CN106948512B - With lead pipe-coarse sand energy-dissipating and shock-absorbing key Z-shaped combined wall of assembled external thermal insulation and the practice - Google Patents

With lead pipe-coarse sand energy-dissipating and shock-absorbing key Z-shaped combined wall of assembled external thermal insulation and the practice Download PDF

Info

Publication number
CN106948512B
CN106948512B CN201710226515.7A CN201710226515A CN106948512B CN 106948512 B CN106948512 B CN 106948512B CN 201710226515 A CN201710226515 A CN 201710226515A CN 106948512 B CN106948512 B CN 106948512B
Authority
CN
China
Prior art keywords
dissipating
shock
coarse sand
lead pipe
regeneration concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710226515.7A
Other languages
Chinese (zh)
Other versions
CN106948512A (en
Inventor
贾穗子
曹万林
刘岩
张宗敏
刘文超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201710226515.7A priority Critical patent/CN106948512B/en
Publication of CN106948512A publication Critical patent/CN106948512A/en
Application granted granted Critical
Publication of CN106948512B publication Critical patent/CN106948512B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • E04C2/284Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating
    • E04C2/288Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating composed of insulating material and concrete, stone or stone-like material
    • E04C2/2885Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating composed of insulating material and concrete, stone or stone-like material with the insulating material being completely surrounded by, or embedded in, a stone-like material, e.g. the insulating material being discontinuous
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/44Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose
    • E04C2/52Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose with special adaptations for auxiliary purposes, e.g. serving for locating conduits
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/244Structural elements or technologies for improving thermal insulation using natural or recycled building materials, e.g. straw, wool, clay or used tires

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Building Environments (AREA)

Abstract

The invention discloses with lead pipe-coarse sand energy-dissipating and shock-absorbing key Z-shaped combined wall of assembled external thermal insulation and the practice, belong to building energy conservation anti-seismic technology field.Z-shaped combined wall board is mainly made of regeneration concrete wallboard, EPS heat preservation module, pvc pipe, lead pipe-coarse sand energy-dissipating and shock-absorbing key.The present invention uses lead pipe-coarse sand energy-dissipating and shock-absorbing key, is assemblied in upper and lower combined wall board in upper and lower combined wall board assembly in the pvc pipe of reserving hole.The Z-shaped combined wall has twice anti-vibration defense lines, has good energy-dissipating and shock-absorbing performance.The present invention changes the disadvantage of normal concrete wall thermal insulating difference, the deficiency of assembly concrete wall shock resistance difference is overcome simultaneously, by the assembled combined wall organic assembling of the lead pipe of invention-coarse sand damping control device and novel structure, antidetonation, energy conservation, the integrated wall of fire prevention are formd.The combined wall simultaneously, is utilized regeneration concrete material, is conducive to construction refuse resource development, and environmental benefit is obvious.

Description

With lead pipe-coarse sand energy-dissipating and shock-absorbing key Z-shaped combined wall of assembled external thermal insulation and the practice
Technical field
The present invention relates to lead pipe-coarse sand energy-dissipating and shock-absorbing key Z-shaped combined wall of assembled external thermal insulation and the practice, belongs to and build Build energy-saving earthquake-resistant technical field.
Background technique
(1) China region is wide, populous, and majority building is built based on self-built in earthquake territory, part, due to To the shortage of antidetonation knowledge, building technology is not able to satisfy antidetonation basic demand, and shock resistance is very weak.Tangshan, Wenchuan, jade Tree, Yaan violent earthquake, house destroy and extremely heaviness of collapsing.Research and develop inexpensive, easy to operate, practical assembled anti-knock energy conservation The great demand of integral structure adaptation national development.
(2) house wall thermal insulation property is poor, the cold time in winter, and heating expends mass energy, indoor thermal environment and comfort level It is poor;In the heat time in summer, using cooling electric appliance, power consumption is larger.Develop low energy consumption assembled anti-knock energy saving integrated structure by Country pays much attention to, social common concern.
(3) traditional Multi-storey block durability, whole anti-seismic performance are generally poor.And Shear-wall of High-rise House Due to thickness of wall body limitation and its reinforcement detailing it is complicated, directly to apply that there are costs in multilayer shear wall structure higher, Wall is thicker, is not easy the problem of promoting.In addition, research and development modular construction system and industrialization building technology, are low, multilayered structures The great demand of construction and development, application of the ecological, environmental protective building materials in building structure are the Strategic Demands of sustainable development.Base In this, the invention proposes a kind of low energy consumption, it is easy to construct, replaces full coagulation with EPS (polystyrene foam plastics) external thermal insulation Cob wall body replaces normal concrete to be suitable for construction refuse resource, with the regeneration concrete in lightweight wall with regeneration concrete Replace traditional clay brick, energy-saving earthquake-resistant integration, the new structural system development for being suitable for low tier building earthquake-proof energy-saving.
(4) green structural system researched and developed has adapted to national 13 emphasis research and development plans-" green building and building Industrialization " emphasis special (2016 annual guide), General Office of the State Council's " about instruction for greatly developing assembled architecture " (Office of the State Council sends out (2016) No. 71), house town and country construction portion and the Ministry of Industry and Information Technology's " notice about Developing Green agricultural Housing construction " The beautiful Rural Development demand of (building village [2013] 190).
Summary of the invention
The purpose of the present invention is to provide easy to operate, practical, environmentally protective, earthquake-proof energy-saving, can prefabricated construction The advantages that with lead pipe-coarse sand energy-dissipating and shock-absorbing key Z-shaped combined wall of assembled external thermal insulation and the practice, to effectively solve tradition Brick house building aseismicity energy dissipation capacity is low, poor thermal insulation property, the problems such as speed of application is slow.
To achieve the above object, the present invention adopts the following technical scheme:
With lead pipe-coarse sand energy-dissipating and shock-absorbing key Z-shaped combined wall of assembled external thermal insulation, the Z-shaped combined wall by two or Multiple upper and lower Z-shaped combined wall boards are assembled;Z-shaped combined wall board by regeneration concrete wallboard 1, EPS, (mould by polystyrene foam Material) heat preservation module 2, pvc pipe 3 and lead pipe-coarse sand energy-dissipating and shock-absorbing key 4 is assembled, the lead pipe-coarse sand energy-dissipating and shock-absorbing key 4 be by the good coarse sand 6 of the good lead pipe 5 of plastic deformation energy-dissipating and shock-absorbing performance, friction energy dissipation damping performance, zinc-plated stalloy cover board 7 It is formed with bolt 8.
For the lead pipe-coarse sand energy-dissipating and shock-absorbing key 4 by the coarse sand 6 of the perfusion partial size 2mm-5mm in lead pipe 5, use is zinc-plated Stalloy cover board 7 covers 5 upper and lower end of lead pipe and blocks, and is tightened using bolt 8.Lead pipe-coarse sand energy-dissipating and shock-absorbing key 4 is inserted and is embedded in In pvc pipe 3.
The regeneration concrete wallboard 1 is single-row reinforcement regeneration concrete wallboard, positioned at the inside of EPS heat preservation module 2, both Be conducive to stress, and protect EPS heat preservation module, also acts as fireproof effect.
Outer heat insulation layer of the EPS heat preservation module 2 as regeneration concrete wallboard, Modular surface are equipped with equally distributed swallow Stern notch is conducive to after pouring regeneration concrete molding, EPS heat preservation module and its inside regeneration concrete wallboard mechanical snap, structure At the Z-shaped wall of external thermal insulation.EPS heat preservation module 2 is surrounded by tongue and groove, and module is facilitated to splice, and keeps lesser EPS heat preservation module 1 logical It crosses occlusion and is spliced into big EPS heat insulation formwork.
The pvc pipe 3 is nested in the reserving hole on regeneration concrete wallboard 1, is subtracted for placing lead pipe-coarse sand energy dissipating Shake key.
Center, end and Z-shaped corner on regeneration concrete wallboard 1 is arranged in reserving hole.
The regeneration concrete wallboard 1 is made of regeneration concrete and single-row reinforcement steel wire, wherein regeneration concrete Coarse aggregate particle diameter is 5mm-10mm;Regeneration concrete wallboard specification: length 600mm-6000mm, length modulus are 300mm;Depth of section is 300mm-1500mm, and height modulus is 100mm;Thickness 30mm-60mm, thickness modulus are 10mm;Again Growing concrete wallboard joints edge has 45 ° of slope angles, and slope angle side length is 3mm-5mm, is sealed in assembly seam crossing with cement slurry; Regeneration concrete wallboard inner surface is using 5mm~10mm thickness finishing mucilage as protective facing;Regeneration concrete wallboard surrounding is set There is tongue and groove, facilitates wall assembly.
The EPS heat preservation module 2 is used as regeneration concrete wallboard outer heat insulation layer, enhances the insulation ability in house; EPS heat preservation module also serves as the exterior sheathing of regeneration concrete wallboard, and inside regeneration concrete wallboard configures single-row reinforcement steel wire, The bridge cut-off key of engineering plastics production passes through EPS heat preservation module, and inside single-row reinforcement steel wire is fixed, regeneration concrete is being poured In the process, the regeneration concrete wallboard of the dovetail groove on EPS heat preservation module surface and Z-shaped combined wall board constitutes mechanical snap;EPS is protected Warm module is surrounded by tongue and groove, convenient for being assembled into large-sized EPS heat insulation formwork with the EPS heat preservation module of small size, in assembly Seam crossing EPS heat preservation module is closely engaged by tongue and groove;EPS heat preservation module is with a thickness of 60mm-100mm;Upper and lower Z in order to prevent Dust, sundries and ponding enter in EPS heat preservation module and regeneration concrete wallboard tongue and groove when shape combined wall board assembles, lower part assembly The EPS heat preservation module of wallboard and it should be tongue with regeneration concrete wallboard upper end tongue and groove, the top wallboard corresponding site of assembly Lower end tongue and groove should be groove.
The pvc pipe 3 is inserted in the reserving hole of regeneration concrete wallboard, and lead pipe-coarse sand energy dissipating is placed in pvc pipe Damping key, pvc pipe can prevent regeneration concrete wallboard from generating local failure at reserving hole in shear history.
Galvanized sheet metal cover board 7 is identical as 5 outer diameter of lead pipe in lead pipe-coarse sand energy-dissipating and shock-absorbing key 4, is 40mm~80mm;It is high Degree is not less than 100mm not less than the sum of pvc pipe depth in the assembly upper and lower wallboard reserving hole of seam crossing.Lead pipe-coarse sand disappears It can be divided into 300mm~1500mm, modulus 100mm between damping key, and should be arranged in wall corner.
The above-mentioned practice with lead pipe-coarse sand energy-dissipating and shock-absorbing key Z-shaped combined wall of assembled external thermal insulation, is produced as follows:
Step 1: the exterior sheathing that regeneration concrete wallboard pours is also served as using EPS heat preservation module as insulation board, on the inside of it The grid spacing of fixed a piece of single-row reinforcement steel wire, steel wire is 50mm-100mm, and gauge of wire 1.0mm-1.2mm is poured The dovetail groove on itself and EPS heat preservation module surface is made to constitute mechanical snap after building regeneration concrete.
Step 2: being inserted into pvc pipe identical with depth with its diameter in the reserving hole of regeneration concrete wallboard.
Step 3: coarse sand is perfused in lead pipe, lead pipe upper and lower end is covered using zinc-plated stalloy cover board and is blocked, and is led to Bolt is crossed to tighten to form lead pipe-coarse sand energy-dissipating and shock-absorbing key.
Step 4: lead pipe-coarse sand energy-dissipating and shock-absorbing key is placed in the pvc pipe in reserving hole, assembly gap is used Adhering with epoxy resin.
Step 5: smearing 5~10mm thickness finishing mucilage as protective facing in regeneration concrete wallboard inner surface.
Step 6: after the assembly is completed to wall, at regeneration concrete wallboard joints slope angle, being sealed using cement slurry.
Compared with prior art, it has the advantage that
(1) industrialized level is high.The present invention is with lead pipe-coarse sand energy-dissipating and shock-absorbing key Z-shaped combined wall of assembled external thermal insulation Suitable for low, tier building.Lead pipe-coarse sand energy-dissipating and shock-absorbing key, EPS heat preservation module and its assembled lightweight wall panel is batch production Production, assembled in situ are high production efficiency, high-quality at light thermal-insulation earthquake-proof energy-saving integrated wall.
(2) this environment-friendly building materials for having a large capacity and a wide range of regeneration concrete are utilized, saves resource, be conducive to sustainable development.
(3) heat preservation, antidetonation, energy conservation, fire prevention integration.Lightweight wall outer heat insulation layer of the invention is EPS module, and inside is Regeneration concrete wallboard is better than brick wall anti-seismic performance than solid concrete wall from heavy and light.EPS heat preservation module is as light weight wall External insulating layer, hence it is evident that improve wall thermal insulating effect.Regeneration concrete wall can both play protection EPS on the inside of EPS insulation board The effect of module, and fireproofing function can be played, durability might as well.
(4) wall has twice anti-vibration defense lines, has good energy-dissipating and shock-absorbing performance.It is set between upper and lower assembled wallboard After setting lead pipe-coarse sand energy-dissipating and shock-absorbing key, assembly wall is integrated with multiple seismic-proof.First of anti-vibration defense lines, under small shake, dress With between the upper and lower wallboard of formula since regeneration concrete wallboard assembles the bonding effect of cement slurry between gap, between upper and lower assembled wallboard The changing of the relative positions does not occur, the wall being assembled into is in whole stress, and lateral resisting rigidity is big, and wall horizontal comparison is small, wall under small shake It is substantially at elastic deformation;Under second anti-vibration defense lines, middle shake or big shake, regeneration concrete between the upper and lower wallboard of assembled Wallboard assembles the bonding effect destruction of cement slurry between gap, the changing of the relative positions takes place between upper and lower assembled wallboard, the wall being assembled into In layering wallboard gap changing of the relative positions character, wall lateral resisting rigidity reduces, and structural cycle is elongated, and geological process is corresponding after the period is elongated Reduce, but wall horizontal comparison is relatively large, at this moment lead pipe-coarse sand energy-dissipating and shock-absorbing key starts to play a significant role, first is that in limitation, The effect of lower assembled wallboard alternate displacement development, second is that the energy-dissipating and shock-absorbing effect under horizontal geological process repeatedly, lead pipe master It will be by being plastically deformed energy-dissipating and shock-absorbing, coarse sand mainly passes through friction energy dissipation damping.
(6) it transports, is easy for installation.The prefabricated components that the present invention uses are light-weight, easy to transportation and installation.
(7) the wet of construction site casting concrete is substantially reduced, the time needed for reducing the maintenance of coagulation soil scene, accelerates to apply Work progress.Template is reduced with the Z-shaped combined wall of lead pipe-coarse sand energy-dissipating and shock-absorbing key assembled external thermal insulation using proposed by the present invention Engineering, concrete cast-in-situ engineering etc., economize on resources, and save artificial, reduction administration fee, it is ensured that construction quality.
Detailed description of the invention
Fig. 1 is with the Z-shaped combined wall elevation of lead pipe-coarse sand energy-dissipating and shock-absorbing key assembled external thermal insulation;
Fig. 2 is with the Z-shaped combined wall Local map of lead pipe-coarse sand energy-dissipating and shock-absorbing key assembled external thermal insulation;
Fig. 3 lead pipe-coarse sand energy-dissipating and shock-absorbing key elevation;
Fig. 4 is with the Z-shaped combined wall entirety installation diagram of lead pipe-coarse sand energy-dissipating and shock-absorbing key assembled external thermal insulation;
EPS heat preservation module of the Fig. 5 with single-row reinforcement steel wire;
Fig. 6 .1 is with lead pipe, and-the Z-shaped combined wall of assembled external thermal insulation of coarse sand energy-dissipating and shock-absorbing key is engaged-bonds section one.
Fig. 6 .2 is with lead pipe, and-the Z-shaped combined wall of assembled external thermal insulation of coarse sand energy-dissipating and shock-absorbing key is engaged-bonds section two.
In figure: 1, regeneration concrete wallboard, 2, EPS heat preservation module, 3, pvc pipe, 4, lead pipe-coarse sand energy-dissipating and shock-absorbing key, 5, Lead pipe, 6, coarse sand, 7, zinc-plated stalloy cover board, 8, bolt.
Specific embodiment
Below with reference to specific implementation case, the present invention will be further described.
As shown in Figure 1, of the invention with lead pipe-coarse sand energy-dissipating and shock-absorbing key Z-shaped combined wall of assembled external thermal insulation, the wall Body construction is made of regeneration concrete wallboard 1, EPS heat preservation module 2, pvc pipe 3, lead pipe-coarse sand energy-dissipating and shock-absorbing key 4.
Specifically:
The regeneration concrete wallboard 1 is made of regeneration concrete and single-row reinforcement steel wire, wherein regeneration concrete Coarse aggregate particle diameter is 5mm-10mm;1 specification of regeneration concrete wallboard: length 600mm-6000mm, length modulus are 300mm;Depth of section is 300mm-1500mm, and height modulus is 100mm;Thickness 30mm-60mm, thickness modulus are 10mm;Again 1 seam edge of growing concrete wallboard has 45 ° of slope angles, and slope angle side length is 3mm-5mm, close in assembly seam crossing cement slurry Envelope;1 inner surface of regeneration concrete wallboard is using 5mm~10mm thickness finishing mucilage as protective facing;Regeneration concrete wallboard 1 four Week is equipped with tongue and groove, facilitates wall assembly.
The EPS heat preservation module 2 is used as 1 outer heat insulation layer of regeneration concrete wallboard, enhances the insulation ability in house; EPS heat preservation module 2 also serves as the exterior sheathing of inside regeneration concrete wallboard 1, and inside regeneration concrete wallboard 1 configures single-row reinforcement steel Silk screen, the bridge cut-off key of engineering plastics production pass through EPS heat preservation module 2 and fix inside single-row reinforcement steel wire, are pouring regeneration In Concrete, the dovetail groove and the regeneration concrete wallboard 1 in Z-shaped combined wall board on 2 surface of EPS heat preservation module constitute machinery Occlusion;EPS heat preservation module 2 is surrounded by tongue and groove, keeps the temperature convenient for being assembled into large-sized EPS with the EPS heat preservation module of small size Template is closely engaged in assembled seam crossing EPS heat preservation module by tongue and groove.EPS heat preservation module 2 is with a thickness of 60mm-100mm;For Prevent dust, sundries and ponding when upper and lower Z-shaped combined wall board assembly from entering regeneration concrete wallboard 1 and EPS heat preservation module 2 In tongue and groove, regeneration concrete wallboard 1 and 2 upper end tongue and groove of EPS heat preservation module should be tongue, the top of assembly in the assembled wallboard of lower part The lower end tongue and groove of wallboard corresponding site should be groove.
The pvc pipe 3 is inserted in the reserving hole of regeneration concrete wallboard 1, and lead pipe-coarse sand is placed in pvc pipe 3 and is disappeared Energy damping key 4, pvc pipe 3 can prevent regeneration concrete wallboard 1 from generating local failure at reserving hole in shear history.
For the lead pipe-coarse sand energy-dissipating and shock-absorbing key 4 by the coarse sand 6 of the perfusion partial size 2mm-5mm in lead pipe 5, use is zinc-plated Stalloy cover board 7 covers 5 upper and lower end of lead pipe and blocks, and is tightened using bolt 8.Lead pipe-coarse sand energy-dissipating and shock-absorbing key 4 is inserted and is embedded in In pvc pipe 3 in 1 reserving hole of regeneration concrete wallboard.Galvanized sheet metal cover board 7 and lead in lead pipe-coarse sand energy-dissipating and shock-absorbing key 4 Pipe outside diameter is identical, is 40mm~80mm;Height is not less than not less than the sum of assembly upper and lower 3 depth of wallboard pvc pipe of seam crossing 100mm.It is divided into 300mm~1500mm, modulus 100mm between lead pipe-coarse sand energy-dissipating and shock-absorbing key 4, and should be set in wall corner It sets.
Its production method is as follows:
Step 1: EPS heat preservation module 2 is also served as the exterior sheathing that regeneration concrete wallboard 1 pours as insulation board, in it The fixed a piece of single-row reinforcement steel wire in side, the grid spacing of steel wire are 50mm-100mm, gauge of wire 1.0mm-1.2mm, The dovetail groove on itself and 2 surface of EPS heat preservation module is made to constitute mechanical snap after pouring regeneration concrete.
Step 2: being inserted into pvc pipe 3 identical with depth with its diameter in the reserving hole of regeneration concrete wallboard 1.
Step 3: coarse sand 6 is perfused in lead pipe 5, lead pipe upper and lower end is covered using zinc-plated stalloy cover board 7 and is blocked, and It tightens to form lead pipe-coarse sand energy-dissipating and shock-absorbing key 4 by bolt 8.
It is nested in 1 reserving hole of regeneration concrete wallboard step 4: lead pipe-coarse sand energy-dissipating and shock-absorbing key 4 is placed on In pvc pipe 3, assembly gap uses adhering with epoxy resin.
Step 5: smearing 5~10mm thickness finishing mucilage as protective facing in 1 inner surface of regeneration concrete wallboard.
Step 6: after the assembly is completed to wall, at regeneration concrete wallboard joints slope angle, being sealed using cement slurry.
The lead pipe used-coarse sand energy-dissipating and shock-absorbing key, EPS heat preservation module and its assembled lightweight wall panel for the factorial production, Assembled in situ is high production efficiency, high-quality at light thermal-insulation earthquake-proof energy-saving integrated wall;This amount of regeneration concrete is utilized Big wide environment-friendly building materials save resource, are conducive to sustainable development.Structure integrally realizes heat preservation, antidetonation, energy conservation, fire prevention one The characteristics of body.
The purpose of the present invention is to provide easy to operate, practical, environmentally protective, earthquake-proof energy-saving, can prefabricated construction The advantages that with lead pipe-coarse sand energy-dissipating and shock-absorbing key Z-shaped combined wall of assembled external thermal insulation and the practice, to effectively solve tradition Brick house building aseismicity energy dissipation capacity is low, poor thermal insulation property, the problems such as speed of application is slow.
It is an exemplary embodiments of the invention above, implementation of the invention is without being limited thereto.

Claims (8)

1. with lead pipe-coarse sand energy-dissipating and shock-absorbing key Z-shaped combined wall of assembled external thermal insulation, it is characterised in that: the Z-shaped combined wall It is assembled by two or more upper and lower Z-shaped combined wall boards;Z-shaped combined wall board keeps the temperature mould by regeneration concrete wallboard (1), EPS Block (2), pvc pipe (3) and lead pipe-coarse sand energy-dissipating and shock-absorbing key (4) are assembled, the lead pipe-coarse sand energy-dissipating and shock-absorbing key (4) It is by the good coarse sand (6) of the good lead pipe (5) of plastic deformation energy-dissipating and shock-absorbing performance, friction energy dissipation damping performance, zinc-plated stalloy lid Plate (7) and bolt (8) composition;
The lead pipe-coarse sand energy-dissipating and shock-absorbing key (4) is by the coarse sand (6) in the middle perfusion partial size 2mm-5mm of lead pipe (5), using plating Zinc stalloy cover board (7) covers lead pipe (5) upper and lower end and blocks, and is tightened using bolt (8);Lead pipe-coarse sand energy-dissipating and shock-absorbing key (4) it inserts in pvc pipe (3);
The regeneration concrete wallboard (1) is single-row reinforcement regeneration concrete wallboard, is located at the inside of EPS heat preservation module (2), both Be conducive to stress, and protect EPS heat preservation module, also acts as fireproof effect;
The pvc pipe (3) is nested in the reserving hole on regeneration concrete wallboard (1), subtracts for placing lead pipe-coarse sand energy dissipating Shake key.
2. it is according to claim 1 with lead pipe-coarse sand energy-dissipating and shock-absorbing key Z-shaped combined wall of assembled external thermal insulation, it is special Sign is: outer heat insulation layer of the EPS heat preservation module (2) as regeneration concrete wallboard, and Modular surface is equipped with equally distributed Dovetail groove is conducive to after pouring regeneration concrete molding, EPS heat preservation module and its inside regeneration concrete wallboard mechanical snap, Constitute the Z-shaped wall of external thermal insulation;EPS heat preservation module (2) is surrounded by tongue and groove, and module is facilitated to splice, and makes lesser EPS heat preservation module (2) big EPS heat insulation formwork is spliced by occlusion.
3. it is according to claim 1 with lead pipe-coarse sand energy-dissipating and shock-absorbing key Z-shaped combined wall of assembled external thermal insulation, it is special Sign is: center, end and the Z-shaped corner that reserving hole is arranged on regeneration concrete wallboard (1).
4. it is according to claim 1 with lead pipe-coarse sand energy-dissipating and shock-absorbing key Z-shaped combined wall of assembled external thermal insulation, it is special Sign is: the regeneration concrete wallboard (1) is made of regeneration concrete and single-row reinforcement steel wire, wherein regeneration concrete Coarse aggregate particle diameter is 5mm-10mm;Regeneration concrete wallboard specification: length 600mm-6000mm, length modulus are 300mm;Depth of section is 300mm-1500mm, and height modulus is 100mm;Thickness 30mm-60mm, thickness modulus are 10mm;Again Growing concrete wallboard joints edge has 45 ° of slope angles, and slope angle side length is 3mm-5mm, is sealed in assembly seam crossing with cement slurry; Regeneration concrete wallboard inner surface is using 5mm~10mm thickness finishing mucilage as protective facing;Regeneration concrete wallboard surrounding is set There is tongue and groove, facilitates wall assembly.
5. it is according to claim 1 with lead pipe-coarse sand energy-dissipating and shock-absorbing key Z-shaped combined wall of assembled external thermal insulation, it is special Sign is: the EPS heat preservation module (2) is used as regeneration concrete wallboard outer heat insulation layer, enhances the insulation ability in house; EPS heat preservation module also serves as the exterior sheathing of regeneration concrete wallboard, and inside regeneration concrete wallboard configures single-row reinforcement steel wire, The bridge cut-off key of engineering plastics production passes through EPS heat preservation module, and inside single-row reinforcement steel wire is fixed, regeneration concrete is being poured In the process, the regeneration concrete wallboard