CN107012390A - 一种无取向硅钢用低碳磷铁及其冶炼方法 - Google Patents

一种无取向硅钢用低碳磷铁及其冶炼方法 Download PDF

Info

Publication number
CN107012390A
CN107012390A CN201610059503.5A CN201610059503A CN107012390A CN 107012390 A CN107012390 A CN 107012390A CN 201610059503 A CN201610059503 A CN 201610059503A CN 107012390 A CN107012390 A CN 107012390A
Authority
CN
China
Prior art keywords
carbon
low
ferrophosphorus
steel
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610059503.5A
Other languages
English (en)
Other versions
CN107012390B (zh
Inventor
张仁波
胡洪旭
高振宇
林棡
张智义
李亚东
李文权
陈春梅
刘文鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Angang Steel Co Ltd
Original Assignee
Angang Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Angang Steel Co Ltd filed Critical Angang Steel Co Ltd
Priority to CN201610059503.5A priority Critical patent/CN107012390B/zh
Publication of CN107012390A publication Critical patent/CN107012390A/zh
Application granted granted Critical
Publication of CN107012390B publication Critical patent/CN107012390B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明提供一种无取向硅钢用低碳磷铁及其冶炼方法,其化学成分wt%为:C≤0.10%、Si≤1.5%、Mn≤1.5%、P:25~27%、S≤0.005%、Nb≤0.0010%、V≤0.0010%、Ti≤0.0010%。将磷灰石、焦炭、硅石、铁屑按照100:16:26:42的比例混合成炉料,从高位料仓连续装入电炉中,冶炼2h后将铁水排入磷冷却***的分离池中,分离出磷铁和渣。再根据铁水化验结果调整合金料比例,将调整后的配料按400~500公斤的量装入炉中,循环往复。本发明可极大提高低碳磷铁的纯净度,使低碳磷铁中不含或少含Nb、V、Ti有害元素,减少钢中影响冷轧板连续退火过程中阻碍晶粒长大的碳氮化物,所生产低碳磷铁化学成分稳定,利用该低碳磷铁生产的无取向硅钢的电磁性能也明显提高。

Description

一种无取向硅钢用低碳磷铁及其冶炼方法
技术领域
本发明属于冶炼工艺技术领域,特别涉及一种无取向硅钢用高纯度低碳磷铁及其冶炼方法。
背景技术
无取向硅钢中磷元素是关键元素,可以提高钢材的机械性能、提高硅钢的切削加工性能。一般无取向硅钢中磷含量在0.02~0.20%,低碳磷铁中磷含量在25~30%。目前硅钢用低碳磷铁中含有Nb、V、Ti等有害夹杂物,一般在0.05~0.8%之间,不同批次有害夹杂物的含量波动较大,个别批次Ti>0.5%,Nb、V含量大于0.4%,因此在无取向硅钢冶炼后,Ti元素含量在10~80ppm,个别炉罐无取向硅钢的Nb、V含量分别大于40ppm,对无取向硅钢电磁性能影响很大。
Nb、V、Ti在钢中与N、C形成(N,C)化合物,而且形成细小的第二相粒子,这些细小颗粒一般在几个nm到200nm,弥散分布在钢中,这些细小的颗粒严重阻碍无取向硅钢热轧板晶粒长大及冷轧板连续退火过程中晶粒的再结晶及长大。通常情况下,无取向硅钢的铁损值与晶粒大小成反比,晶粒越大,铁损越小,铁损值越小,电磁性能越好。因此钢中Nb、V、Ti的(N,C)化物的存在,严重恶化无取向硅钢的电磁性能,是有害的残余元素。
目前,市场上无取向硅钢用低碳磷铁的冶炼方法是在电炉中冶炼,其冶炼原材料是含磷元素的磷灰石Ca5[(FCI)(PO4)3]等形式存在,其中P2O5含量在20~30%之间,这些磷灰石与焦炭、硅石、铁屑等原材料以一定的比例混合在一起,通过高温熔炼,磷矿石中的化合物中P元素被还原、冶炼过程中加入的废钢中含有大量的铌、钒、钛等有害元素,且整个冶炼过程中为还原性气氛,铌钒钛不能够被氧化掉,其残余量受废钢的纯净度限制,残余有害成分不可控。这些有害元素在无取向硅钢冶炼及热轧、冷轧板连退过程中将形成细小的氮碳化物,极大阻碍无取向硅钢冷轧板连续退火过程中的再结晶与晶粒长大,严重影响无取向硅钢的电磁性能。
发明内容
本发明的目的可以提高无取向硅钢用低碳磷铁的纯净度,使低碳磷铁中不含或少含有Nb、V、Ti有害元素,减少钢中影响冷轧板连续退火过程中阻碍晶粒长大的Nb、V、Ti形成的碳氮化物,从而提高冷轧板连续退火后的晶粒度,降低铁损值,提高磁感值和电磁性能。
为达此目的,本发明采取了如下技术解决方案:
一种无取向硅钢用低碳磷铁,其化学成分wt%为:C≤0.10%、Si≤1.5%、Mn≤1.5%、P:25~27%、S≤0.005%、Nb≤0.0010%、V≤0.0010%、Ti≤0.0010%,其余是Fe和杂质。
本发明无取向硅钢用低碳磷铁的冶炼方法为:
一、原料:
冶炼低碳磷铁的原料包括磷灰石、焦炭、硅石和钢屑;
所述磷灰石为无铅的磷灰石,磷灰石中粒度为5~40mm的占80%以上;
所述焦炭中的固定碳>80%,挥发物<4%,灰分<14%,水分<2%,粒度为3~15mm;
所述硅石中SiO2>98%,水分<1%,粒度5~40mm;
所述钢屑采用转炉炼钢-RH精炼-热轧钢卷-破碎加工制成的碳素钢钢屑,碳素钢钢屑中C≤0.10wt%、Si<0.5wt%、Mn≤0.2wt%、P≤0.02wt%、S≤0.005wt%、Nb≤0.0005wt%、V≤0.0005wt%、Ti≤0.0005wt%;碳素钢钢屑长度≤100mm、厚度≤5mm、宽度≤20mm;
二、冶炼:
将冶炼原料磷灰石、焦炭、硅石、铁屑按照100:16:26:42的比例混合成炉料;
冶炼设备采用中、小型电炉***和磷冷却***;
将炉料从高位料仓沿料管连续装入电炉中,炉料装满后开始冶炼;
冶炼2h后,开始将炉内铁水放出,每4~6h放出铁水1次,将铁水排入磷冷却***的分离池中,分离出磷铁和渣,磷铁下沉,渣流入水淬槽中;
铁水排放出来后进行取样化验,根据化验结果调整合金料配料的比例,然后经调整后的配料按400~500公斤的量装入炉中,每次排放出铁水后加入合金配料,循环往复;
停炉前,要先送入氮气或二氧化碳气体,将炉内的空气驱逐出来,避免发生煤气***事故。
本发明冶炼低碳磷铁的主要化学反应为:
Ca3(PO4)2+5C=3CaO+2P+5CO
Ca3(PO4)2+3SiO2=3CaSiO3+P2O5
P2O5+5C=2P+5CO
总反应式为:Ca3(PO4)2+3SiO2+5C=2P+3CaSiO3+5CO
上述反应在大于1000℃时反应速度较快。以生产磷铁为主时,要多加钢屑,冶炼过程中有60~65%的P进入合金中,较少P的挥发,有利于生成Fe2P。
本发明的有益效果为:
本发明可极大提高无取向硅钢用低碳磷铁的纯净度,使低碳磷铁中不含或少含有Nb、V、Ti有害元素,减少钢中影响冷轧板连续退火过程中阻碍晶粒长大的Nb、V、Ti形成的碳氮化物,生产的低碳磷铁,其化学成分稳定,利用这种低碳磷铁生产的牌号无取向硅钢的钢种纯净度有明显的提高,生产的无取向硅钢的电磁性能也明显提高。用本发明低碳磷铁生产的50W1000牌号无取向硅钢,其电磁性能P1.5由5.84W/kg降低到5.20W/kg,铁损值降低0.62W/kg,磁感值B5000由1.748T提高到1.765T,磁感值提高0.017T。
具体实施方式
实施例采用2400千伏安封闭式矿用电炉,气体的过滤与净化采用专用磷冷却设备,冶炼低碳磷铁,低碳磷铁磷含量为30%。磷灰石:焦炭:硅石:铁屑的质量要求与粒度按照技术方案中规定进行控制;磷灰石:焦炭:硅石:铁屑的化学成分要符合技术方案中规定的成分控制质量要求。
将低碳磷铁原料按磷灰石:焦炭:硅石:铁屑=100:16:26:42的比例混匀后形成炉料。
将混匀后的炉料从高位料仓沿料管连续装入电炉中,炉料装满后开始冶炼生产。
生产两个小时左右有一定量的铁合金水,然后开始将炉内铁水放出,每4~6小时放出铁水1次,将铁水排入分离池中,分离出磷铁和渣,磷铁下沉,渣流入水淬槽中。
铁水排放出来后进行取样化验,根据化验结果调整合金料配料的比例,然后经调整后的配料按400~500公斤的量装入炉中,每次排放出铁水后加入合金配料,循环往复。
停炉前,先送入氮气或二氧化碳气体,将炉内的空气驱逐出来,避免发生煤气***事故。
冶炼完成后,将低碳磷铁的结晶合金锭通过破碎制成10~50mm的粒状。
冶炼后低碳磷铁的成分为:
成分 C Si Mn P S Nb V Ti
含量wt% 0.015 29.5 0.19 0.016 0.0042 ≤0.0005 ≤0.0005 ≤0.0005
利用本发明生产的高纯度低碳磷铁与常规条件下生产的低碳磷铁生产的低牌号硅钢的电磁性能进行对比,具体过程及数据如下:
生产工艺路线:铁水预处理→转炉→精炼→连铸→热轧机组→酸洗连轧机组→连退机组→取样送检→检验室制样检测。
使用不同的低碳磷铁合金,整个工艺过程采用相同生产工艺,只有在精炼环节采用不同的低碳磷铁生产低牌号无取向硅钢。
将本发明低碳磷铁应用在生产无取向硅钢中,进行实施例与采用常规工艺和磷铁的对比例对比,其中:实施例1与对比例1所生产的是50W1300;实施例2与对比例2所生产的是50W1000。
实施例与对比例元素含量及电磁性能检验结果如下表所示:(以钢水罐中100吨钢水为例)
注:硅元素加入量包括脱氧硅与合金硅两项合计。钢中的C含量小于30PPm、S含量小于50PPm。
由对比可知,采用本发明的低碳磷铁比原有工艺生产的低碳磷铁使用同样的生产工艺生产的无取向低牌号电工钢的残余元素含量得到有效控制,均达到目标要求Nb≤0.0005%、V≤0.0005%、Ti≤0.0005%,且电磁性能有明显的提高。其中50W1300牌号铁损值P1.5降低0.79W/kg,磁感值B5000提高0.020T;50W1000牌号铁损值P1.5降低0.64W/kg、磁感值B5000提高0.017T,达到国内同牌号无取向硅钢电磁性能的最好水平,效果显著。

Claims (2)

1.一种无取向硅钢用低碳磷铁,其特征在于,化学成分wt%为:C≤0.10%、Si≤1.5%、Mn≤1.5%、P:25~27%、S≤0.005%、Nb≤0.0010%、V≤0.0010%、Ti≤0.0010%,其余是Fe和杂质。
2.一种如权利要求1所述无取向硅钢用低碳磷铁的冶炼方法,其特征在于:
一、原料:
冶炼低碳磷铁的原料包括磷灰石、焦炭、硅石和钢屑;
所述磷灰石为无铅的磷灰石,磷灰石中粒度为5~40mm的占80%以上;
所述焦炭中的固定碳>80%,挥发物<4%,灰分<14%,水分<2%,粒度为3~15mm;
所述硅石中SiO2>98%,水分<1%,粒度5~40mm;
所述钢屑采用转炉炼钢-RH精炼-热轧钢卷-破碎加工制成的碳素钢钢屑,碳素钢钢屑中C≤0.10wt%、Si<0.5wt%、Mn≤0.2wt%、P≤0.02wt%、S≤0.005wt%、Nb≤0.0005wt%、V≤0.0005wt%、Ti≤0.0005wt%;碳素钢钢屑长度≤100mm、厚度≤5mm、宽度≤20mm;
二、冶炼:
将冶炼原料磷灰石、焦炭、硅石、铁屑按照100:16:26:42的比例混合成炉料;
冶炼设备采用中、小型电炉***和磷冷却***;
将炉料从高位料仓沿料管连续装入电炉中,炉料装满后开始冶炼;
冶炼2h后,开始将炉内铁水放出,每4~6h放出铁水1次,将铁水排入磷冷却***的分离池中,分离出磷铁和渣,磷铁下沉,渣流入水淬槽中;
铁水排放出来后进行取样化验,根据化验结果调整合金料配料的比例,然后经调整后的配料按400~500公斤的量装入炉中,每次排放出铁水后加入合金配料,循环往复;
停炉前,要先送入氮气或二氧化碳气体,将炉内的空气驱逐出来,避免发生煤气***事故。
CN201610059503.5A 2016-01-27 2016-01-27 一种无取向硅钢用低碳磷铁及其冶炼方法 Active CN107012390B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610059503.5A CN107012390B (zh) 2016-01-27 2016-01-27 一种无取向硅钢用低碳磷铁及其冶炼方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610059503.5A CN107012390B (zh) 2016-01-27 2016-01-27 一种无取向硅钢用低碳磷铁及其冶炼方法

Publications (2)

Publication Number Publication Date
CN107012390A true CN107012390A (zh) 2017-08-04
CN107012390B CN107012390B (zh) 2018-05-29

Family

ID=59438703

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610059503.5A Active CN107012390B (zh) 2016-01-27 2016-01-27 一种无取向硅钢用低碳磷铁及其冶炼方法

Country Status (1)

Country Link
CN (1) CN107012390B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110055452A (zh) * 2019-05-10 2019-07-26 安徽工业大学 一种低钛磷铁、制备方法及应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1154418A (zh) * 1996-01-11 1997-07-16 牟品文 一种磷铁的生产工艺

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110055452A (zh) * 2019-05-10 2019-07-26 安徽工业大学 一种低钛磷铁、制备方法及应用

Also Published As

Publication number Publication date
CN107012390B (zh) 2018-05-29

Similar Documents

Publication Publication Date Title
CN108220766B (zh) 一种Cr-V系热作模具钢及其制备方法
CN102517521B (zh) 一种MnCr渗碳齿轮钢及其制造方法
CN110093474A (zh) 一种减轻22CrMoH齿轮钢带状组织的生产工艺
CN111187980B (zh) 一种稀土微合金化高强度建筑钢筋及其生产方法
CN101492757B (zh) 一种硅钙合金冶金材料
CN106834602A (zh) 炼钢用稀土铝钙硅铁复合合金及其制备方法
CN114309628A (zh) FeSiBPNbCr非晶磁粉及其制备方法
CN107012384B (zh) 一种硅钢用高纯度低碳硅铁及其冶炼方法
CN107747046A (zh) 含V、Ti微合金建筑钢棒材及其生产方法
CN105886765A (zh) 制备硅铁的方法
CN107012390B (zh) 一种无取向硅钢用低碳磷铁及其冶炼方法
CN110747397B (zh) 齿轮用圆钢及其制备方法、齿轮零件及其制备方法
CN107815526A (zh) 含Nb微合金建筑钢棒材及其生产方法
CN114752864B (zh) 一种低密度超高强度高塑性钢及其制备方法和应用
CN114959506B (zh) 超薄不锈钢轧制轧辊用高速钢及其制备方法
CN103774040A (zh) Psb830精轧螺纹钢筋及含钒钛铁水冶炼该钢筋的工艺
CN116144937A (zh) 一种抑制含硼含氮耐热钢中硼元素烧损的电渣混渣方法
CN113249640B (zh) 一种p91钢中细化夹杂物的冶炼方法
CN106086647B (zh) 一种低合金高强钢q460c及其生产方法
CN115386790A (zh) 一种含铌高温渗碳齿轮钢及其生产工艺
CN110438392B (zh) 一种大幅提高铸铁性能的含氮复合孕育剂
CN108315645A (zh) 一种耐磨钢及其生产工艺
CN100412215C (zh) 铜镍硅铁合金
CN110835711B (zh) 一种大线能量焊接用钢板及其制备方法
CN117701829B (zh) 一种取向硅钢的控氮方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant