CN107021523B - 一种正交相α-MoO3纳米带的制备方法及其光催化应用 - Google Patents

一种正交相α-MoO3纳米带的制备方法及其光催化应用 Download PDF

Info

Publication number
CN107021523B
CN107021523B CN201710044258.5A CN201710044258A CN107021523B CN 107021523 B CN107021523 B CN 107021523B CN 201710044258 A CN201710044258 A CN 201710044258A CN 107021523 B CN107021523 B CN 107021523B
Authority
CN
China
Prior art keywords
moo
nanobelt
phase
orthorhombic phase
methylene blue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710044258.5A
Other languages
English (en)
Other versions
CN107021523A (zh
Inventor
李忠成
马银雪
马娇娇
张德亮
王德宝
宋彩霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN201710044258.5A priority Critical patent/CN107021523B/zh
Publication of CN107021523A publication Critical patent/CN107021523A/zh
Application granted granted Critical
Publication of CN107021523B publication Critical patent/CN107021523B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/17Nanostrips, nanoribbons or nanobelts, i.e. solid nanofibres with two significantly differing dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种正交相α‑MoO3纳米带的制备方法及其光催化应用,具体的说是通过α‑MoO3纳米带室温下高效光催化降解染料废水中的亚甲基蓝。本发明所述的α‑MoO3纳米带是以六方相h‑MoO3微米棒为前驱体,通过水热方法合成的,能够有效光催化降解浓度为1‑10mg/L的亚甲基蓝溶液,脱除率为100%,无副产物产生。

Description

一种正交相α-MoO3纳米带的制备方法及其光催化应用
技术领域
本发明涉及正交相α-MoO3纳米带的制备方法及其光催化应用,属于光催化剂的制备与应用领域。
背景技术
正交相α-MoO3是最稳定且最常见的MoO3相,属于正交晶系,以[MoO6]为基本结构单元,通过共享棱和顶角,形成层状结构。正交相α-MoO3独特的晶体结构,使其具有优异的光学、电学和催化性能,在催化剂、传感器、电致变色装置及锂电池电极等领域具有重要的应用前景。纳米催化近期研究表明α-MoO3纳米材料的物理化学性质与其形貌密切相关,因此形貌可控合成α-MoO3材料受到了人们广泛的关注。
化学合成方法由于过程简单、条件温和、效率高、成本低廉等优点而成为目前最主要的制备技术。使用液相合成方法,特别是水热法或者溶剂热法,是形貌可控合成氧化钼纳米材料最简便、最有效的方法。一类是利用酸化含Mo物质形成钼酸前驱体,进一步分解形成一维结构α-MoO3。例如:Li等使用HCl酸化Na2MoO4溶液,调节pH值至0.92,通过100℃水热12h合成了长度为0.7-7.5μm,宽度为60nm的α-MoO3纳米带(Z.C.Li,et al.,J.Mater.Chem.A,2013, 48,15370-15376)。Cao等用HNO3酸化(NH4)6Mo7O24·4H2O至pH=1-3,180℃水热24-36h同样得到α-MoO3纳米棒,通过硝酸盐(KNO3、NaNO3、LaNO3、Ca(NO3)2)的加入能够调控氧化钼纳米材料的形貌(X.Cao,et al.,J.Phys.Chem.B,2006,110,2006-2012)。Zhu等使用HNO3酸化(NH4)6Mo7O24·4H2O,通过180℃水热20h合成了宽度为200-300nm的α-MoO3纳米带(X.Cao,et al.,J.Phys.Chem.B,2006,110,2006-2012)。另一类是过氧钼酸分解,分解后主要形成氧化钼,被认为是一种效率高的氧化钼纳米材料合成技术。例如:Qian等将30%H2O2滴加到 Mo粉与水的体系中,140℃水热12h得到宽度为200-800nm,厚度约为30nm,长度为几个微米的α-MoO3纳米带(Y.Qian,et al.,Chem.Lett.,2006,35,962-963)。Zhang等将MoO3溶解于30% H2O2中,将形成的溶液170℃水热20-45h得到宽度为200-330nm,厚度约为60-90nm,长度为十几个微米的α-MoO3纳米棒(T.Zhang,et al.,J.Phys.Chem.C.,2007,111,2401-2408)。目前在纳米尺度上利用新路径合成α-MoO3纳米材料,实现尺寸和形貌的可控调变,则还研究的较少。因此,实现正交相α-MoO3催化剂的制备及结构调控,使其能够高活性的实现催化反应。
亚甲基蓝,化学名称为3,7-双(二甲氨基)吩噻嗪-5-鎓氯化物,是一种阳离子型碱性染料。亚甲基蓝是工业上常使用的阳离子型有机染料,广泛用于棉、麻、蚕丝物品、造纸、染料等工业领域。目前,制浆造纸、化工染料、纺织等行业产生大量包含亚甲基的燃料废水。由于亚甲基蓝含有相对稳定的芳香分子结构,很难被水中的微生物降解,对生态环境和人类存在严重危害。因此,含有机染料亚甲基蓝的废水处理对缓解资源危机及改善人类生活环境具有重要的现实意义。光催化氧化法是采用光敏化半导体在紫外线照射下,将价带电子激发跃迁到导带并产生空穴,从而发生氧化反应破坏染料的发色基团,将染料分子降解,最终生成CO2、H2O及无机盐等物质。光催化氧化法具有降解脱色彻底、不造成二次污染等优点,在染料废水处理中的应用前景广阔。目前常用的光催化剂是TiO2、WO3、Fe2O3等,但关于正交相α-MoO3材料对亚甲基蓝的去除,则还研究的较少。因此,研究正交相α-MoO3材料可控合成及调控,使其能够高活性的吸附亚甲基蓝,具有潜在的实用价值。
综上所述,作为半导体氧化物,正交相α-MoO3材料在光降解亚甲基蓝领域研究的比较少。传统的合成氧化钼的方法是钼酸水热分解和过氧钼酸分解,以六方相h-MoO3为前驱体水热合成α-MoO3材料尚未有报道。因此,通过新型路径合成正交相α-MoO3纳米带,使其能够高活性的催化去除染料废水中的亚甲基蓝。
发明内容:
本发明旨在提供一种合成正交相α-MoO3纳米带的方法和在光催化去除亚甲基蓝的应用,实现近100%的去除率。
基于上述目的,本发明所涉及的技术方案如下:
1)正交相α-MoO3纳米带的制备:将在50mL烧杯中加入0.3g h-MoO3微米棒和15mL去离子水,搅拌均匀后,将所得液体转入50ml以聚四氟乙烯为内衬的不锈钢反应釜中于200℃水热处理12h,然后自然冷却至室温,产物经离心洗涤,50℃真空干燥得到正交相α-MoO3纳米带。
2)六方相h-MoO3微米棒具体制备过程如下:在50mL烧杯中加入1.44gα-MoO3粒子和11mL(30%)H2O2,30℃搅拌至溶解,将7g NaNO3加入到上述溶液的烧杯中,搅拌均匀后,将所得液体转入50ml以聚四氟乙烯为内衬的不锈钢反应釜中于170℃水热处理12h,然后自然冷却至室温,产物经离心洗涤,50℃真空干燥得到六方相h-MoO3微米棒。
3)将正交相α-MoO3纳米带催化剂用于光催化降解去除亚甲基蓝反应。正交相α-MoO3纳米带在室温反应30min,亚甲基蓝去除率为31%,反应45min,去除率为37%,反应360min达100%。
本发明具有如下优点:
1)利用六方相h-MoO3微米棒为前驱体。水热合成了正交相α-MoO3纳米带,有效的拓展了正交相α-MoO3的制备方法,使其不再主要局限于钼酸水热分解和过氧钼酸分解体系,并能形貌可控合成正交相α-MoO3
2)室温下正交相α-MoO3纳米带光催化降解亚甲基蓝,实现了亚甲基蓝废水溶液的有效脱除,脱除率为100%。
3)本发明具有环境友好、过程效率高且其光催化降解十分稳定的特点。
附图说明:
图1是正交相α-MoO3纳米带的表征结果,(a)XRD、(b)FT-IR和(c-d)电镜图片。
具体实施方式
下列实施例用来进一步说明本发明,但不因此而限制本发明。
六方相h-MoO3微米棒具体制备过程如下:在50mL烧杯中加入1.44g正交相α-MoO3粒子和11mL(30%)H2O2,30℃搅拌至溶解,将7g NaNO3加入到上述溶液的烧杯中,搅拌均匀后,将所得液体转入50ml以聚四氟乙烯为内衬的不锈钢反应釜中于170℃水热处理 12h,然后自然冷却至室温,产物经离心洗涤,50℃真空干燥得到六方相h-MoO3微米棒。
实施例1
正交相α-MoO3纳米带的制备:将在50mL烧杯中加入0.3g六方相h-MoO3微米棒和15mL 去离子水,搅拌均匀后,将所得液体转入50ml以聚四氟乙烯为内衬的不锈钢反应釜中于200℃水热处理12h,然后自然冷却至室温,产物经离心洗涤,50℃真空干燥得到正交相α-MoO3纳米带,直径为150-430nm、长度为2.1-14.5μm。
实施例2-11
实施例1所制备的材料用于光催化降解亚甲基蓝废水溶液。
将50mg实施例1中的材料加入到含有100mL浓度为1-10mg/L亚甲基蓝溶液的250mL锥形瓶中,在暗处处理30min以达到吸附/脱附平衡。将反应体系在搅拌条件下室温用300WXe灯照射一定时间(30-480min),反应产物离心分离后取上层清夜,分光光度仪PerkinElmer Lambda 750在最大吸收波长为664nm处分析其组成。反应结果如下。
表1正交相α-MoO3纳米带光催化降解亚甲基蓝废水溶液的反应结果
由表1可以看出:正交相α-MoO3纳米带光催化降解废水染料中亚甲基蓝有机物,在浓度为10mg/L时反应30min、45min、60min、90min、120min、180min、480min时,脱除率分别为31%、37%、45%、60%、80%、87%、100%。当浓度为1mg/L、2mg/L、5mg/L 时反应180min,脱除率为100%。

