CN106957176A - 一种高导热性能氮化硅陶瓷的制备方法 - Google Patents

一种高导热性能氮化硅陶瓷的制备方法 Download PDF

Info

Publication number
CN106957176A
CN106957176A CN201610017235.0A CN201610017235A CN106957176A CN 106957176 A CN106957176 A CN 106957176A CN 201610017235 A CN201610017235 A CN 201610017235A CN 106957176 A CN106957176 A CN 106957176A
Authority
CN
China
Prior art keywords
thermal conductivity
silicon nitride
nitride ceramics
preparation
high thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610017235.0A
Other languages
English (en)
Inventor
吴诚
刘久明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei Corefra Silicon Nitride Material Co Ltd
Original Assignee
Hebei Corefra Silicon Nitride Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei Corefra Silicon Nitride Material Co Ltd filed Critical Hebei Corefra Silicon Nitride Material Co Ltd
Priority to CN201610017235.0A priority Critical patent/CN106957176A/zh
Publication of CN106957176A publication Critical patent/CN106957176A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明提供一种高导热性能氮化硅陶瓷的制备方法。本发明中的高热导氮化硅陶瓷是以β- Si3N4粉体与外加10%-15%高纯AlN粉体和外加10%-20%助熔剂质量比例混合,采用热压烧结技术制备。在制备过程中,先将混合后的粉料放在4MPa压力下成型,然后放入石墨模具中,在10-35MPa、1650℃-1850℃、保温时间1-10h条件下热压烧结。本发明制备的氮化硅陶瓷的热导率能达到100W/(m.k),三点抗折强度能达到850 MPa。

Description

一种高导热性能氮化硅陶瓷的制备方法
技术领域
本发明属于非氧化物陶瓷技术领域。具体涉及一种高导热性能氮化硅陶瓷的制备方法。
背景技术
自从上世纪90年代以来,以微电子及信息技术为代表的高新技术发展迅猛,现代电子器件向高密度、多功能、高可靠、重量轻、长寿命、体积小、大功率等方向发展,半导体芯片数量愈来愈多、布线及封装密度愈来愈高,导致电路工作温度不断上升,热效应显得尤为严重。要从根本上解决这些问题需研究和开发具有高热导率的材料,通过衬底进行散热。通常能够用作衬底基片的陶瓷材料主要有Al2O3、BeO、SiC和AlN等。Al2O3陶瓷的热导率偏低,不适宜高密度、大功率的应用;BeO陶瓷是最具代表性的高导热陶瓷,其化学稳定性、电绝缘性以及耐热性都极好。但BeO陶瓷具有很强的毒性,人体大量吸入后会导致急性肺炎,长期吸入会引发慢性铍肺病,现在工业生产中已逐渐停止使用;SiC陶瓷热导率很高,但其介电强度较低,容易被击穿,因而应用受到限制;AlN陶瓷是一种优良的高导热材料,正广泛应用于大规模集成电路、半导体模块电路和大功率器件的散热材料和封装材料,但目前陶瓷存在制作成本高、易吸潮等问题,这些问题严重影响了其大规模的推广应用。专利CN103787663A公开了多相高强度、导热性好的氮化硅陶瓷刀具材料及刀具的制备,该材料微观结构由β- Si3N4针状长晶,β’- Si3N4柱状长晶,α- Si3N4柱状晶以及等轴晶和晶间相组成,晶间相由Si,N,O,Y两种及以上离子半径成阶梯分布的斓系稀土金属元素以及次致密化助剂金属元素组成,室温下抗弯强度900-950MPa,热导率为62-69W/(m.k)。专利CN1152299A公开了高导热性氮化硅烧结体、其制造方法和压接结构体的制备,有换算成氧化物为大于7.5%小于17.5%的稀土族元素,按需要含有低于1%的氮化铝或氧化铝中的至少一种;根据需要0.1-3.0%以下的氧化物、碳化物、氮化物、硅化物、硼化物组成的群体中选出的至少一种、含有0.3%以下的杂质阳离子。该烧结体热导率大于20W/(m.k),三点抗弯强度大于650MPa。可见,上述方法能得到导热性能好的氮化硅陶瓷热导率普遍偏小,不能完全满足陶瓷基片材料对热导率的要求,从而影响了氮化硅陶瓷在电子器件领域的使用。
发明内容
为了克服目前氮化硅陶瓷热导率小的问题,本发明提出一种高导热性能氮化硅陶瓷的制备方法,具体的说:
(1)以β- Si3N4粉体与外加10%-15%高纯AlN粉体和外加10%-20%助熔剂为原料;
(2)将步骤(1)原料均匀混合后,放在4Mpa压力下成型,然后放入石墨模具中,在10-35Mpa、1650℃-1850℃、保温时间1-10h、氮气气氛下热压烧结,结束后样品随炉冷却到室温。
如上所述高导热性能氮化硅陶瓷的制备方法,其特征在于所述的β- Si3N4纯度大于等于85%,粒度为0.2-20μm之间。
如上所述高导热性能氮化硅陶瓷的制备方法,其特征在于高纯AlN粉体纯度大于等于99%,粒度在0.3-10μm。
如上所述高导热性能氮化硅陶瓷的制备方法,其特征在于助熔剂主要是SiO2、Y2O3、MgO、CeO2
如上所述高导热性能氮化硅陶瓷的制备方法,其特征在于热压烧结的压力是10-35MPa,温度是1650℃-1850℃,保温时间是1-10h。
如上所述高导热性能氮化硅陶瓷的制备方法,其特征在于制备的氮化硅陶瓷热导率大于100W/(m.k)。
本发明提供一种高导热性能氮化硅陶瓷的制备方法具有以下优点:
(1)创造性的利用AlN粉体来提高氮化硅陶瓷的热导率;
(2)制备方法简单、可行,适合工业化生产;
(3)所制备的氮化硅陶瓷具有优良的热学、力学性能,其中热导率可到100 W/(m.k),抗折强度能到850MPa。
附图说明:
图1是高导热性能氮化硅的制备流程图。
具体实施方式:
下面通过实例进一步阐明本发明的特点,但不局限于实施例。
实施例1
将β- Si3N4粉体与外加10%高纯AlN粉体和外加7%SiO2、6%Y2O3、2%MgO等原料将均匀混合后,放入4MPa压力下成型,然后放入石墨模具中,在10MPa、1650℃、保温时间5h、氮气气氛下热压烧结,结束后样品随炉冷却到室温。由以上制备的氮化硅陶瓷热导率能到98 W/(m.k),三点抗折强度能到880MPa。
实施例2
将β- Si3N4粉体与外加15%高纯AlN粉体和外加10%SiO2、5%Y2O3、5%CeO2等原料将均匀混合后,放入4MPa压力下成型,然后放入石墨模具中,在25MPa、1750℃、保温时间2h、氮气气氛下热压烧结,结束后样品随炉冷却到室温。由以上制备的氮化硅陶瓷热导率能到124 W/(m.k),三点抗折强度能到965MPa。
实施例3
将β- Si3N4粉体与外加13%高纯AlN粉体和外加6%SiO2、8%Y2O3、5%CeO2等原料将均匀混合后,放入4MPa压力下成型,然后放入石墨模具中,在28MPa、1800℃、保温时间7h、氮气气氛下热压烧结,结束后样品随炉冷却到室温。由以上制备的氮化硅陶瓷热导率能到131 W/(m.k),三点抗折强度能到922MPa。
实施例4
将β- Si3N4粉体与外加14%高纯AlN粉体和外加5%SiO2、10%Y2O3、5%MgO等原料将均匀混合后,放入4MPa压力下成型,然后放入石墨模具中,在30MPa、1820℃、保温时间8h、氮气气氛下热压烧结,结束后样品随炉冷却到室温。由以上制备的氮化硅陶瓷热导率能到141 W/(m.k),三点抗折强度能到1026MPa。

Claims (6)

1.一种高导热性能氮化硅陶瓷的制备方法,包括配料、混合、成型和烧结,其特征在于:
以β- Si3N4粉体与外加10%-15%高纯AlN粉体和外加10%-20%助熔剂为原料;
将步骤(1)原料均匀混合后,放在4MPa压力下成型,然后放入石墨模具中,在10-35MPa、1650℃-1850℃、保温时间1-10h、氮气气氛下热压烧结,结束后样品随炉冷却到室温。
2.根据权利要求1所述的高导热性能氮化硅陶瓷制备方法,其特征在于所述的β- Si3N4纯度大于等于85%,粒度在0.2-20μm之间。
3.根据权利要求1所述的高导热性能氮化硅陶瓷制备方法,其特征在于高纯AlN粉体纯度大于等于99%,粒度在0.3-10μm之间。
4.根据权利要求1所述的高导热性能氮化硅陶瓷制备方法,其特征在于助熔剂主要是SiO2、Y2O3、MgO、CeO2
5.根据权利要求1所述的高导热性能氮化硅陶瓷制备方法,其特征在于热压烧结的压力是10-35MPa,温度是1650℃-1850℃,保温时间是1-10h。
6.根据权利要求1所述的高导热性能氮化硅陶瓷制备方法,其特征在于制备的氮化硅陶瓷热导率大于100W/(m.k)。
CN201610017235.0A 2016-01-12 2016-01-12 一种高导热性能氮化硅陶瓷的制备方法 Pending CN106957176A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610017235.0A CN106957176A (zh) 2016-01-12 2016-01-12 一种高导热性能氮化硅陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610017235.0A CN106957176A (zh) 2016-01-12 2016-01-12 一种高导热性能氮化硅陶瓷的制备方法

Publications (1)

Publication Number Publication Date
CN106957176A true CN106957176A (zh) 2017-07-18

Family

ID=59480719

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610017235.0A Pending CN106957176A (zh) 2016-01-12 2016-01-12 一种高导热性能氮化硅陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN106957176A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107663093A (zh) * 2017-10-26 2018-02-06 广东工业大学 一种Si3N4基复合陶瓷及其制备方法
CN113233903A (zh) * 2021-01-15 2021-08-10 辽宁伊菲科技股份有限公司 一种氮化硅陶瓷基板及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103848630A (zh) * 2012-11-28 2014-06-11 大连大友高技术陶瓷有限公司 一种高致密度复合陶瓷球

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103848630A (zh) * 2012-11-28 2014-06-11 大连大友高技术陶瓷有限公司 一种高致密度复合陶瓷球

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107663093A (zh) * 2017-10-26 2018-02-06 广东工业大学 一种Si3N4基复合陶瓷及其制备方法
CN113233903A (zh) * 2021-01-15 2021-08-10 辽宁伊菲科技股份有限公司 一种氮化硅陶瓷基板及其制备方法

Similar Documents

Publication Publication Date Title
CN104098336A (zh) 一种制备高热导率、高强度氮化硅陶瓷的方法
CN107399974A (zh) 一种添加氟化物制备高导热氮化硅陶瓷的方法
JPH09157773A (ja) 低熱膨張・高熱伝導性アルミニウム複合材料及びその製造方法
CN106957176A (zh) 一种高导热性能氮化硅陶瓷的制备方法
JP2010235335A (ja) セラミック焼結体、放熱基体および電子装置
JPS5832073A (ja) 焼結体
JP2007230791A (ja) セラミック回路基板およびその製造方法
CN102709258A (zh) 一种金刚石-硅复合材料
JP2017224656A (ja) 金属−セラミックス複合基板および半導体装置
JPH1065292A (ja) 複合回路基板
CN108640701A (zh) 一种氮化硅陶瓷散热翅覆铜板及其制备方法
CN102674840B (zh) 一种金刚石-硅材料的快速烧结制备方法
CN103354219A (zh) 用于光学和电子器件的图案化功能结构基板
CN106431419A (zh) 一种大功率微电子器件用高导热氮化铝陶瓷基板的制备方法
TW201935624A (zh) 以陶瓷為基之熱傳導性電源基板之製造方法
CN109336635A (zh) 一种氮化铝陶瓷材料及其制备方法
Zhu et al. Characterization of the Microstructure of an AlN-Mullite-Al 2 O 3 Ceramic Layer on WCu Composite Alloy for Microelectronic Application
CN102701741A (zh) 一种改进的高热导率电子封装材料制备方法
JP4014561B2 (ja) 窒化アルミニウム粉末、その製造方法及び用途
CN102690120B (zh) 一种高热导率电子封装材料
CN105693260B (zh) 一种低温烧结铜纤维陶瓷基复合基板
JP2001189325A (ja) パワーモジュール
TWI838562B (zh) 複合材料製造方法及其應用
CN106631046A (zh) 一种用于生产氮化铝陶瓷基片的复合助烧剂
CN107417282A (zh) 一种低温无压烧结氮化铝陶瓷的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170718