CN106995312A - 多层异质陶瓷高温共烧lc滤波器的制备方法 - Google Patents

多层异质陶瓷高温共烧lc滤波器的制备方法 Download PDF

Info

Publication number
CN106995312A
CN106995312A CN201710305323.5A CN201710305323A CN106995312A CN 106995312 A CN106995312 A CN 106995312A CN 201710305323 A CN201710305323 A CN 201710305323A CN 106995312 A CN106995312 A CN 106995312A
Authority
CN
China
Prior art keywords
microwave
high temperature
green band
wave filters
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710305323.5A
Other languages
English (en)
Other versions
CN106995312B (zh
Inventor
窦占明
庞锦标
杨俊�
居奎
何创创
贾朋乐
韩玉成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Zhenhua Group Yunke Electronics Co Ltd
Original Assignee
China Zhenhua Group Yunke Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Zhenhua Group Yunke Electronics Co Ltd filed Critical China Zhenhua Group Yunke Electronics Co Ltd
Priority to CN201710305323.5A priority Critical patent/CN106995312B/zh
Publication of CN106995312A publication Critical patent/CN106995312A/zh
Application granted granted Critical
Publication of CN106995312B publication Critical patent/CN106995312B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/29Producing shaped prefabricated articles from the material by profiling or strickling the material in open moulds or on moulding surfaces
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2666Other ferrites containing nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Soft Magnetic Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供了多层异质陶瓷高温共烧LC滤波器的制备方法。本发明方法通过设计微波铁氧体材料及微波介质陶瓷的原材料配方和流延料配方,以及对流延、共烧工艺的调整,从而能够有效解决现有技术LC滤波器由于采用同质的微波介质材料为原料所导致的散热性能及高频电学性能变差,产品层数过多、体积过大等技术问题,并实现多层片式LC滤波器产品向超小型化、轻量化、高频化、高品质方向发展,意义重大且市场应用前景良好。

Description

多层异质陶瓷高温共烧LC滤波器的制备方法
技术领域
本发明涉及滤波器制造领域,具体而言,涉及多层异质陶瓷高温共烧LC滤波器的制备方法。
背景技术
随着科技的进步,航天航空等领域对无线通讯技术要求逐渐提高,进而对于微波电子元器件的集成度、电性能、体积、重量、可靠性,和幅相一致性等也提出了更高的要求。多层共烧陶瓷(包括低温和高温多层共烧陶瓷)以优异的电学、机械、热力特性成为多芯片组件(MCM,Multi-Chip Module)的首选材料,MCM能够以3D(三维)多层电路结构的形式实现各种小功率射频与微波功能模块乃至***的高度集成,具有优异的高频特性,广泛用于航空航天、无线通信等领域。
目前,国内已有很多条低温共烧陶瓷(LTCC,Low Temperature Co-firedCeramic)生产工艺线,采用的材料主要来源于美国Dupont公司的951系列(陶瓷材料介电常数7.8)和Ferro公司的A6系列(陶瓷材料介电常数5.9),该系列材料包括生瓷带、系列电阻浆料、系列金浆、系列银浆、包封浆料等,共烧温度为850℃,生瓷带为同质的低介微波陶瓷。高温共烧陶瓷(HTCC,High Temperature Co-fired Ceramic)由于不受烧结温度限制,陶瓷基板可采用纯的微波陶瓷相而不添加玻璃相,介电常数比LTCC用玻璃陶瓷大,损耗角正切小、散热性能好、机械强度高等优点,相比LTCC,HTCC微波产品的电性能更优、体积更小,但目前HTCC所采用的陶瓷基板材料仍然为单一型,主要有氧化铝、氮化铝、氮化硅等。
现阶段国内外所研制的LC滤波器还集中在LTCC滤波器,所用材料为同种微波介质材料或微波铁氧体材料与金银浆通过共烧制得,其缺点在于磁导率较低(介质材料磁导率为1)或介电常数较低(一般在10以下),很难进一步对集成元件小型化。而通过把较高介电常数的微波介质陶瓷和高磁导率的微波铁氧体与银钯浆进行高温共烧,就既可以利用微波介电陶瓷良好的高频特性,又可以利用铁氧体材料陡峭的吸收特性来增强器件的带外抑制,不仅能够提高微波元器件的电性能,同时还可以使得电子元器件小型化。但是,由于两种异质功能层和银钯浆的烧成温度、收缩率等烧结特性不同,因而将其叠层后共烧,会产生层与层之间材料的共烧失配问题,并引起共烧瓷体出现宏观程度的翘曲、开裂或微观显微裂纹、孔洞等缺陷,严重影响器件的性能和可靠性。
有鉴于此,特提出本发明。
发明内容
本发明的第一目的在于提供一种多层异质陶瓷高温共烧LC滤波器的制备方法,所述方法中,通过对原料和制备工艺的调整,能够解决多层异质陶瓷共烧结匹配问题,并使得滤波器进一步实现小型化。
本发明的第二目的在于提供一种多层异质陶瓷高温共烧LC滤波器,其由本发明方法制备得到,本发明滤波器介电常数和磁导率高,同时体积较小,能够有效提高产品的集成度。
本发明的第三目的在于提供一种多层异质陶瓷高温共烧LC滤波器的装置或器件。
多层异质陶瓷高温共烧LC滤波器的制备方法,所述制备方法包括如下步骤:
(a)制备烧结温度和水平收缩率相当的微波介质陶瓷生瓷带以及微波铁氧体生瓷带;
(b)在生瓷带上打孔,然后填孔;
(c)在生瓷带上印刷电容或电感;
(d)将生瓷带经叠层、热等静压和热切割得到多层异质陶瓷高温共烧LC滤波器生坯料;
(e)将多层异质陶瓷高温共烧LC滤波器生坯料经烧结和后处理,得到成品;
优选的,所述后处理包括倒角、端涂、烧银、电镀及检测。
可选的,本发明中,步骤(a)中,微波介质陶瓷为M2SiO2系,钛酸镁钙体系,铌酸锌系,ATiO3-LnAlO3系或钡钛体系陶瓷;
其中,M为Zn和/或Mg,A为Ca、Sr或Ba;Ln为稀土元素;
优选的,微波介质陶瓷的介电常数为5~130;
和/或,微波铁氧体材料为Mn-Zn、Ni-Zn或Cu-Zn的一种或几种复合体系铁氧体材料。
可选的,本发明中,步骤(a)中通过调整原料配方、添加助剂及调节原料粒径,使得所得的微波介质陶瓷生瓷带以及微波铁氧体材料生瓷带的烧结温度相匹配;
优选的,所述助剂为锌硼硅玻璃粉、二氧化硅、三氧化二硼、三氧化二铋、五氧化二铌、氧化锌,或者氧化钙中的一种或几种的混合物。
可选的,本发明中,步骤(a)中,以流延法制备微波介质陶瓷生瓷带以及微波铁氧体生瓷带,并通过控制流延的工艺参数,使得微波介质陶瓷生瓷带以及微波铁氧体生瓷带的水平收缩率相匹配;
优选的,微波介质陶瓷生瓷带和微波铁氧体生瓷带的尺寸为4~8英寸。
可选的,本发明中,步骤(b)中填孔所用浆料为银钯金属浆料;优选的,浆料中银和钯的质量比为30:70~80:20;优选的,浆料的固含量为88±5%。
可选的,本发明中,步骤(c)中,在微波介质陶瓷生瓷带上印刷电容,微波铁氧体材料上印刷电感;优选的,印刷所用金属浆料为银钯浆料;更优选的,浆料固含量50%~60%;进一步优选的,银钯浆料中银钯质量比范围30:70~80:20。
可选的,本发明中,步骤(d)中所述烧结包括如下步骤,首先由室温升温至600℃,升温速度≤0.5℃/min;然后,由600℃升温至1100~1400℃,升温速度为0.5~3℃/min,并在该温度下保温1~5h。