Claims (3)

1.一种正交相α-MoO3纳米带的制备方法,具体的说是通过h-MoO3微米棒为前驱体,水热合成α-MoO3纳米带,该α-MoO3纳米带室温下可高效光催化降解染料废水中的亚甲基蓝;正交相α-MoO3纳米带由如下步骤制得:将六方相h-MoO3微米棒放在以聚四氟乙烯为内衬的不锈钢反应釜中于200-250℃水热处理2-24h得到正交相α-MoO3纳米带,宽度为150-430nm、长度为2.1-14.5μm。
2.按照权利要求1所述的方法,其特征在于:
六方相h-MoO3微米棒具体制备过程如下:将α-MoO3粒子溶解于H2O2,将NaNO3加入到上述溶液中,将所得液体转入以聚四氟乙烯为内衬的不锈钢反应釜中于150-250℃水热处理2-24h,得到h-MoO3微米棒。
3.按照权利要求1或2所述的方法,其特征在于:
正交相α-MoO3纳米带在20-60℃光催化3-8h,可光催化降解浓度为1-10mg/L的亚甲基蓝溶液,脱除率为100%,无副产物产生。
CN201710044258.5A 2017-01-19 2017-01-19 一种正交相α-MoO3纳米带的制备方法及其光催化应用 Active CN107021523B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710044258.5A CN107021523B (zh) 2017-01-19 2017-01-19 一种正交相α-MoO3纳米带的制备方法及其光催化应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710044258.5A CN107021523B (zh) 2017-01-19 2017-01-19 一种正交相α-MoO3纳米带的制备方法及其光催化应用

Publications (2)

Publication Number Publication Date
CN107021523A CN107021523A (zh) 2017-08-08
CN107021523B true CN107021523B (zh) 2018-06-01

Family

ID=59525551

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710044258.5A Active CN107021523B (zh) 2017-01-19 2017-01-19 一种正交相α-MoO3纳米带的制备方法及其光催化应用

Country Status (1)

Country Link
CN (1) CN107021523B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102423807B1 (ko) * 2017-11-24 2022-07-20 주식회사 엘지에너지솔루션 헥사고날 산화몰리브덴 나노 로드의 제조 방법
CN111701583A (zh) * 2020-07-27 2020-09-25 齐鲁理工学院 一种超薄六边形BiO2-x片晶光催化剂及其制备方法
CN112076716B (zh) * 2020-09-04 2023-03-03 江西善纳新材料科技有限公司 一种复合相纳米三氧化钼吸附剂及其制备方法
CN115608387B (zh) * 2022-09-21 2024-03-12 青岛科技大学 P-MoO3/P-MoO2/P-Fe3O4异质结构纳米带的制备方法及其光催化应用
CN115744989B (zh) * 2022-11-11 2024-05-14 华中科技大学 一种α-MoO3纳米带、制备方法及其在质子电池中的储能应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103332745A (zh) * 2013-06-19 2013-10-02 陕西科技大学 一种微波-紫外制备α-MoO3 纳米带的方法
CN103342388B (zh) * 2013-07-18 2015-01-14 北京化工大学 一种α型氧化钼纳米棒气敏材料及其制备方法和应用
CN106315741A (zh) * 2016-10-17 2017-01-11 青岛科技大学 一种去除染料废水中亚甲基蓝的方法

Also Published As

Publication number Publication date
CN107021523A (zh) 2017-08-08

Similar Documents

Publication Publication Date Title
CN107021523B (zh) 一种正交相α-MoO3纳米带的制备方法及其光催化应用
Wang et al. Hollow spherical WO3/TiO2 heterojunction for enhancing photocatalytic performance in visible-light
Zhang et al. Self-assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst
Shang et al. Effect of acetic acid on morphology of Bi2WO6 with enhanced photocatalytic activity
Sangami et al. UV–visible spectroscopic estimation of photodegradation of rhodamine-B dye using tin (IV) oxide nanoparticles
Sun et al. Preparation and photocatalytic property of a novel dumbbell-shaped ZnO microcrystal photocatalyst
Yang et al. Microwave-assisted preparation, characterization and photocatalytic properties of a dumbbell-shaped ZnO photocatalyst
Yu et al. Preparation and characterization of sphere-shaped BiVO4/reduced graphene oxide photocatalyst for an augmented natural sunlight photocatalytic activity
Zhang et al. BiOBr hierarchical microspheres: microwave-assisted solvothermal synthesis, strong adsorption and excellent photocatalytic properties
CN106976909B (zh) 一种六方相h-MoO3微米棒的制备方法和光催化应用
Sivakumar et al. A review on decolourisation of dyes by photodegradation using various bismuth catalysts
Liu et al. Photocatalytic perfermance of sandwich-like BiVO4 sheets by microwave assisted synthesis
Li et al. Advanced nanostructured photocatalysts based on reduced graphene oxide-flower-like Bi2WO6 composites for an augmented simulated solar photoactivity activity
Xu et al. A simple method for the preparation of Bi2WO6-reduced graphene oxide with enhanced photocatalytic activity under visible light irradiation
Li et al. Novel synthesis of Z-scheme α-Bi2O3/g-C3N4 composite photocatalyst and its enhanced visible light photocatalytic performance: Influence of calcination temperature
Zhang et al. Novel La-doped Bi 2 WO 6 photocatalysts with enhanced visible-light photocatalytic activity
Raja et al. Facile sonochemical synthesis of Zn2SnO4-V2O5 nanocomposite as an effective photocatalyst for degradation of Eosin Yellow
Liu et al. Effect of pH on the microstructure of β-Ga2O3 and its enhanced photocatalytic activity for antibiotic degradation
Qi et al. Synergistic effects of holey nanosheet and sulfur-doping on the photocatalytic activity of carbon nitride towards NO removal
Zhao et al. Heterostructured graphitic-carbon-nitride-nanosheets/copper (I) oxide composite as an enhanced visible light photocatalyst for decomposition of tetracycline antibiotics
Puneetha et al. Visible light active ZnO nanostructures prepared by simple co-precipitation method
Duan et al. Direct Z-scheme Bi2O2CO3/porous g-C3N4 heterojunction for improved photocatalytic degradation performance
Zhang et al. Boosted photocatalytic performance of OVs-rich BiVO4 hollow microsphere self-assembled with the assistance of SDBS
Plubphon et al. Microwave-assisted synthesis and enhanced photocatalytic performance of Bi2O2CO3 nanoplates
Kang et al. The microthermal construction of Z-scheme CdS@ g-C3N4 composite: efficient tetracycline photodegradation, reaction mechanism and possible degradation pathway

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant