变换器A与B、以及储能并网整流逆变器单元的核心,是由TMS320F28335控制芯片、驱动电路和采样电路组成;所述采样电路的输入端采集电网交流侧三相电压、电流信号以及双向功率流变换器单元的输入端电压电流信号;所述驱动电路通过接受TMS320F28335控制芯片的驱动命令控制双向功率流变换器单元以及储能并网整流逆变器单元中电力电子开关器件的导通与关断。
所述DSP控制单元由电源转换芯片TPS767D318为其供电。
一种应用于光伏发电***的有源并联式混合储能***的工作方法(见图4),其特征在于它包括以下步骤:
①当光伏***发出的功率高于电网所需功率时,储能并网变流器单元开始工作,并处于整流状态;
②分别由功率变换器A和功率变换器B对溢出的电能进行重新分配;
③由超级电容器储能单元吸收电能中的高频能量,而蓄电池储能单元则吸收低频能量;
④当DSP控制器检测到光伏发电***发出的功率高出设定值时,DSP控制器控制变流电路使之处于整流状态,同时检测功率变换器A、功率变换器B的电感L1、电感L2的电流ILA、ILB以及蓄电池组端电压Ubat、超级电容器组端电压Ucap,控制两个功率变换器对过多的电能进行分配;超级电容器吸收高频能量,而蓄电池吸收低频能量。
所述步骤④中DSP控制器控制变流电路和功率变换器具体步骤包括以下几步:
①启动模数转换信号;
②对控制器进行初始化;
③对交流侧和直流侧以及超级电容和蓄电池的电压、电流通过传感器采样;
④将采样结果保存到相应的寄存器中;
⑤对采样结果进行计算,然后将控制信号传输到相应的元件中,对变流电路和两个功率变换器进行控制。

Claims (8)

1.一种应用于光伏发电***的有源并联式混合储能***,包括光伏***,其特征在于它包括混合储能***、双向整流/逆变器单元、DSP控制器单元、功率变换器A、功率变换器B以及储能并网变流器单元;其中,所述混合储能***包括超导储能***以及蓄电池储能***,所述储能并网变流器单元的交流侧与电网直接连接,其直流侧与双向整流/逆变器单元连接;所述双向整流/逆变器单元与混合储能***单元连接;所述DSP控制器单元的输入端分别采集光伏***、功率变换器B以及混合储能***的输出信号,其输出端分别连接储能并网变流器单元、功率变换器A及功率变换器B的输入端。
2.根据权利要求1所述一种应用于光伏发电***的有源并联式混合储能***,其特征在于所述双向整流/逆变器单元是由功率变换器A和功率变换器B构成;其中所述功率变换器A一侧与储能并网整流逆变器单元连接,另一侧分别与功率变换器B及超级电容储能单元连接;所述功率变换器B的另一侧与蓄电池储能单元连接。
3.根据权利要求1所述一种应用于光伏发电***的有源并联式混合储能***,其特征在于所述双向整流/逆变器单元由可控整流电路组成;所述可控整流电路由可关断晶闸管或者绝缘栅双极型晶闸管类的大功率电力电子器件与二极管并联构成三相整流桥式电路;其直流侧与功率变换器A相连,交流侧与电网中光伏发电***的输出端连接。
4.根据权利要求1所述一种应用于光伏发电***的有源并联式混合储能***,其特征在于所述功率变换器A和功率变换器B分别是由电容C1、电感L1、三极管G1、二极管D1、电容C2、二极管D2、三极管G2、电感L2和电容C3构成;其中,所述三极管G1和三极管G2呈反相连接;所述电容C2连接于三极管G1的集电极和三极管G2的集电极之间;所述二极管D1并联在三极管G1的集电极和发射极之间;所述电感L1一端连接三极管G1的集电极,另一端与储能并网整流逆变器单元的直流输出端E1连接;所述电容C1并联在电感L1和三极管G1两端;所述二极管D2并联在三极管G2的集电极和发射极之间;所述电感L2一端连接三极管G2的集电极,另一端与储能单元的直流输出端E2连接;所述电容C3并联在电感L2和三极管G2两端。
5.根据权利要求1所述一种应用于光伏发电***的有源并联式混合储能***,其特征在于所述DSP控制单元是控制功率变换器A与功率变换器B、以及储能并网整流逆变器单元的核心,是由TMS320F28335控制芯片、驱动电路和采样电路组成;所述采样电路的输入端采集电网交流侧三相电压、电流信号以及双向功率流变换器单元的输入端电压电流信号;所述驱动电路通过接受TMS320F28335控制芯片的驱动命令控制双向功率流变换器单元以及储能并网整流逆变器单元中电力电子开关器件的导通与关断。
6.根据权利要求1所述一种应用于光伏发电***的有源并联式混合储能***,其特征在于所述DSP控制单元由电源转换芯片TPS767D318为其供电。
7.一种应用于光伏发电***的有源并联式混合储能***的工作方法,其特征在于它包括以下步骤:
①当光伏***发出的功率高于电网所需功率时,储能并网变流器单元开始工作,并处于整流状态;
②分别由功率变换器A和功率变换器B对溢出的电能进行重新分配;
③由超级电容器储能单元吸收电能中的高频能量,而蓄电池储能单元则吸收低频能量;
④当DSP控制器检测到光伏发电***发出的功率高出设定值时,DSP控制器控制变流电路使之处于整流状态,同时检测功率变换器A、功率变换器B的电感L1、电感L2的电流ILA、ILB以及蓄电池组端电压Ubat、超级电容器组端电压Ucap,控制两个功率变换器对过多的电能进行分配;超级电容器吸收高频能量,而蓄电池吸收低频能量。
8.根据权利要求7所述一种应用于光伏发电***的有源并联式混合储能***的工作方法,其特征在于所述步骤④中DSP控制器控制变流电路和功率变换器具体步骤包括以下几步:
①启动模数转换信号;
②对控制器进行初始化;
③对交流侧和直流侧以及超级电容和蓄电池的电压、电流通过传感器采样;
④将采样结果保存到相应的寄存器中;
⑤对采样结果进行计算,然后将控制信号传输到相应的元件中,对变流电路和两个功率变换器进行控制。
CN201610070869.2A 2016-02-02 2016-02-02 一种应用于光伏发电***的有源并联式混合储能*** Pending CN107026463A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610070869.2A CN107026463A (zh) 2016-02-02 2016-02-02 一种应用于光伏发电***的有源并联式混合储能***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610070869.2A CN107026463A (zh) 2016-02-02 2016-02-02 一种应用于光伏发电***的有源并联式混合储能***

Publications (1)

Publication Number Publication Date
CN107026463A true CN107026463A (zh) 2017-08-08

Family

ID=59524607

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610070869.2A Pending CN107026463A (zh) 2016-02-02 2016-02-02 一种应用于光伏发电***的有源并联式混合储能***

Country Status (1)

Country Link
CN (1) CN107026463A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111244933A (zh) * 2020-03-09 2020-06-05 台达电子企业管理(上海)有限公司 储能装置、电力***及其控制方法
US11799293B2 (en) 2020-03-09 2023-10-24 Delta Electronics (Shanghai) Co., Ltd. High-voltage DC transformation apparatus and power system and control method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244391A (zh) * 2011-07-12 2011-11-16 华北电力大学 基于锂电池和超级电容的储能并网电路及其控制方法
CN202906464U (zh) * 2012-03-09 2013-04-24 大连理工大学 平抑可再生能源波动功率的有源并联式混合储能装置
CN104377718A (zh) * 2014-11-12 2015-02-25 天津理工大学 一种有源并联式混合储能***及其工作方法
CN106329572A (zh) * 2016-09-13 2017-01-11 国家电网公司 一种混合储能变流器装置及控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244391A (zh) * 2011-07-12 2011-11-16 华北电力大学 基于锂电池和超级电容的储能并网电路及其控制方法
CN202906464U (zh) * 2012-03-09 2013-04-24 大连理工大学 平抑可再生能源波动功率的有源并联式混合储能装置
CN104377718A (zh) * 2014-11-12 2015-02-25 天津理工大学 一种有源并联式混合储能***及其工作方法
CN106329572A (zh) * 2016-09-13 2017-01-11 国家电网公司 一种混合储能变流器装置及控制方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111244933A (zh) * 2020-03-09 2020-06-05 台达电子企业管理(上海)有限公司 储能装置、电力***及其控制方法
US11239663B2 (en) 2020-03-09 2022-02-01 Delta Electronics (Shanghai) Co., Ltd. Energy storage device and power system and control method thereof
US11799293B2 (en) 2020-03-09 2023-10-24 Delta Electronics (Shanghai) Co., Ltd. High-voltage DC transformation apparatus and power system and control method thereof

Similar Documents

Publication Publication Date Title
CN102377192B (zh) 一种直驱型海浪发电储能装置及控制方法
CN102856924B (zh) 一种基于复合储能的微电网平滑切换控制方法
CN202906464U (zh) 平抑可再生能源波动功率的有源并联式混合储能装置
CN104300567A (zh) 一种平抑间歇性电源功率波动的混合储能控制方法
CN204243873U (zh) 一种超级电容器与蓄电池的混合储能装置
CN101789620A (zh) 基于蓄电池和超级电容器的有源并联式混合储能***
CN206658105U (zh) 用于离网型交流微电网电压控制的混合储能式光伏电源
CN201393185Y (zh) 太阳能光伏新型控制器
CN204190691U (zh) 太阳能电池电源管理控制器
CN105552944B (zh) 一种包含储能和能量路由器的网络***及能量调节方法
CN108879730A (zh) 混合储能***及基于其的风电功率波动平抑方法
CN101685986A (zh) 使用超级电容的风光互补发电***
CN107276064A (zh) 一种基于adrc控制的锂电池与超级电容混合储能***的工作方法
CN104852623B (zh) 一种基于超导磁储能的航天器电源***及控制方法
CN104242790A (zh) 一种风光互补发电***
CN104682412A (zh) 一种永磁同步风电***的储能***的能量控制方法
CN105244899A (zh) 分布式发电***中二元混合储能装置及分布式发电***
CN206412778U (zh) 一种储能变流器和储能变流***
CN103501018A (zh) 基于模糊算法和dsp的混合储能***及功率平滑方法
CN104377718B (zh) 一种有源并联式混合储能***及其工作方法
CN107645194A (zh) 一种基于储能的风电场电能质量优化***
CN201774266U (zh) 储能控制***
CN107026463A (zh) 一种应用于光伏发电***的有源并联式混合储能***
CN101924372B (zh) 储能控制***
CN205039552U (zh) 一种储能***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170808