CN107016371A - 基于改进的深度置信网络的无人机着陆地貌分类方法 - Google Patents

基于改进的深度置信网络的无人机着陆地貌分类方法 Download PDF

Info

Publication number
CN107016371A
CN107016371A CN201710230576.0A CN201710230576A CN107016371A CN 107016371 A CN107016371 A CN 107016371A CN 201710230576 A CN201710230576 A CN 201710230576A CN 107016371 A CN107016371 A CN 107016371A
Authority
CN
China
Prior art keywords
image
feature
training
depth confidence
svms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710230576.0A
Other languages
English (en)
Inventor
刘芳
王鑫
路丽霞
黄光伟
王洪娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201710230576.0A priority Critical patent/CN107016371A/zh
Publication of CN107016371A publication Critical patent/CN107016371A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/13Satellite images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/217Validation; Performance evaluation; Active pattern learning techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2411Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/26Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
    • G06V10/267Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion by performing operations on regions, e.g. growing, shrinking or watersheds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Multimedia (AREA)
  • Astronomy & Astrophysics (AREA)
  • Remote Sensing (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了基于改进的深度置信网络的无人机着陆地貌分类方法,采用了多隐含层的深度置信网络来进行特征学习。然后根据提出的特征权值结合法对每层隐含层得到的特征集分配一个特征权值,最后,每个特征集和相应的权值结合成一个新的待分类图像特征集,新特征集具有图像的深层特征信息,具有较高的特征识别力。针对支持向量机的分类性能易受到参数、核函数等因素的影响,采用粒子群算法优化支持向量机,粒子群算法能在较短时间内搜索到全局最优的点,即能达到支持向量机最优分类性能的参数。本发明能自动地提取图像深层抽象特征,提高了特征识别力,有效的提高了地貌图像的分类准确率,具有良好的泛化能力和适用范围。