of the dovetail groove on EPS heat preservation module surface and Z-shaped combined wall board constitutes mechanical snap;EPS is protected Warm module is surrounded by tongue and groove, convenient for being assembled into large-sized EPS heat insulation formwork with the EPS heat preservation module of small size, in assembly Seam crossing EPS heat preservation module is closely engaged by tongue and groove;EPS heat preservation module is with a thickness of 60mm-100mm;Upper and lower Z in order to prevent Dust, sundries and ponding enter in EPS heat preservation module and regeneration concrete wallboard tongue and groove when shape combined wall board assembles, lower part assembly The EPS heat preservation module and regeneration concrete wallboard upper end tongue and groove of wallboard should be tongue, under the top wallboard corresponding site of assembly End tongue and groove should be groove.
6. it is according to claim 1 with lead pipe-coarse sand energy-dissipating and shock-absorbing key Z-shaped combined wall of assembled external thermal insulation, it is special Sign is: the pvc pipe (3) is inserted in the reserving hole of regeneration concrete wallboard, and lead pipe-coarse sand is placed in pvc pipe and is disappeared Energy damping key, pvc pipe can prevent regeneration concrete wallboard from generating local failure at reserving hole in shear history.
7. it is according to claim 1 with lead pipe-coarse sand energy-dissipating and shock-absorbing key Z-shaped combined wall of assembled external thermal insulation, it is special Sign is: zinc-plated stalloy cover board (7) is identical as lead pipe (5) outer diameter in lead pipe-coarse sand energy-dissipating and shock-absorbing key (4), be 40mm~ 80mm;Height is not less than 100mm not less than the sum of pvc pipe depth in the assembly upper and lower wallboard reserving hole of seam crossing;Lead pipe- It is divided into 300mm~1500mm, modulus 100mm between coarse sand energy-dissipating and shock-absorbing key, and is arranged in wall corner.
8. utilizing the work described in claim 1 with lead pipe-coarse sand energy-dissipating and shock-absorbing key Z-shaped combined wall of assembled external thermal insulation Method, it is characterised in that: the above-mentioned practice with lead pipe-coarse sand energy-dissipating and shock-absorbing key Z-shaped combined wall of assembled external thermal insulation, production is such as Under:
Step 1: the exterior sheathing that regeneration concrete wallboard pours is also served as using EPS heat preservation module as insulation board, it is fixed on the inside of it The grid spacing of a piece of single-row reinforcement steel wire, steel wire is 50mm-100mm, and gauge of wire 1.0mm-1.2mm is poured again The dovetail groove on itself and EPS heat preservation module surface is made to constitute mechanical snap after growing concrete;
Step 2: being inserted into pvc pipe identical with depth with its diameter in the reserving hole of regeneration concrete wallboard;
Step 3: coarse sand is perfused in lead pipe, lead pipe upper and lower end is covered using zinc-plated stalloy cover board and is blocked, and passes through spiral shell Bolt is tightened to form lead pipe-coarse sand energy-dissipating and shock-absorbing key;
Step 4: lead pipe-coarse sand energy-dissipating and shock-absorbing key is placed in the pvc pipe in reserving hole, assembly gap uses epoxy Resin bonding;
Step 5: smearing 5~10mm thickness finishing mucilage as protective facing in regeneration concrete wallboard inner surface;
Step 6: after the assembly is completed to wall, at regeneration concrete wallboard joints slope angle, being sealed using cement slurry.
CN201710226515.7A 2017-04-09 2017-04-09 With lead pipe-coarse sand energy-dissipating and shock-absorbing key Z-shaped combined wall of assembled external thermal insulation and the practice Expired - Fee Related CN106948512B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710226515.7A CN106948512B (en) 2017-04-09 2017-04-09 With lead pipe-coarse sand energy-dissipating and shock-absorbing key Z-shaped combined wall of assembled external thermal insulation and the practice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710226515.7A CN106948512B (en) 2017-04-09 2017-04-09 With lead pipe-coarse sand energy-dissipating and shock-absorbing key Z-shaped combined wall of assembled external thermal insulation and the practice

Publications (2)

Publication Number Publication Date
CN106948512A CN106948512A (en) 2017-07-14
CN106948512B true CN106948512B (en) 2019-05-03

Family

ID=59474235

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710226515.7A Expired - Fee Related CN106948512B (en) 2017-04-09 2017-04-09 With lead pipe-coarse sand energy-dissipating and shock-absorbing key Z-shaped combined wall of assembled external thermal insulation and the practice

Country Status (1)

Country Link
CN (1) CN106948512B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114197743B (en) * 2022-01-20 2022-12-23 内蒙古工业大学 Energy-saving environment-friendly assembly type wall based on coal gangue ceramsite and assembly method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031633A (en) * 2006-07-26 2008-02-14 Takenaka Komuten Co Ltd Earthquake-resisting wall or aseismic control wall, manufactured of corrugated steel plate, and its manufacturing method
CN102116055A (en) * 2009-12-31 2011-07-06 上海维固工程实业有限公司 Energy dissipation and shock absorption mechanism
CN104594392A (en) * 2015-01-06 2015-05-06 北京工业大学 Self-supply glass bead-graphite base sliding isolation system and method
CN204690804U (en) * 2015-05-21 2015-10-07 河南城建学院 A kind of seismic energy dissipation structure
CN105839813A (en) * 2016-05-24 2016-08-10 北京工业大学 Assembly type thermal insulation energy saving wall board with groovechannel steel connection piece, and manufacture method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031633A (en) * 2006-07-26 2008-02-14 Takenaka Komuten Co Ltd Earthquake-resisting wall or aseismic control wall, manufactured of corrugated steel plate, and its manufacturing method
CN102116055A (en) * 2009-12-31 2011-07-06 上海维固工程实业有限公司 Energy dissipation and shock absorption mechanism
CN104594392A (en) * 2015-01-06 2015-05-06 北京工业大学 Self-supply glass bead-graphite base sliding isolation system and method
CN204690804U (en) * 2015-05-21 2015-10-07 河南城建学院 A kind of seismic energy dissipation structure
CN105839813A (en) * 2016-05-24 2016-08-10 北京工业大学 Assembly type thermal insulation energy saving wall board with groovechannel steel connection piece, and manufacture method thereof

Also Published As

Publication number Publication date
CN106948512A (en) 2017-07-14

Similar Documents

Publication Publication Date Title
CN107119814B (en) With lead pipe-coarse sand energy-dissipating and shock-absorbing key external thermal insulation linear type combined wall and the practice
CN106088401B (en) A kind of assembled light steel frame-heat preservation anti-side panel structure and the practice suitable for villages and small towns multi-storey building
CN105604237A (en) Composite wallboard
CN107165303A (en) External thermal insulation formula and cross combined wall and the practice with lead pipe coarse sand energy-dissipating and shock-absorbing key
CN107700697A (en) A kind of exterior wall prefabricated construction
CN107366369B (en) Waterproof outer wall with high anti-seismic performance and construction method thereof
CN106948512B (en) With lead pipe-coarse sand energy-dissipating and shock-absorbing key Z-shaped combined wall of assembled external thermal insulation and the practice
CN107119815B (en) With lead pipe-coarse sand energy-dissipating and shock-absorbing key assembled linear type heat-preserving wall and the practice
CN107119819B (en) Assembled external thermal insulation L shape combined wall and the practice with energy-dissipating and shock-absorbing key
CN108729692A (en) A kind of method of construction of assembled Low-rise Lightweight system of steel residential structure
CN106869360B (en) A kind of Z-shaped combined wall and the practice with sandwich heat preservation and damping key
CN107460968A (en) Sandwich heat preservation in-line combined wall and the practice with lead pipe coarse sand energy-dissipating and shock-absorbing key
CN107165311B (en) With lead pipe-coarse sand energy-dissipating and shock-absorbing key assembled T shape heat-preserving wall and the practice
CN107119817B (en) With lead pipe-coarse sand energy-dissipating and shock-absorbing key Z-shaped heat-preserving wall of assembled and the practice
CN107119816B (en) It is a kind of with lead pipe-coarse sand energy-dissipating and shock-absorbing key external thermal insulation T shape combined wall and the practice
CN106948511B (en) A kind of X-shape sandwich heat preservation combined wall and the practice with energy-dissipating and shock-absorbing key
CN106968368B (en) With lead pipe-coarse sand energy-dissipating and shock-absorbing key assembled cross heat-preserving wall and the practice
CN107119820B (en) With lead pipe-coarse sand energy-dissipating and shock-absorbing key assembled L shape heat-preserving wall and the practice
CN106930433A (en) Large-scale lateral aperture overall assembled wallboard
CN107165302A (en) Sandwich heat preservation L-shaped combined wall and the practice with lead pipe coarse sand energy-dissipating and shock-absorbing key
CN203174899U (en) Slope finding and heat preservation integrated roof building construction
CN206769072U (en) Novel energy-saving environment-friendly heat-insulation system building materials
CN202248500U (en) Full-function room body integrated plate
CN107119818A (en) Assembled sandwich heat preservation T-shaped combined wall and the practice with energy-dissipating and shock-absorbing key
CN109184073A (en) Decorative heat preservation goes along with sb. to guard him the compound prefabricated outer wall panel of the close rib of load-bearing integration and production method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190503

CF01 Termination of patent right due to non-payment of annual fee