同时,本发明还提供了由本发明所述方法制得的多层异质陶瓷高温共烧LC滤波器。
可选的,本发明中,所述多层异质陶瓷高温共烧LC滤波器的电感层为微波铁氧体陶瓷,电容层为微波介质陶瓷;
优选的,所述多层异质陶瓷高温共烧LC滤波器的结构为上下两层为微波介质陶瓷层,中间为微波铁氧体层的三明治结构。
同样的,本发明也提供了包含本发明多层异质陶瓷高温共烧LC滤波器的装置或器件。
与现有技术相比,本发明的有益效果为:
(1)本发明解决了多层微波介质陶瓷、微波铁氧体材料与银钯浆的高温共烧匹配问题,由于这三种材料在烧结温度、收缩率以及热膨胀系数等性能参数上一般难以匹配,因而通常致使异质陶瓷在共烧过程中出现各种缺陷。本发明很好地解决了宏观翘曲分层,微观裂纹和缺陷等问题,实现了多层异质材料的高温共烧,为多层结构的微波元器件及组件提供了新的材料基础。
(2)本发明与现有的同质LTCC或HTCC陶瓷相比,使用了高电导率、耐高温烧结的银钯金属作为导体材料,兼有LTCC和HTCC的优势。
(3)与多层同质陶瓷共烧的LC滤波器相比,本发明多层异质陶瓷LC滤波器的微波介质陶瓷有较高的介电常数,铁氧体材料的磁导率也很高,产品体积可以大幅度减小,为现有的多层共烧陶瓷产品集成度的进一步提高奠定基础。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,以下将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为本发明的工艺流程图;
图2为采用K25同质微波介质陶瓷制备LC滤波器仿真结构图;
图3为采用K25与铁氧体异质材料制备LC滤波器仿真结构图;
图4为本发明K25与铁氧体多层异质生瓷带叠层及热等静压后的实物图;
图5为本发明K25与铁氧体高温共烧LC滤波器测试性能图;
图6为本发明K38与铁氧体高温共烧LC滤波器测试性能图。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限制本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
本发明中,通过采用添加低温烧结助剂、调整原材料粒径、设计流延料配方及流延参数、改进烧结工艺制度等措施,解决了多层异质陶瓷共烧结匹配问题;同时,通过在微波介质层内埋电容,在微波铁氧体材料中内埋电感等方式,使得滤波器尺寸进一步小型化。
具体的,本发明滤波器的制备方法可以参考如下:
(a)多层异质陶瓷LC滤波器的仿真设计:根据LC滤波器指标仿真设计多层异质陶瓷高温共烧滤波器,同时,为了缩小体积和获得大的电感量,电感层部分采用铁氧体磁性材料,电容部分采用高介电常数的介质材料;
优选的,滤波器的结构为上下两层为微波介质陶瓷层,中间为微波铁氧体层的三明治结构(夹心结构)。
(b)微波介质陶瓷生瓷带制备:采用传统固相法制备微波介质陶瓷材料,其中,微波介质陶瓷包含有M2SiO2系(M为Zn,Mg),钛酸镁钙体系,铌酸锌系,ATiO3-LnAlO3系(A为Ca,Sr或Ba;Ln为La,Nd,Sm等稀土)或钡钛体系等;
然后,将所制得的微波介质陶瓷材料与助剂混合后研磨,得到混合粉体,并通过控制研磨速度和研磨时间以调控混合粉体的平均粒径;而通过调整微波介质陶瓷的原材料配方、添加液相助烧剂,以及采用研磨改变原材料平均粒径等方法,可以对微波介质陶瓷在烧结温度、收缩率和膨胀系数等烧结特性上进行调控;
所述助剂包括锌硼硅玻璃粉、二氧化硅、三氧化二硼、三氧化二铋、五氧化二铌、氧化锌,或者氧化钙等;
接着,将混合粉体再按常规的流延成型工艺,调配陶瓷流延料的树脂配方、固含量、粘度、流变特性等参数,制备流延浆料,然后流延成型得到生瓷带,通过控制流延工艺中的速度、温区、刀口高度等参数,能够控制流延成型的生瓷带在烧结过程中X、Y方向的收缩率以及Z方向生瓷带厚度;
生瓷带的尺寸可以为4英寸、6英寸或8英寸。
(c)微波铁氧体生瓷带制备:采用传统固相法制备微波铁氧体材料,优选的,微波铁氧体材料包括Mn-Zn、Ni-Zn或Cu-Zn的一种或几种复合体系铁氧体材料等;
然后,将微波铁氧体材料与助剂混合后研磨,得到混合粉体;同时,通过调整铁氧体材料的原材料配方、添加液相助烧剂、改变原材料平均粒径等方法,可以使得微波铁氧体的烧结温度(即由微波铁氧体生瓷带烧结成微波铁氧体陶瓷的烧结温度)与微波介质陶瓷的烧结温度(即由微波介质陶瓷生瓷带烧结成微波介质陶瓷的烧结温度)相匹配(温度相同或相当),收缩率与膨胀系数与微波介质陶瓷相匹配(达到一致或相当);
所述助剂包括锌硼硅玻璃粉、二氧化硅、三氧化二硼、三氧化二铋或者氧化钙等;
接着,按照常规流延操作步骤,调配陶瓷流延料的树脂配方、固含量、粘度、流变特性等参数,制备微波铁氧体材料的流延浆料;同时,控制流延工艺中的速度、温区、刀口高度等参数,使其流延成型的生瓷带X、Y方向收缩率与微波介质陶瓷相匹配(达到一致或相当),同时控制Z方向厚度;
生瓷带的尺寸可以为4英寸、6英寸或8英寸。
(d)打孔及填孔:通过激光或机械方式在生瓷的预设位置带上打孔,并通过丝网或钢板网将银钯金属浆料灌入孔中,确定内导线连通及良好的散热性能;
其中,所用银钯浆料的固含量为88±5%,浆料中银和钯的质量比为30:70~80:20。
(e)丝网印刷:调控丝网印数工艺,将预设好的金属导体走线分别丝印到两种生瓷带上,并在微波介质陶瓷生瓷带上印刷内置电容,微波铁氧体材料上印刷内置电感;
其中,所用银钯浆料的固含量为50%~60%。
(f)叠层及热等静压:将丝印好的生瓷带按照预先设计好的次序和层数进行精准对位叠片,对位的精度要求小于±10μm;
然后,应用热等静压技术在100~200MPa和40~80℃的条件下,保压0.3~2h进行热等静压成型,使其密实化,保证LC滤波器生坯密实和烧结时收缩率一致,形成多层LC滤波器生坯体。
(g)热切割:切割多层LC滤波器生坯体,使单个LC滤波器生坯体相分离。
(h)LC滤波器高温共烧:在高温箱式烧结炉中,并对切割好的LC滤波器生坯体进行排胶和烧结;
其中,烧结的升温曲线为室温升温至600℃,600℃以前属于排胶过程,升温速率需≤0.5℃/min;然后,由600℃升温至1100~1400℃(峰值温度Tmax,可根据生瓷带配方在如上范围内进行温度调整),升温速度为0.5~3℃/min,并在峰值温度下保温1~5h;
通过高温共烧接,能够确保均匀释放内部应力,减少或抑制陶瓷复合界面处微观缺陷的产生,获得匹配的共烧体。
端涂、电镀——引出外电极,电镀锡铅保护层,增加可焊性;检测——电性能测试以及尺寸外观是否合格。本发明提供的多层异质高温共烧陶瓷LC滤波器制备具体步骤如下:
(i)倒角:除去烧结后表面毛刺、杂质颗粒,使得产品表面光滑、内电极充分裸露。
(j)端涂、电镀:采用银浆进行端涂,引出外电极,烧结温度在600~800℃;电镀锡铅作为保护层,增强可焊性。
(k)检测:将制备好的多层异质高温共烧陶瓷LC滤波器进行电性能测试和外观尺寸的检测和筛选。
由上述方法所制得的多层异质高温共烧陶瓷LC滤波器不仅具有较高的介电常数和磁导率,同时也能够有效实现滤波器的小型化,降低滤波器的重量和体积,并提高集成度。
进一步的,该滤波器还能够进一步应用于微波电子元器件或者相应的设备中,例如全球定位***、汽车领域无线局域网、航空航天等无线通信领域的相关电子设备中。
实施例1:介电常数为25微波介质陶瓷(K25)与Ni-Zn-Fe铁氧体的多层高温共烧LC滤波器制备
按照图1所示流程制备K25微波介质陶瓷和Ni-Zn-Fe铁氧体多层高温共烧LC滤波器,技术指标要求如下:通带频率(GHz):(3.94-5.5);插损(dB):≤4.5;带内波动(dB):≤1.5;带外抑制:≥45dB@(f≤2.75GHz&f≥6.34GHz);输入输出驻波:≤1.5。最终制得滤波器尺寸为1608(公制,1.6×0.8mm),具体制备步骤如下:
(a)多层异质陶瓷LC滤波器的仿真设计:采用上下两层为微波介质层,中间为微波铁氧体层的三明治结构。其中,电感层部分采用Ni-Zn-Fe铁氧体磁性材料,其磁导率为300,电容部分采用K25的微波介质陶瓷材料,产品仿真结构如图2所示。
(b)微波介质陶瓷生瓷带制备:采用传统固相法制备主配方为CaxMgyLa2z/3TiO3的K25微波介质陶瓷材料,其中,x+y+z=1,0.07≤x≤0.15,00.81≤x≤0.95,00.02≤x≤0.15;
在微波介质陶瓷材料中加入添加0.1~0.5wt%液相助烧剂二氧化硅,然后混合粉料进行砂磨(35Hz,20min~40min)改变原材料平均粒径,调整平均粒径达到0.5~1μm,使其烧结温度在1220~1250℃。
然后,调控流延料的粘度等流变特性及流延参数,控制生瓷带在X、Y方向上的收缩率,所得流延生瓷带厚度为72μm。
(c)微波铁氧体生瓷带制备:采用传统固相法制备Fe-Zn-Ni微波铁氧体材料,通过Ni/Zn/Fe按摩尔比例(0.04~0.39):(0.09~0.27):(0.47~0.65)进行原始配方调配;
然后添加0.2~0.7wt%的烧结助剂Bi2O3,然后通过砂磨(40Hz,30min~60min)改变原材料平均粒径,并使得平均粒径达到0.3~0.8μm,使铁氧体材料最终烧结温度与K25陶瓷烧结温度基本一致。其中,Fe-Zn-Ni微波铁氧体材料磁导率为300。
调控流延料的粘度等流变特性及流延参数,使微波铁氧体生瓷带X、Y方向上收缩率与微波介质陶瓷一致,流延生瓷带厚度为45μm。
(d)打孔及填孔:通过激光在冲好的生瓷带上打孔,并灌入银钯浆料,浆料固含量为88±5%,浆料中的银与钯的质量比为60:40。
(e)丝网印刷:调控丝网印数工艺,将预设好的金属导体走线丝网印刷到两种生瓷带上,其中金属浆料为固含量50~60%的银钯浆,浆料在银与钯的质量比为60:40。
(f)叠层及热等静压:将丝印好的生瓷带按照预先设计好的次序和层数进行对位叠片,在压力为100MPa~200MPa、温度为40~80℃的条件下,保压0.5h,进行热等静压成型,得到的多层异质材料基板坯体如图4所示,最上面的一层带有分切线。
(g)切割:按分切线切割多层基板坯体,使单个LC滤波器生坯体相分离。
(h)LC滤波器高温共烧:在高温箱式烧结炉中,对切割好的LC滤波器生坯体进行排胶和烧结,其中,在600℃保温5h进行排胶,以0.5~3℃/min的速率升温至1220~1250℃,保温3h。
(i)倒角:除去烧结后表面毛刺、杂质颗粒,是产品表面光滑、内电极充分裸露。
(j)端涂、电镀:采用银浆进行端涂,烧结温度在600~800℃。电镀锡铅作为保护层,增强可焊性。
(k)检测:将制备好的多层异质高温共烧陶瓷LC滤波器进行电性能测试和外观尺寸的检测和筛选,电性能测试结果如图5所示,达到技术指标要求。
对比采用同质的K25微波介质陶瓷,其仿真结构如图3所示,产品大小为3216(公制,3.2×1.6mm)。
由此可见,如果以同质K25微波陶瓷为原料制备技术指标与实施例1中相同的LC滤波器,该滤波器的仿真结构将会达到3.2×1.6mm,远大于按照本发明方法所制备的多层异质高温共烧陶瓷LC滤波器1.6×0.8mm的尺寸。
实施例2:介电常数为38微波介质陶瓷(K38)与铁氧体的多层高温共烧LC滤波器制备
实施例2中滤波器指标与实施例1中LC滤波器指标相同。但由于将K25换成了钡钛系的微波介质陶瓷层(K38),介电常数增大且烧结温度降低,为了使得异质陶瓷高温匹配共烧,将微波铁氧体材料调整为Ni-Zn-Fe-Cu体系。最终制得滤波器尺寸可以进一步降低至1005(1×0.5mm),具体制备步骤参考如下:
(a)多层异质陶瓷LC滤波器的仿真设计:同样采用两面微波介质陶瓷夹微波铁氧体的三明治结构。其中,电感层部分采用Ni-Zn-Fe-Cu铁氧体磁性材料,其磁导率设置为300,电容部分采用K38的微波介质陶瓷材料。
(b)微波介质陶瓷生瓷带制备:采用传统固相法制备主配方为BaxTiyO3的K38微波介质陶瓷材料,其中,y/x=4~4.5;
在所制得的K38微波介质陶瓷材料中加入添加液相助烧剂ZnO 5~20wt%及Nb2O51~6wt%,对混合粉料进行砂磨(35Hz,30min~60min)改变原材料平均粒径,平均粒径达到0.4~0.9μm,使其烧结温度在1140~1180℃。调控流延料的粘度等流变特性及流延参数,控制生瓷带在X、Y方向上的收缩率,流延生瓷带厚度为53μm。
(c)微波铁氧体生瓷带制备:采用传统固相法制备Ni-Zn-Fe-Cu铁氧体材料,通过Ni/Zn/Fe/Cu按摩尔比例(0.04~0.31):(0.09~0.23):(0.41~0.63):(0.03~0.10)进行原始配方调配,然后添加0.3~0.6wt%的烧结助剂CaO,通过砂磨(40Hz,40min~60min)改变原材料平均粒径,平均粒径达到0.3~0.7μm,使铁氧体材料最终烧结温度与K38陶瓷烧结温度基本一致。其中,Ni-Zn-Fe-Cu铁氧体材料的磁导率为300。调控流延料的粘度等流变特性及流延参数,使微波铁氧体生瓷带X、Y方向上收缩率与微波介质陶瓷一致,流延生瓷带厚度为35μm。
(d)打孔及填孔:通过激光在冲好的生瓷带上打孔,并灌入银钯浆料,浆料固含量为88±5%,浆料中的银与钯的质量比为70:30。
(e)丝网印刷:调控丝网印数工艺,将预设好的金属导体走线丝网印刷到两种生瓷带上,其中金属浆料为固含量50~60%的银钯浆,浆料在银与钯的质量比为70:30。
(f)叠层及热等静压:将丝印好的生瓷带按照预先设计好的次序和层数进行对位叠片,在压力为100MPa~200MPa、温度为40~80℃的条件下,保压1h,进行热等静压成型。
(g)切割:切割多层基板坯体,使单个LC滤波器生坯体相分离。
(h)LC滤波器高温共烧:在高温箱式烧结炉中,对切割好的LC滤波器生坯体进行排胶和烧结。其中,在600℃保温5h进行排胶,以0.5~3℃/min的速率升温至1140~1180℃,保温4h。
(i)倒角:除去烧结后表面毛刺、杂质颗粒,是产品表面光滑、内电极充分裸露。
(j)端涂:采用银浆进行端涂,烧结温度在600~800℃。电镀锡铅作为保护层,增强可焊性。
(k)检测:将制备好的多层异质高温共烧陶瓷LC滤波器进行电性能测试和外观尺寸的检测和筛选,测试结果如图6所示,达到技术指标要求。
由实施例1和实施例2的实验结果可以看出,相较于同质材料的LC滤波器而言,本发明多层异质材料高温共烧LC滤波器的尺寸可以缩小至1/2~1/3,体积缩小至1/8至1/20,因此产品的重量及制造成本都得到大幅度降低。
进一步比较两个实施例可知,实施例2中微波介电陶瓷的介电常数变大,因此,在相同指标下用K38微波介质陶瓷与铁氧体高温共烧LC滤波器的尺寸可以进一步减小,而产品电性能相差不大。
以上内容是结合最佳实施方案对本发明说做的进一步详细说明,不能认定本发明的具体实施只限于这些说明。本领域的技术人员应该理解,在不脱离由所附权利要求书限定的情况下,可以在细节上进行各种修改,都应当视为属于本发明的保护范围。

Claims (10)

1.多层异质陶瓷高温共烧LC滤波器的制备方法,其特征在于,所述制备方法包括如下步骤:
(a)制备烧结温度和水平收缩率相当的微波介质陶瓷生瓷带以及微波铁氧体生瓷带;
(b)在生瓷带上打孔,然后填孔;
(c)在生瓷带上印刷电容或电感;
(d)将生瓷带经叠层、热等静压和热切割得到多层异质陶瓷高温共烧LC滤波器生坯料;
(e)将多层异质陶瓷高温共烧LC滤波器生坯料经烧结和后处理,得到成品;
优选的,所述后处理包括倒角、端涂、烧银、电镀及检测。
2.根据权利要求1所述的制备方法,其特征在于,步骤(a)中,微波介质陶瓷为M2SiO2系,钛酸镁钙体系,铌酸锌系,ATiO3-LnAlO3系或钡钛体系陶瓷;
其中,M为Zn和/或Mg,A为Ca、Sr或Ba;Ln为稀土元素;
优选的,微波介质陶瓷的介电常数为5~130;
和/或,微波铁氧体材料为Mn-Zn、Ni-Zn或Cu-Zn的一种或几种复合体系铁氧体材料。
3.根据权利要求1所述的制备方法,其特征在于,步骤(a)中通过调整原料配方、添加助剂及调节原料粒径,使得所得的微波介质陶瓷生瓷带以及微波铁氧体材料生瓷带的烧结温度相匹配;
优选的,所述助剂为锌硼硅玻璃粉、二氧化硅、三氧化二硼、三氧化二铋、五氧化二铌、氧化锌,或者氧化钙中的一种或几种的混合物。
4.根据权利要求3所述的制备方法,其特征在于,步骤(a)中,以流延法制备微波介质陶瓷生瓷带以及微波铁氧体生瓷带,并通过控制流延的工艺参数,使得微波介质陶瓷生瓷带以及微波铁氧体生瓷带的水平收缩率相匹配;
优选的,微波介质陶瓷生瓷带和微波铁氧体生瓷带的尺寸为4~8英寸。
5.根据权利要求1所述的制备方法,其特征在于,步骤(b)中填孔所用浆料为银钯金属浆料;
优选的,浆料中银和钯的质量比为30:70~80:20;
优选的,浆料的固含量为88±5%。
6.根据权利要求1所述的制备方法,其特征在于,步骤(c)中,在微波介质陶瓷生瓷带上印刷电容,微波铁氧体材料上印刷电感;
优选的,印刷所用金属浆料为银钯浆料;
更优选的,浆料固含量50%~60%;
进一步优选的,银钯浆料中银钯质量比范围30:70~80:20。
7.根据权利要求1所述的制备方法,其特征在于,步骤(d)中所述烧结包括如下步骤,首先由室温升温至600℃,升温速度≤0.5℃/min;然后,由600℃升温至1100~1400℃,升温速度为0.5~3℃/min,并在该温度下保温1~5h。
8.根据权利要求1-7中任一项所述方法制得的多层异质陶瓷高温共烧LC滤波器。
9.根据权利要求8所述的多层异质陶瓷高温共烧LC滤波器,其特征在于,所述多层异质陶瓷高温共烧LC滤波器的电感层为微波铁氧体陶瓷,电容层为微波介质陶瓷;
优选的,所述多层异质陶瓷高温共烧LC滤波器的结构为上下两层为微波介质陶瓷层,中间为微波铁氧体层的三明治结构。
10.包含权利要求8或9所述多层异质陶瓷高温共烧LC滤波器的装置或器件。
CN201710305323.5A 2017-05-03 2017-05-03 多层异质陶瓷高温共烧lc滤波器的制备方法 Active CN106995312B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710305323.5A CN106995312B (zh) 2017-05-03 2017-05-03 多层异质陶瓷高温共烧lc滤波器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710305323.5A CN106995312B (zh) 2017-05-03 2017-05-03 多层异质陶瓷高温共烧lc滤波器的制备方法

Publications (2)

Publication Number Publication Date
CN106995312A true CN106995312A (zh) 2017-08-01
CN106995312B CN106995312B (zh) 2020-07-28

Family

ID=59434452

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710305323.5A Active CN106995312B (zh) 2017-05-03 2017-05-03 多层异质陶瓷高温共烧lc滤波器的制备方法

Country Status (1)

Country Link
CN (1) CN106995312B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108759941A (zh) * 2018-05-28 2018-11-06 深圳研勤达科技有限公司 一种小孔径电容式测量导管及其制备方法
CN110211930A (zh) * 2019-05-29 2019-09-06 中国电子科技集团公司第三十八研究所 一种具有异质层结构的基板、制备方法及应用
CN113061024A (zh) * 2021-04-08 2021-07-02 山东国瓷功能材料股份有限公司 一种低温共烧材料及制备的用于过流保护的生瓷片、器件
CN113372103A (zh) * 2021-07-13 2021-09-10 中国振华集团云科电子有限公司 一种低介电低高频损耗ltcc陶瓷材料及其制备方法
CN113573484A (zh) * 2021-09-23 2021-10-29 西安宏星电子浆料科技股份有限公司 一种ltcc基板小批量快速制作方法
CN114105625A (zh) * 2021-10-25 2022-03-01 北京无线电测量研究所 一种铁氧体-陶瓷异质共烧材料的制备方法及应用
CN114804858A (zh) * 2021-01-28 2022-07-29 山东国瓷功能材料股份有限公司 一种滤波器用低温共烧陶瓷材料及其制备方法与应用
CN115626820A (zh) * 2022-11-02 2023-01-20 西南科技大学 一种异质叠层共烧铁氧体陶瓷的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2708564Y (zh) * 2003-12-29 2005-07-06 西安中天科技有限责任公司 抗电磁干扰多层片式lc滤波器
CN101404485A (zh) * 2008-10-13 2009-04-08 电子科技大学 一种叠层片式滤波器及其制备方法
CN201830213U (zh) * 2010-10-28 2011-05-11 昆山锦泰电子器材有限公司 陶瓷叠层滤波器
US20130027155A1 (en) * 2010-02-10 2013-01-31 Thomas Feichtinger Ceramic multilayer component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2708564Y (zh) * 2003-12-29 2005-07-06 西安中天科技有限责任公司 抗电磁干扰多层片式lc滤波器
CN101404485A (zh) * 2008-10-13 2009-04-08 电子科技大学 一种叠层片式滤波器及其制备方法
US20130027155A1 (en) * 2010-02-10 2013-01-31 Thomas Feichtinger Ceramic multilayer component
CN201830213U (zh) * 2010-10-28 2011-05-11 昆山锦泰电子器材有限公司 陶瓷叠层滤波器

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108759941A (zh) * 2018-05-28 2018-11-06 深圳研勤达科技有限公司 一种小孔径电容式测量导管及其制备方法
CN110211930A (zh) * 2019-05-29 2019-09-06 中国电子科技集团公司第三十八研究所 一种具有异质层结构的基板、制备方法及应用
CN114804858A (zh) * 2021-01-28 2022-07-29 山东国瓷功能材料股份有限公司 一种滤波器用低温共烧陶瓷材料及其制备方法与应用
CN114804858B (zh) * 2021-01-28 2023-07-04 山东国瓷功能材料股份有限公司 一种滤波器用低温共烧陶瓷材料及其制备方法与应用
CN113061024A (zh) * 2021-04-08 2021-07-02 山东国瓷功能材料股份有限公司 一种低温共烧材料及制备的用于过流保护的生瓷片、器件
CN113372103A (zh) * 2021-07-13 2021-09-10 中国振华集团云科电子有限公司 一种低介电低高频损耗ltcc陶瓷材料及其制备方法
CN113372103B (zh) * 2021-07-13 2023-01-20 中国振华集团云科电子有限公司 一种低介电低高频损耗ltcc陶瓷材料及其制备方法
CN113573484A (zh) * 2021-09-23 2021-10-29 西安宏星电子浆料科技股份有限公司 一种ltcc基板小批量快速制作方法
CN114105625A (zh) * 2021-10-25 2022-03-01 北京无线电测量研究所 一种铁氧体-陶瓷异质共烧材料的制备方法及应用
CN115626820A (zh) * 2022-11-02 2023-01-20 西南科技大学 一种异质叠层共烧铁氧体陶瓷的制备方法
CN115626820B (zh) * 2022-11-02 2023-10-31 西南科技大学 一种异质叠层共烧铁氧体陶瓷的制备方法

Also Published As

Publication number Publication date
CN106995312B (zh) 2020-07-28

Similar Documents

Publication Publication Date Title
CN106995312A (zh) 多层异质陶瓷高温共烧lc滤波器的制备方法
WO2010110201A1 (ja) 誘電体磁器組成物、多層誘電体基板、電子部品、及び誘電体磁器組成物の製造方法
JP5742373B2 (ja) 誘電体磁器、誘電体磁器の製造方法及び誘電体磁器製造用粉末の製造方法
CN107021747A (zh) 微波铁氧体材料与微波介质陶瓷高温共烧方法
EP0779257A1 (en) Dielectric porcelain, process for production thereof, and electronic parts produced therefrom
CN113045305A (zh) Ltcc生料带材料、基板及制备方法
JP6728859B2 (ja) セラミック基板およびその製造方法
CN103864416A (zh) 一种低烧结温度钛酸钡基陶瓷电容器介质的制备方法
JP2006261351A (ja) 積層セラミック部品及びその製造方法
JP4629525B2 (ja) 積層セラミック部品及びその製造方法
JP2002265267A (ja) 低温焼成磁器および電子部品
JP3741556B2 (ja) 低温焼成磁器およびこれを備えた電子部品
CN1544391A (zh) 低温叠层共烧的介电陶瓷和铁氧体及其制备方法
EP2233448A2 (en) Dielectric Ceramic Composition and Electronic Component Using the Same
CN112542325A (zh) 一种高频高q电容器的制备方法
JP4587758B2 (ja) ガラスセラミック基板
JP2004014534A (ja) 積層チップインダクタの製造方法
JP3457882B2 (ja) 積層セラミックコンデンサ
JP3917770B2 (ja) 低温焼成磁器およびこれを備えた電子部品
Chen et al. Cosintering of Ni–Zn–Cu ferrite with low-temperature cofired ceramic substrates
JP2003026472A (ja) 積層セラミック電子部品の製造方法、積層セラミック電子部品および積層セラミック電子部品製造用の生の複合積層体
JP2004203631A (ja) セラミックス、セラミック−フェライト低温同時焼成複合材料とスラリーの調製及び電磁干渉を防止する組み合わせ式フィルタ製造工程
CN108975914B (zh) 一种ZnO-TiO2-Nb2O5基LTCC材料及其制备方法
JP4885749B2 (ja) セラミックス積層基板の製造方法
JPH04298910A (ja) 誘電体磁器組成物

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant