CN107015525A - 一种适用于微流控芯片观测的微位移控制平台及使用方法 - Google Patents

一种适用于微流控芯片观测的微位移控制平台及使用方法 Download PDF

Info

Publication number
CN107015525A
CN107015525A CN201710157207.3A CN201710157207A CN107015525A CN 107015525 A CN107015525 A CN 107015525A CN 201710157207 A CN201710157207 A CN 201710157207A CN 107015525 A CN107015525 A CN 107015525A
Authority
CN
China
Prior art keywords
micro
linear motion
motion unit
displacement
axis linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710157207.3A
Other languages
English (en)
Inventor
黄明宇
冒卫星
张华丽
王冰
王亚凯
倪红军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong University
Original Assignee
Nantong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong University filed Critical Nantong University
Priority to CN201710157207.3A priority Critical patent/CN107015525A/zh
Publication of CN107015525A publication Critical patent/CN107015525A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/402Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for positioning, e.g. centring a tool relative to a hole in the workpiece, additional detection means to correct position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37404Orientation of workpiece or tool, surface sensor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Human Computer Interaction (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明涉及微位移平台领域,尤其涉及一种适用于微流控芯片观测的微位移控制平台及使用方法。所述平台包括观测器件(1)、夹具(2)、微流控芯片(3)、Y轴运动单元(4)、X轴运动单元(5)、数显表(6)和计算机(7),由观测器件(1)拍摄的实验现象在计算机(7)上实时显示;微流控芯片(3)固定在夹具(2)里面;Y轴直线运动单元(4)位于X轴直线运动单元(5)的上方;夹具(2)固定在Y轴直线运动单元(4)的平台上;计算机(7)控制Y轴直线运动单元(4)和X轴直线运动单元(5)并对实验现象进行记录,记录结果通过数显表(6)显示。微位移控制平台的高精度调节机制实现了对实验对象的精确定位观测。

Description

一种适用于微流控芯片观测的微位移控制平台及使用方法
技术领域
本发明涉及微位移平台领域,尤其涉及一种适用于微流控芯片观测的微位移控制平台及使用方法。
背景技术
微流控芯片技术(Microfluidics)是把生物、化学、医学分析过程的样品制备、反应、分离、检测,细胞培养、分选、裂解等基本操作集成到一块微米尺度的芯片上。由于其体积小、试剂消耗量低和高度集成化等特点,越来越多的研究人员开始关注微流控芯片。微流控芯片技术具有微型化、高通量、实时检测等优势,其在细胞研究、临床诊断等领域具有广阔的应用前景。越来越多的研究人员参与到微流控芯片的分析研究中。
微流控芯片需要放在显微镜下观察并需移动,以便观察不同位置。通常将芯片放在一个夹具上固定,通过移动夹具来观察不同位置。
通常一次实验设有一个或多个微流控芯片,需要对芯片的各区域、各芯片的实验现象进行观测,并拍照记录。但是,普通显微镜一般不具备位移调节和图形获取功能。高级专用显微镜镜台上装有玻片标本推进器(推片器),旋转推进器调节轮,可使玻片标本作左右、前后方向的移动。当观测位置不佳或需调整位置时,通常需人工手动调节推进器。这种情况下,移动距离不可控,且移动距离未知。目前实验室条件下微流控芯片的观测,基本将微流控芯片直接置于显微镜下。而预先的微流控芯片尺寸结构数据已知,借助良好的位移控制可更好地开展实验。
发明内容
针对背景技术中的问题,本发明提供了一种适用于微流控芯片观测的微位移控制平台及使用方法。
为了实现上述目的,本发明提出如下技术方案:
一种适用于微流控芯片观测的微位移控制平台,所述平台包括观测器件(1)、夹具(2)、微流控芯片(3)、Y轴运动单元(4)、X轴运动单元(5)、数显表(6)、计算机(7),其特征在于,
由所述观测器件(1)拍摄的实验现象在计算机(7)上实时显示;
所述Y轴直线运动单元(4)位于X轴直线运动单元(5)的上方;
所述微流控芯片(3)固定在夹具(2)上;
所述夹具(2)固定在Y轴直线运动单元(4)的平台上;
所述计算机(7)控制Y轴直线运动单元(4)和X轴直线运动单元(5)并对实验现象进行记录,记录结果通过数显表(6)显示。
进一步地,所述观测器件(1)包括支架(11),CCD摄像机(12),转换器(13)和物镜(14);
所述CCD摄像机(12)与支架(11)固定连接,支架(11)控制CCD摄像机(12)的位置于微位移平台中心;
通过切换所述转换器(13)选择不同放大倍数的物镜(14),CCD摄像机(12)拍摄实验现象并在计算机(7)上实时显示。
进一步地,所述Y轴直线运动单元(4)包括连接件(401),第一支座(402),第一导杆(403),第一直线运动轴承(404),阵列光源(405),螺钉孔(406),第一轴承座(407),第一旋钮(408),第一直线导轨(409),第一丝杆螺母(410),第一滚珠丝杆(411),第一光栅标尺(412),第一读数头(413),第一伺服电机(414);
所述第一支座(402)位于Y轴直线运动单元(4)两侧,两侧支座与第一导杆(403)、第一直线运动轴承(404)连接;所述第一轴承座(407)位于Y轴直线运动单元(4)两侧,两侧轴承座与第一旋钮(408)、第一丝杆螺母(410)、第一滚珠丝杆(411)、第一伺服电机(414)依次连接;所述第一光栅标尺(412)设置在第一直线导轨(409)的运动件侧面;所述第一读数头(413)设置在第一直线导轨(409)固定件的上表面;所述阵列光源(405),螺钉孔(406)位于Y轴直线运动单元(4)的上工作面。
进一步地,所述X轴直线运动单元(5)包括第二支座(501)、第二直线运动轴承(502)、第二导杆(503)、第二轴承座(504)、第二伺服电机(505)、第二滚珠丝杆(506)、第二直线导轨(507)、第二丝杆螺母(508)、第二读数头(509)、第二光栅标尺(510)和第二旋钮(511)组成;
所述第二支座(501)位于X轴直线运动单元(5)两侧,两侧支座与第二导杆(503)、第二直线运动轴承(502)连接;所述第二轴承座(504)位于X轴直线运动单元(5)两侧,两侧轴承座与第二旋钮(511)、第二丝杆螺母(508)、第二滚珠丝杆(506)、第二伺服电机(505)依次连接;所述第二读数头(509)设置在第二直线导轨(507)固定件的上表面,所述第二光栅标尺(510)设置在第二直线导轨(507)的运动件侧面;
Y轴直线运动单元(4)通过连接件(401)与X轴直线运动单元(5)连接。
进一步地,所述计算机(7)控制第一伺服电机(414)驱动第一滚珠丝杆(411),第一导杆(403)以及第一直线导轨(409)导向,移动Y轴运动单元(4);
所述计算机(7)控制第二伺服电机(505)驱动第二滚珠丝杆(506),第二导杆(503)以及第二直线导轨(507)导向,移动X轴运动单元(5)。
进一步地,所述第一读数头(413)检测第一导轨(409)的位移量,并通过数显表(6)显示;
所述第二读数头(509)检测第二导轨(507)的位移量,并通过数显表(6)显示。
一种适用于微流控芯片观测的微位移控制平台的使用方法,所述方法包括如下步骤:
(1)芯片封合完成后,固定在夹具上;
(3)夹具组装完成后,将夹具置于Y轴工作台上,用螺钉固定夹具;
(4)微位移平台XY轴微位移通过X轴直线运动单元和Y轴直线运动单元控制,微位移平台控制***负责直线运动单元的位移调节,读数头检测直线运动单元的位移量,数显表进行实时显示;
(5)读数头将检测结果传输给计算机,计算机处理后调节伺服电机,实现微位移平台的移动速度和位移量的精确控制;同时,实验人员也可通过调节旋钮来改变芯片位置。
进一步地,当进行多组实验时,可将夹具与芯片组装后同时排列在工作台。
本发明的有益效果为:
微位移控制平台可实现XY轴微位移,调节精度为1μm。微位移平台控制***由计算机、伺服电机、旋钮、光栅标尺、读数头和数显表组成。微位移平台由两个直线运动单元组成。Y轴直线运动单元位于X轴直线运动单元上方。读数头作用为测量移动距离,数显表为显示移动的距离。通过计算机设定移动距离,控制伺服电机,经过丝杆螺母机构可实现工作台移动。旋钮作用为:通过转动旋钮,使丝杆转动,通过螺母带动工作台直线运动。也可通过人工旋转旋钮,实现手动位移工作台,其移动距离则通过数显表显示。
微位移控制平台的高精度调节机制和平行多组实验,有利于开展对比实验,并实现对实验对象的精确定位观测。
附图说明
图1为本发明的微位移控制平台的结构图;
图2为本发明的微位移控制平台的右视图;
图3为本发明的微位移平台Y轴运动单元结构图;
图4为本发明的微位移平台Y轴运动单元的俯视图;
图5为本发明的微位移平台X轴运动单元结构图;
图6为本发明的微位移平台X轴运动单元的俯视图。
图中,1-观测器件,2-夹具,3-微流控芯片,4-Y轴运动单元,5-X轴运动单元,6-数显表,7-计算机,11-支架,12-CCD摄像机,13-转换器,14-物镜,401-连接件,402-第一支座,403-第一导杆,404-第一直线运动轴承,405-阵列光源,406-螺钉孔,407-第一轴承座,408-第一旋钮,409-第一直线导轨,410-第一丝杆螺母,411-第一滚珠丝杆,412-第一光栅标尺,413-第一读数头,414-第一伺服电机,501-第二支座,502-第二直线运动轴承,503-第二导杆,504-第二轴承座,505-第二伺服电机,506-第二滚珠丝杆,507-第二直线导轨,508-第二丝杆螺母,509-第二读数头,510-第二光栅标尺,511-第二旋钮。
具体实施方式
下面结合附图,对本发明的具体实施方案作详细的阐述。具体实施方式仅供叙述而并非用来限定本发明的范围或实施原则,本发明的保护范围仍以权利要求为准,包括在此基础上所作出的显而易见的变化或变动等。
图1为本发明的微位移控制平台的结构图,如附图1所示,所述平台包括观测器件1、夹具2、微流控芯片3、Y轴运动单元4、X轴运动单元5、数显表6、计算机7。
如图2所示,观测器件1包括支架11,CCD摄像机12,转换器13和物镜14。CCD摄像机12与支架11固定连接,同时控制其位置于微位移平台中心。通过切换转换器13选择不同放大倍数的物镜14,CCD摄像机12拍摄实验现象并在计算机7上实时显示。
微位移平台控制***主要由计算机,第一伺服电机414、第二伺服电机505,第一读数头413、第二读数头509,第一光栅标尺412、第二光栅标尺510,数显表6组成。微位移平台由两个直线运动单元组成。Y轴直线运动单元4位于X轴直线运动单元5上方。
读数头作用为测量移动距离,数显表为显示移动的距离。通过计算机设定移动距离,控制伺服电机,经过丝杆螺母机构可实现工作台移动。旋钮作用为:通过转动旋钮,使丝杆转动,通过螺母带动工作台直线运动。也可通过人工旋转旋钮,实现手动位移工作台,其移动距离则通过数显表显示。
如图5和图6所示,X轴直线运动单元5包括第二支座501,第二直线运动轴承502,第二导杆503,第二轴承座504,第二伺服电机505,第二滚珠丝杆506,第二直线导轨507,第二丝杆螺母508,第二读数头509,第二光栅标尺510,第二旋钮511组成。
第二支座501位于X轴直线运动单元5两侧,两侧支座与第二导杆503、第二直线运动轴承502连接。第二轴承座504位于X轴直线运动单元5两侧,两侧轴承座与第二旋钮511、第二丝杆螺母508、第二滚珠丝杆506、第二伺服电机505依次连接。第二读数头509安装于第二直线导轨507固定件的上表面,第二光栅标尺510安装于第二直线导轨507的运动件侧面。
Y轴直线运动单元4通过连接件401与X轴直线运动单元5连接。
如图3和图4所示,Y轴直线运动单元4包括连接件401,第一支座402,第一导杆403,第一直线运动轴承404,阵列光源405,螺钉孔406,第一轴承座407,第一旋钮408,第一直线导轨409,第一丝杆螺母410,第一滚珠丝杆411,第一光栅标尺412,第一读数头413,第一伺服电机414。Y轴工作台上预留多组螺栓孔,通过螺钉将夹具和微位移平台固定。
第一支座402位于Y轴直线运动单元4两侧,两侧支座与第一导杆403、第一直线运动轴承404连接。第一轴承座407位于Y轴直线运动单元4两侧,两侧轴承座与第一旋钮408、第一丝杆螺母410、第一滚珠丝杆411、第一伺服电机414依次连接。第一光栅标尺412安装于第一直线导轨409的运动件侧面,第一读数头413安装于第一直线导轨409固定件的上表面。阵列光源405,螺钉孔406位于Y轴直线运动单元4的上工作面。
X轴方向与Y方向的控制方式相同。两者通过连接件401固定连接。通过电机或旋钮驱动滚珠丝杆,导杆和两侧导轨辅助工作台的移动。通过两个直线运动单元的组合运动可以使工作台面产生两个自由度X Y轴方向的平面运动。
微位移平台可实现XY轴微位移,调节精度为1μm。微位移平台控制***由计算机、伺服电机、旋钮、光栅标尺、读数头和数显表组成。微位移平台由两个直线运动单元组成。Y轴直线运动单元位于X轴直线运动单元上方。读数头作用为测量移动距离,数显表为显示移动的距离。通过计算机设定移动距离,控制伺服电机,经过丝杆螺母机构可实现工作台移动。旋钮作用为:通过转动旋钮,使丝杆转动,通过螺母带动工作台直线运动。也可通过人工旋转旋钮,实现手动位移工作台,其移动距离则通过数显表显示。
通过两个直线运动单元的组合运动可以使工作台面产生两个自由度X Y轴方向的平面运动。计算机7控制第一伺服电机414、第二伺服电机505驱动第一滚珠丝杆411、第二滚珠丝杆506,第一导杆403、第二导杆503和两侧第一导轨409、第二导轨507导向,移动X轴运动单元5和Y轴运动单元4。第一读数头413、第二读数头509检测第一导轨409、第二导轨507的位移量,并通过数显表6显示。同时也可调节第一旋钮408、第二旋钮511来改变位移量。调节转换器13选择不同放大倍数的物镜14,借助CCD摄像机12实时观测微流控芯片中的实验现象,根据实验现象选择合适物镜。由计算机7控制运动单元并对实验现象进行记录。实验人员可根据在计算机中按需要设定工作台移动参数实时拍摄实验现象。
本发明所揭示的一种适用于微流控芯片观测的微位移控制平台,其工作过程为:芯片封合完成后,固定在夹具上;夹具组装完成后,将夹具置于Y轴工作台上,用螺钉固定夹具。进行多组实验时,可将夹具与芯片组装后同时排列在工作台。微位移平台XY轴微位移通过X轴直线运动单元和Y轴直线运动单元控制。微位移平台控制***负责直线运动单元的位移调节。读数头检测直线运动单元的位移量,数显表进行实时显示。读数头将检测结果传输给计算机,计算机处理后调节伺服电机,实现微位移平台的移动速度和位移量的精确控制。同时,实验人员也可通过调节旋钮来改变芯片位置。

Claims (8)

1.一种适用于微流控芯片观测的微位移控制平台,所述平台包括观测器件(1)、夹具(2)、微流控芯片(3)、Y轴运动单元(4)、X轴运动单元(5)、数显表(6)、计算机(7),其特征在于,
由所述观测器件(1)拍摄的实验现象在计算机(7)上实时显示;
所述Y轴直线运动单元(4)位于X轴直线运动单元(5)的上方;
所述微流控芯片(3)固定在夹具(2)上;
所述夹具(2)固定在Y轴直线运动单元(4)的平台上;
所述计算机(7)控制Y轴直线运动单元(4)和X轴直线运动单元(5)并对实验现象进行记录,记录结果通过数显表(6)显示。
2.根据权利要求1所述的一种适用于微流控芯片观测的微位移控制平台,其特征在于:
所述观测器件(1)包括支架(11),CCD摄像机(12),转换器(13)和物镜(14);
所述CCD摄像机(12)与支架(11)固定连接,支架(11)控制CCD摄像机(12)的位置于微位移平台中心;
通过切换所述转换器(13)选择不同放大倍数的物镜(14),CCD摄像机(12)拍摄实验现象并在计算机(7)上实时显示。
3.根据权利要求1所述的一种适用于微流控芯片观测的微位移控制平台,其特征在于:
所述Y轴直线运动单元(4)包括连接件(401),第一支座(402),第一导杆(403),第一直线运动轴承(404),阵列光源(405),螺钉孔(406),第一轴承座(407),第一旋钮(408),第一直线导轨(409),第一丝杆螺母(410),第一滚珠丝杆(411),第一光栅标尺(412),第一读数头(413),第一伺服电机(414);
所述第一支座(402)位于Y轴直线运动单元(4)两侧,两侧支座与第一导杆(403)、第一直线运动轴承(404)连接;所述第一轴承座(407)位于Y轴直线运动单元(4)两侧,两侧轴承座与第一旋钮(408)、第一丝杆螺母(410)、第一滚珠丝杆(411)、第一伺服电机(414)依次连接;所述第一光栅标尺(412)设置在第一直线导轨(409)的运动件侧面;所述第一读数头(413)设置在第一直线导轨(409)固定件的上表面;所述阵列光源(405),螺钉孔(406)位于Y轴直线运动单元(4)的上工作面。
4.根据权利要求1所述的一种适用于微流控芯片观测的微位移控制平台,其特征在于:
所述X轴直线运动单元(5)包括第二支座(501)、第二直线运动轴承(502)、第二导杆(503)、第二轴承座(504)、第二伺服电机(505)、第二滚珠丝杆(506)、第二直线导轨(507)、第二丝杆螺母(508)、第二读数头(509)、第二光栅标尺(510)和第二旋钮(511)组成;
所述第二支座(501)位于X轴直线运动单元(5)两侧,两侧支座与第二导杆(503)、第二直线运动轴承(502)连接;所述第二轴承座(504)位于X轴直线运动单元(5)两侧,两侧轴承座与第二旋钮(511)、第二丝杆螺母(508)、第二滚珠丝杆(506)、第二伺服电机(505)依次连接;所述第二读数头(509)设置在第二直线导轨(507)固定件的上表面,所述第二光栅标尺(510)设置在第二直线导轨(507)的运动件侧面;
Y轴直线运动单元(4)通过连接件(401)与X轴直线运动单元(5)连接。
5.根据权利要求1所述的一种适用于微流控芯片观测的微位移控制平台,其特征在于:
所述计算机(7)控制第一伺服电机(414)驱动第一滚珠丝杆(411),第一导杆(403)以及第一直线导轨(409)导向,移动Y轴运动单元(4);
所述计算机(7)控制第二伺服电机(505)驱动第二滚珠丝杆(506),第二导杆(503)以及第二直线导轨(507)导向,移动X轴运动单元(5)。
6.根据权利要求1所述的一种适用于微流控芯片观测的微位移控制平台,其特征在于:
所述第一读数头(413)检测第一导轨(409)的位移量,并通过数显表(6)显示;
所述第二读数头(509)检测第二导轨(507)的位移量,并通过数显表(6)显示。
7.一种适用于微流控芯片观测的微位移控制平台的使用方法,其特征在于:所述方法包括如下步骤:
(1)芯片封合完成后,固定在夹具上;
(3)夹具组装完成后,将夹具置于Y轴工作台上,用螺钉固定夹具;
(4)微位移平台XY轴微位移通过X轴直线运动单元和Y轴直线运动单元控制,微位移平台控制***负责直线运动单元的位移调节,读数头检测直线运动单元的位移量,数显表进行实时显示;
(5)读数头将检测结果传输给计算机,计算机处理后调节伺服电机,实现微位移平台的移动速度和位移量的精确控制;同时,实验人员也可通过调节旋钮来改变芯片位置。
8.根据权利要求7所述的一种适用于微流控芯片观测的微位移控制平台的使用方法,其特征在于:
当进行多组实验时,可将夹具与芯片组装后同时排列在工作台。
CN201710157207.3A 2017-03-16 2017-03-16 一种适用于微流控芯片观测的微位移控制平台及使用方法 Pending CN107015525A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710157207.3A CN107015525A (zh) 2017-03-16 2017-03-16 一种适用于微流控芯片观测的微位移控制平台及使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710157207.3A CN107015525A (zh) 2017-03-16 2017-03-16 一种适用于微流控芯片观测的微位移控制平台及使用方法

Publications (1)

Publication Number Publication Date
CN107015525A true CN107015525A (zh) 2017-08-04

Family

ID=59439705

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710157207.3A Pending CN107015525A (zh) 2017-03-16 2017-03-16 一种适用于微流控芯片观测的微位移控制平台及使用方法

Country Status (1)

Country Link
CN (1) CN107015525A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108876838A (zh) * 2018-06-15 2018-11-23 重庆大学 微操作***的微操作空间的数字化方法及***
CN109060835A (zh) * 2018-08-24 2018-12-21 奇瑞万达贵州客车股份有限公司 一种芯片的外观检查装置
CN109347253A (zh) * 2018-12-13 2019-02-15 南京邮电大学 基于单片机控制的总行程与步进精度可调微位移缩小器
WO2020151039A1 (zh) * 2019-01-26 2020-07-30 殷跃锋 一种细胞检测显微镜

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101441154A (zh) * 2008-12-23 2009-05-27 华东理工大学 一种高精度显微疲劳试验机
DE102011050254A1 (de) * 2011-05-10 2012-11-15 Technische Universität Dortmund Verfahren zur Separation polarisierbarer Biopartikel
CN103264385A (zh) * 2013-05-08 2013-08-28 袁庆丹 自动微操作装置
CN205067059U (zh) * 2015-10-09 2016-03-02 茂莱(南京)仪器有限公司 放大率法测焦距的光具座
CN105988209A (zh) * 2016-07-12 2016-10-05 江苏赛尔蒂扶医疗科技有限公司 一种基于显微镜的全自动检测***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101441154A (zh) * 2008-12-23 2009-05-27 华东理工大学 一种高精度显微疲劳试验机
DE102011050254A1 (de) * 2011-05-10 2012-11-15 Technische Universität Dortmund Verfahren zur Separation polarisierbarer Biopartikel
CN103264385A (zh) * 2013-05-08 2013-08-28 袁庆丹 自动微操作装置
CN205067059U (zh) * 2015-10-09 2016-03-02 茂莱(南京)仪器有限公司 放大率法测焦距的光具座
CN105988209A (zh) * 2016-07-12 2016-10-05 江苏赛尔蒂扶医疗科技有限公司 一种基于显微镜的全自动检测***

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108876838A (zh) * 2018-06-15 2018-11-23 重庆大学 微操作***的微操作空间的数字化方法及***
CN108876838B (zh) * 2018-06-15 2022-05-06 重庆大学 微操作***的微操作空间的数字化方法及***
CN109060835A (zh) * 2018-08-24 2018-12-21 奇瑞万达贵州客车股份有限公司 一种芯片的外观检查装置
CN109347253A (zh) * 2018-12-13 2019-02-15 南京邮电大学 基于单片机控制的总行程与步进精度可调微位移缩小器
CN109347253B (zh) * 2018-12-13 2023-08-11 南京邮电大学 基于单片机控制的总行程与步进精度可调微位移缩小器
WO2020151039A1 (zh) * 2019-01-26 2020-07-30 殷跃锋 一种细胞检测显微镜

Similar Documents

Publication Publication Date Title
CN107015525A (zh) 一种适用于微流控芯片观测的微位移控制平台及使用方法
CN201047756Y (zh) 影像测量仪
CN101706256B (zh) Pcb板钻孔用微型钻针全自动质量检测装置
CN108020159B (zh) 基于机器视觉的轴类零件尺寸图像采集装置
CN112798933A (zh) 一种晶圆自动对针装置及方法
CN105181436A (zh) 弯曲预载荷微纳米压痕力学性能测试方法与装置
CN105445643A (zh) 一种全自动探针台图像定位***
CN106254742B (zh) 一种双相机图像测量机构
CN101662928A (zh) 一种具有影像定位的电路板校位装置和钻铣装置
CN109470698B (zh) 基于显微照相矩阵的跨尺度夹杂物快速分析仪器及方法
CN113484155B (zh) 一种超薄薄膜力学性能测量装置和力学性能测量方法
CN107144526A (zh) 一种适用于微流控芯片观测的微位移控制装置及使用方法
CN106053278A (zh) 一种微纳米切削试验装置
CN205246712U (zh) 全自动探针台图像定位装置
CN109708606B (zh) 一种基于运动参数表征的复合凸轮加工精度检测装置和方法
CN107560909A (zh) 基于局域电化学刻蚀的制备x射线纳米ct金属微试样的装置
CN207703156U (zh) 一种用于轴类零件尺寸的图像采集装置
CN104723196A (zh) 四自由度调整台
CN207164090U (zh) 多工位指纹模组自动测试装置
CN206912296U (zh) 一种自动沉孔机
CN202486455U (zh) 全自动cog邦定机预压压头单元
CN107765020A (zh) 配合微流控芯片观测的固定装置及微流控芯片观测***
CN206131981U (zh) 一种万能工具显微镜的y轴调节机构
CN103115574A (zh) 太阳能电池片绒面特性检测仪
CN205940452U (zh) 一种万能工具显微镜的双顶针固定机构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170804

RJ01 Rejection of invention patent application after publication