Description

基于改进的深度置信网络的无人机着陆地貌分类方法
技术领域
本发明涉及一种无人机着陆地貌图像分类方法,属于模式识别与智能计算、图像处理技术领域,特别涉及一种基于改进的深度置信网络的无人机着陆地貌分类方法。
背景技术
近年来提出无人机可以应用于对危险环境的侦查,自然灾害后救灾物资的运输等复杂的背景,由于这些背景下无人机着陆地点是完全未知的,对于未知区域着陆地貌的识别是无人机安全着陆的基础,因此对无人机着陆的自然地貌分类成为了研究的重点。而深度学习思想的提出,为机器学习的带来了新的研究领域。深度学习是建立、模拟人脑进行学习时的神经网络,模拟人脑学习机制来处理数据。深度置信网络是人工神经网络的一种特殊学习模型,它的输出是经过多个隐含层提取的,加入一定的限制条件,可以提取出图像的深层特征。深度置信网络通过提取图像的本质特征,使得输入的样本经过多层提取后又通过权值分配尽可能的展现了图像的本质特征,具有较好的特征提取能力,可以有效的提高图像分类的准确率。支持向量机在解决非线性及高维分类问题时具有明显优势,在解决多分类的图像方面有较好的分类效果。
现有的方法存在的不足:一方面,传统的特征提取方法在特征提取时不易提取到完整、深层的本质特征,因此会丢失一部分特征信息,使得特征缺乏鲁棒性,进而影响图像分类的准确率;另一方面,支持向量机会受到参数、核函数等因素的影响,支持向量机性能的好坏会影响最终的地貌图像分类准确率。
发明内容
本发明的目的旨在解决上述技术缺陷,用于提取地貌图像深层次抽象特征,提高特征识别能力,提高分类器的分类性能,进而提高无人机着陆地貌图像的分类准确率。
为达到上述目的,本发明提出一种基于改进的深度置信网络的无人机着陆地貌分类方法,包括以下步骤:
S1:获取无人机着陆地貌的训练图像集和测试图像集;
S2:构建深度置信网络,输入无人机着陆地貌的训练图像集,对深度置信网络进行训练,直到满足训练条件;
S3:将无人机着陆地貌的测试图像集输入到训练好的深度置信网络中进行逐层学习,提取出一组图像的待分类特征集
S4:采用基于灰度共生矩阵的特征提取算法,提取出无人机着陆地貌的样本图像的纹理特征,获得训练样本和测试样本的纹理特征向量,并将其与待分类特征集组合成综合特征向量集;
S5:将无人机着陆地貌的训练图像特征集作为训练样本对支持向量机(SVM)分类器进行训练,并采用粒子群算法(PSO)对支持向量机进行优化,选择出支持向量机的最优参数,获得一个最优的SVM分类器。
S6:将得到的待分类图像特征集输入到优化后的支持向量机,进行图像分类。
有益效果
本发明是通过基于改进的深度置信网络提取无人机着陆地貌的图像的深层特征,本方法在特征提取方面,采用了多隐含层的深度置信网络来进行特征学习,每经过一个隐含层都会得到一个特征表达。然后根据提出的特征权值结合法对每层隐含层得到的特征集分配一个特征权值,最后,每个特征集和相应的权值结合成一个新的待分类图像特征集,新特征集具有完整、抽象的深层特征信息,具有较高的特征识别力。
针对支持向量机的分类性能易受到参数、核函数等因素的影响,采用粒子群算法优化支持向量机,粒子群算法能在较短时间内搜索到全局最优的点,即能达到支持向量机最优分类性能的参数。仿真实验表明,本发明能自动地提取图像深层抽象特征,提高了特征识别力,有效的提高了无人机着陆地貌图像的分类准确率,具有良好的泛化能力和适用范围。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本发明实施例的基于改进的深度置信网络的无人机着陆地貌分类方法的流程图;
图2为本发明一个实施例的粒子群优化支持向量机的流程图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
如图1所示,根据本发明基于改进的深度置信网络的无人机着陆地貌分类方法,对几类无人机航拍地貌图像进行分类。
无人机飞行环境一般比较复杂,拍摄到的图像也是各种地物相互交错,很难得到只含单一地貌的航拍图像,为获得符合条件的训练测试样本,需对无人机拍摄的原始图像进行分割处理,从而获得只含有单一地貌的无人机航拍图像库,不应在各类地物的混交地区和类别的边缘选取,以保证数据具有典型性,从而能进行准确的分类;
实验选取沙地、草地、土地、森林、水面和公路这6类无人机航拍图像进行实验;这6类地貌图像比较具有代表性,是实验的主要研究对象;其他地貌在本方法中不会直接分出类,因此分类最终结果为不宜着陆类,不加关注,因此不用细分类,这样也是为了加快算法处理速度;
采用上述6类经过裁剪后的无人机航拍图像进行实施,具体实施步骤如下:
S1:获取待分类的无人机航拍图像,对无人机拍摄的原始图像进行分割处理,从而获得只含有单一地貌的无人机航拍图像,选择其中每类地貌图像50幅作为训练样本集,其余图像作为测试样本。
S2:构建深度置信网络,输入训练图像集,对深度置信网络进行训练,直到满足训练条件;
深度置信网络首先要进行网络训练,具体训练过程如下:
1)设置网络结构,调整网络输入层、隐含层和输出层参数。
2)使用测试样本集图像训练网络,采用无监督的逐层贪婪训练方法,一旦底层训练完成后便将其权值固定,并使用其输出作为下一层输入,直至整个网络训练完成。
S3:将测试图像集输入到训练好的深度置信网络进行逐层学习,每层隐含层提取到一个特征集信息;并使用特征权值的方法对每个特征集分配一个特征权值,最后将每层隐含层获得的特征集和对应的权值结合成一个新的待分类图像特征集;
S4:采用基于灰度共生矩阵的特征提取算法,提取出样本图像的纹理特征,获得训练样本和测试样本的纹理特征向量,并将其与待分类特征集组合成综合特征向量集;具体步骤如下:
使用待分类无人机航拍图像,采用基于灰度共生矩阵的特征提取算法,提取出样本图像的纹理特征,表1为六幅实例图像提取后的纹理特征向量;
表1无人机航拍图像的纹理特征值
将得到的纹理特征与待分类特征集组合成综合特征向量集。
S5:将训练图像特征集作为训练样本对支持向量机(SVM)分类器进行训练,并采用粒子群算法(PSO)对支持向量机进行优化,选择出支持向量机的最优参数,获得一个最优得SVM分类器。具体方法如下:
在实际应用中,每一个粒子代表一个待求量的可能解,每个粒子通过以下规则实现寻优:
其中,为第i个粒子第j维当前前进的速度,为第i个粒子第j维粒子的当前位置,pi,j,pg,j分别表示粒子的个体最优位置和全局最优位置,r1,i和r2,i为随机常数,c1为个体最优位置的学习因子,c2为全局最优位置的学习因子,w为惯性权重。
将粒子群优化方法用于SVM的训练时,其目的在于求得最佳的核函数、核函数参数以及错误惩罚因子。那么这些粒子就可以认为是待定的核函数、核函数参数以及错误惩罚因子,而粒子的当前位置就可以认为是这些待定参数的当前值。即:
x=(h0,h1,r0...rn,c0...cm)
其中,h0,h1为SVM的核函数类型的二进制编码,总共有四种类型的核函数;核函数参数的编码为n位,错误惩罚因子的编码为m位,都是在取值范围内的二进制编码。找到的最优“位置”即为向量中的元素的最优解,也就是SVM的核函数、核函数参数以及错误惩罚因子。
S6:将得到的待分类图像特征集输入到优化后的支持向量机,进行图像分类。本方法最终通过SVM分类器将待分类图像进行识别。
在输入待测样本图像的纹理特征向量值之后,SVM分类器会得到一个输出结果,判断输出结果属于哪一类图像时,采用是欧氏距离判断法,输出向量和四个目标向量哪一个距离最近就判定为哪一类,前提是距离需要达到一定精度,若任一距离都大于设定的精度值则判定为其他图像。

Claims (2)

1.基于改进的深度置信网络的无人机着陆地貌分类方法,其特征在于:该方法包括以下步骤,
S1:获取无人机着陆地貌的训练图像集和测试图像集;
S2:构建深度置信网络,输入无人机着陆地貌的训练图像集,对深度置信网络进行训练,直到满足训练条件;
S3:将无人机着陆地貌的测试图像集输入到训练好的深度置信网络中进行逐层学习,提取出一组图像的待分类特征集
S4:采用基于灰度共生矩阵的特征提取算法,提取出无人机着陆地貌的样本图像的纹理特征,获得训练样本和测试样本的纹理特征向量,并将其与待分类特征集组合成综合特征向量集;
S5:将无人机着陆地貌的训练图像特征集作为训练样本对支持向量机(SVM)分类器进行训练,并采用粒子群算法(PSO)对支持向量机进行优化,选择出支持向量机的最优参数,获得一个最优的SVM分类器;
S6:将得到的待分类图像特征集输入到优化后的支持向量机,进行图像分类。
2.根据权利要求1所述的基于深度置信网络的无人机着陆地貌分类方法,其特征在于:
选取沙地、草地、土地、森林、水面和公路这6类无人机航拍图像进行实验;
采用上述6类经过裁剪后的无人机航拍图像进行实施,具体实施步骤如下:
S1:获取待分类的无人机航拍图像,对无人机拍摄的原始图像进行分割处理,从而获得只含有单一地貌的无人机航拍图像,选择其中每类地貌图像50幅作为训练样本集,其余图像作为测试样本;
S2:构建深度置信网络,输入训练图像集,对深度置信网络进行训练,直到满足训练条件;
深度置信网络首先要进行网络训练,具体训练过程如下:
1)设置网络结构,调整网络输入层、隐含层和输出层参数;
2)使用测试样本集图像训练网络,采用无监督的逐层贪婪训练方法,一旦底层训练完成后便将其权值固定,并使用其输出作为下一层输入,直至整个网络训练完成;
S3:将测试图像集输入到训练好的深度置信网络进行逐层学习,每层隐含层提取到一个特征集信息;并使用特征权值的方法对每个特征集分配一个特征权值,最后将每层隐含层获得的特征集和对应的权值结合成一个新的待分类图像特征集;
S4:采用基于灰度共生矩阵的特征提取算法,提取出样本图像的纹理特征,获得训练样本和测试样本的纹理特征向量,并将其与待分类特征集组合成综合特征向量集;具体步骤如下:
使用待分类无人机航拍图像,采用基于灰度共生矩阵的特征提取算法,提取出样本图像的纹理特征,表1为六幅实例图像提取后的纹理特征向量;
表1 无人机航拍图像的纹理特征值
将得到的纹理特征与待分类特征集组合成综合特征向量集;
S5:将训练图像特征集作为训练样本对支持向量机(SVM)分类器进行训练,并采用粒子群算法(PSO)对支持向量机进行优化,选择出支持向量机的最优参数,获得一个最优得SVM分类器;具体方法如下:
在实际应用中,每一个粒子代表一个待求量的可能解,每个粒子通过以下规则实现寻优:
其中,为第i个粒子第j维当前前进的速度,为第i个粒子第j维粒子的当前位置,pi,j,pg,j分别表示粒子的个体最优位置和全局最优位置,r1,i和r2,i为随机常数,c1为个体最优位置的学习因子,c2为全局最优位置的学习因子,w为惯性权重;
将粒子群优化方法用于SVM的训练时,其目的在于求得最佳的核函数、核函数参数以及错误惩罚因子;那么这些粒子就可以认为是待定的核函数、核函数参数以及错误惩罚因子,而粒子的当前位置就可以认为是这些待定参数的当前值;即:
x=(h0,h1,r0...rn,c0...cm)
其中,h0,h1为SVM的核函数类型的二进制编码,总共有四种类型的核函数;核函数参数的编码为n位,错误惩罚因子的编码为m位,都是在取值范围内的二进制编码;找到的最优“位置”即为向量中的元素的最优解,也就是SVM的核函数、核函数参数以及错误惩罚因子;
S6:将得到的待分类图像特征集输入到优化后的支持向量机,进行图像分类;本方法最终通过SVM分类器将待分类图像进行识别;
在输入待测样本图像的纹理特征向量值之后,SVM分类器会得到一个输出结果,判断输出结果属于哪一类图像时,采用是欧氏距离判断法,输出向量和四个目标向量哪一个距离最近就判定为哪一类,前提是距离需要达到一定精度,若任一距离都大于设定的精度值则判定为其他图像。
CN201710230576.0A 2017-04-09 2017-04-09 基于改进的深度置信网络的无人机着陆地貌分类方法 Pending CN107016371A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710230576.0A CN107016371A (zh) 2017-04-09 2017-04-09 基于改进的深度置信网络的无人机着陆地貌分类方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710230576.0A CN107016371A (zh) 2017-04-09 2017-04-09 基于改进的深度置信网络的无人机着陆地貌分类方法

Publications (1)

Publication Number Publication Date
CN107016371A true CN107016371A (zh) 2017-08-04

Family

ID=59446201

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710230576.0A Pending CN107016371A (zh) 2017-04-09 2017-04-09 基于改进的深度置信网络的无人机着陆地貌分类方法

Country Status (1)

Country Link
CN (1) CN107016371A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107748895A (zh) * 2017-10-29 2018-03-02 北京工业大学 基于dct‑cnn模型的无人机着陆地貌图像分类方法
CN107766828A (zh) * 2017-10-29 2018-03-06 北京工业大学 基于小波卷积神经网络的无人机着陆地貌分类方法
CN108520271A (zh) * 2018-03-15 2018-09-11 中国石油大学(华东) 基于因子分析的海底地貌类型分类器设计方法
CN109056691A (zh) * 2018-07-27 2018-12-21 内蒙古蒙草生态环境(集团)股份有限公司 沙地治理方法
CN110231829A (zh) * 2019-06-20 2019-09-13 上海大学 基于数据增融的强化学习小型无人旋翼机自主着陆方法
CN113408611A (zh) * 2021-06-18 2021-09-17 电子科技大学 一种基于延迟机制的多层图像分类方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104107042A (zh) * 2014-07-10 2014-10-22 杭州电子科技大学 基于粒子群优化-支持向量机的肌电信号步态识别方法
CN105488528A (zh) * 2015-11-26 2016-04-13 北京工业大学 基于改进自适应遗传算法的神经网络图像分类方法
CN105809198A (zh) * 2016-03-10 2016-07-27 西安电子科技大学 基于深度置信网络的sar图像目标识别方法
CN106096658A (zh) * 2016-06-16 2016-11-09 华北理工大学 基于无监督深度空间特征编码的航拍图像分类方法
CN106529574A (zh) * 2016-10-17 2017-03-22 北京工业大学 基于稀疏自动编码器和支持向量机的图像分类方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104107042A (zh) * 2014-07-10 2014-10-22 杭州电子科技大学 基于粒子群优化-支持向量机的肌电信号步态识别方法
CN105488528A (zh) * 2015-11-26 2016-04-13 北京工业大学 基于改进自适应遗传算法的神经网络图像分类方法
CN105809198A (zh) * 2016-03-10 2016-07-27 西安电子科技大学 基于深度置信网络的sar图像目标识别方法
CN106096658A (zh) * 2016-06-16 2016-11-09 华北理工大学 基于无监督深度空间特征编码的航拍图像分类方法
CN106529574A (zh) * 2016-10-17 2017-03-22 北京工业大学 基于稀疏自动编码器和支持向量机的图像分类方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANG GUANG等: "Temperature Forecast Based on SVM Optimized by PSO Algorithm", 《2010 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND COGNITIVE INFORMATICS》 *
樊重俊等: "《大数据分析与应用》", 31 January 2016 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107748895A (zh) * 2017-10-29 2018-03-02 北京工业大学 基于dct‑cnn模型的无人机着陆地貌图像分类方法
CN107766828A (zh) * 2017-10-29 2018-03-06 北京工业大学 基于小波卷积神经网络的无人机着陆地貌分类方法
CN107748895B (zh) * 2017-10-29 2021-06-25 北京工业大学 基于dct-cnn模型的无人机着陆地貌图像分类方法
CN108520271A (zh) * 2018-03-15 2018-09-11 中国石油大学(华东) 基于因子分析的海底地貌类型分类器设计方法
CN108520271B (zh) * 2018-03-15 2019-10-01 中国石油大学(华东) 基于因子分析的海底地貌类型分类器设计方法
CN109056691A (zh) * 2018-07-27 2018-12-21 内蒙古蒙草生态环境(集团)股份有限公司 沙地治理方法
CN110231829A (zh) * 2019-06-20 2019-09-13 上海大学 基于数据增融的强化学习小型无人旋翼机自主着陆方法
CN110231829B (zh) * 2019-06-20 2022-01-07 上海大学 基于数据增融的强化学习小型无人旋翼机自主着陆方法
CN113408611A (zh) * 2021-06-18 2021-09-17 电子科技大学 一种基于延迟机制的多层图像分类方法
CN113408611B (zh) * 2021-06-18 2022-05-10 电子科技大学 一种基于延迟机制的多层图像分类方法

Similar Documents

Publication Publication Date Title
CN107016371A (zh) 基于改进的深度置信网络的无人机着陆地貌分类方法
CN108717568B (zh) 一种基于三维卷积神经网络的图像特征提取与训练方法
CN110414377B (zh) 一种基于尺度注意力网络的遥感图像场景分类方法
CN105488528B (zh) 基于改进自适应遗传算法的神经网络图像分类方法
CN107220657B (zh) 一种面向小数据集的高分辨率遥感影像场景分类的方法
CN107766828A (zh) 基于小波卷积神经网络的无人机着陆地貌分类方法
CN109299716A (zh) 神经网络的训练方法、图像分割方法、装置、设备及介质
CN107506740A (zh) 一种基于三维卷积神经网络和迁移学习模型的人体行为识别方法
CN101447020B (zh) 基于直觉模糊的色情图像识别方法
CN108875934A (zh) 一种神经网络的训练方法、装置、***及存储介质
CN107122375A (zh) 基于图像特征的图像主体的识别方法
CN106504233A (zh) 基于Faster R‑CNN的无人机巡检图像电力小部件识别方法及***
CN107742107A (zh) 人脸图像分类方法、装置及服务器
CN106570521B (zh) 多语言场景字符识别方法及识别***
CN109102014A (zh) 基于深度卷积神经网络的类别不平衡的图像分类方法
CN106845527A (zh) 一种菜品识别方法
CN107392130A (zh) 基于阈值自适应和卷积神经网络的多光谱图像分类方法
CN105005789B (zh) 一种基于视觉词汇的遥感图像地物分类方法
CN108345850A (zh) 基于超像素的笔画特征变换和深度学习的区域分类的场景文本检测方法
CN111339935B (zh) 一种基于可解释cnn图像分类模型的光学遥感图片分类方法
CN108932455B (zh) 遥感图像场景识别方法及装置
CN106056159A (zh) 基于Fisher Vector的图像精细分类方法
CN105184298A (zh) 一种快速局部约束低秩编码的图像分类方法
CN107516103A (zh) 一种影像分类方法和***
CN108229503A (zh) 一种针对服装照片的特征提取方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170804