CN106944119B - Preparation method of carbon nitride supported monoatomic metal catalytic material - Google Patents

Preparation method of carbon nitride supported monoatomic metal catalytic material Download PDF

Info

Publication number
CN106944119B
CN106944119B CN201710172875.3A CN201710172875A CN106944119B CN 106944119 B CN106944119 B CN 106944119B CN 201710172875 A CN201710172875 A CN 201710172875A CN 106944119 B CN106944119 B CN 106944119B
Authority
CN
China
Prior art keywords
metal
solution
carbon
catalytic material
carbon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710172875.3A
Other languages
Chinese (zh)
Other versions
CN106944119A (en
Inventor
卞兆勇
王辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Normal University
Original Assignee
Beijing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Normal University filed Critical Beijing Normal University
Priority to CN201710172875.3A priority Critical patent/CN106944119B/en
Publication of CN106944119A publication Critical patent/CN106944119A/en
Application granted granted Critical
Publication of CN106944119B publication Critical patent/CN106944119B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds

Abstract

The invention mainly relates to a preparation method of a carbon nitride loaded monoatomic metal catalytic material, in particular to a preparation method of a layered graphite phase carbon nitride loaded monoatomic metal M catalytic material (M is one or more than two of Ag, Pd, Rh and Pt), belonging to the field of catalytic materials. According to the method, the metal precursor and the carbon-nitrogen precursor are complexed, the agglomeration of metal atoms is inhibited through the interaction between the metal center and the ligand, the carbon-nitrogen precursor and the metal precursor are pyrolyzed in one step to prepare the carbon-nitride-loaded monoatomic metal catalytic material, and the stability and the dispersibility of the monoatomic metal catalytic material are improved. The metal in the material prepared by the method is loaded on the surface of the layered graphite phase carbon nitride in a form of zero-valence monoatomic dispersion, and the type and the components of the loaded metal atom can be regulated and controlled according to the requirement.

Description

Preparation method of carbon nitride supported monoatomic metal catalytic material
Technical Field
The invention mainly relates to a preparation method of a carbon nitride loaded monoatomic metal catalytic material, in particular to a preparation method of a layered graphite phase carbon nitride loaded monoatomic metal M catalytic material (M is one or more than two of Ag, Pd, Rh and Pt), belonging to the field of catalytic materials.
Background art:
monatomic catalysis is of great importance for the practical application of catalysts (X.Yang, A.Wang, B.Qiao, J.Li, J.Liu, T.Zhang.accounts of Chemical Research,2013,46, 1740-. 50% of the worldwide annual platinum production is used in three-way converters for automotive exhaust gas purification systems. Fuel cell electrode catalysts, catalytic reforming selective hydrogenation in petrochemical industry, and the synthesis of various fine chemicals all rely on high-efficiency supported noble metal catalysts such as platinum and palladium. Ag. Elements such as Pd, Rh, Pt and the like have important application in catalytic conversion reactions in multiple fields such as petrochemical industry and the like, and the research and development of the preparation method of the monatomic catalyst of the elements can greatly reduce the cost of the catalyst and improve the production efficiency.
When the metal single atom is easy to agglomerate in the preparation and reaction processes, the catalyst is deactivated. Therefore, the preparation of metal monatomic catalysts must be carried out with a support having excellent properties. g-C3N4Is a polymer material consisting of only C and N, the simple composition being such that for g-C3N4Can be carried out by a simple method without significantly changing the total composition. g-C3N4Polymer properties of (2) to g-C3N4The surface chemistry control can be carried out by molecular level modification and surface engineering, and simultaneously, the structure of the material is ensured to have enough flexibility to ensure that the g-C has enough elasticity3N4Can be used as the main matrix of various inorganic nano particles, thereby preparing g-C3N4Base composite (W.Ong, L.Tan, Y.Ng, S.Yong, S.Chai.chemical reviews,2016,116, 7159-.
Therefore, we developed a new method for preparing a carbon nitride supported monatomic metal catalytic material by pyrolyzing a carbon-nitrogen precursor and a metal precursor in one step. The metal in the material is loaded on the surface of the layered graphite phase carbon nitride in a form of zero valence monoatomic dispersion, and the type and the components of the loaded metal atom can be regulated and controlled according to the requirement.
Disclosure of Invention
The invention provides a preparation method of a carbon nitride loaded monoatomic metal catalytic material. The prepared catalyst has good single metal atom dispersibility and high stability. The method has the characteristics of simplicity and easy control, and can be used for preparing a large amount of carbon nitride supported monoatomic metal catalytic material.
The technical scheme adopted by the invention is as follows: a preparation method of a carbon nitride loaded monoatomic metal catalytic material is characterized by comprising the following steps:
(1) dissolving a carbon-nitrogen precursor in a solvent to prepare a solution A, and dissolving a metal precursor in the solvent to prepare a solution B;
(2) adding the solution B into the solution A, heating to 20-150 ℃ under a special atmosphere, mixing and stirring for 6-36h, and then naturally cooling to room temperature;
(3) removing the solvent from the solution obtained in the step (2) to obtain a solid metal carbon nitrogen adduct, and grinding the solid metal carbon nitrogen adduct to be below 80 meshes;
(4) putting the solid powder obtained in the step (3) into a muffle furnace or a tubular furnace, carrying out temperature programming pyrolysis treatment under a special atmosphere, naturally cooling to room temperature, and grinding to below 80 meshes;
(5) placing the solid powder obtained in the step (4) in a muffle furnace or a tubular furnace, heating to 450-550 ℃ at the speed of 10 ℃/min under a special atmosphere, keeping for 1h, and then naturally cooling to room temperature to obtain the carbon nitride loaded monoatomic metal catalytic material;
the method of the invention is characterized in that: the carbon-nitrogen precursor is one or a mixture of two of melamine, dicyandiamide and urea, the metal precursor is one or more of silver nitrate, silver carbonate, palladium nitrate, rhodium nitrate and platinum nitrate, the solvent is an alkaline or neutral solvent such as water, acetonitrile, ethanol, methanol, acetone, N-dimethylformamide and the like, the concentration of the solution A is 1-500g/L, the concentration of the solution B is 1-100mg/mL, the special atmosphere is under the protection of air, nitrogen and argon, the temperature programming is that the solution A is heated to 300 ℃ at the speed of 1-5 ℃/min and is kept for 1-2h, and then the solution B is heated to 400-850 ℃ at the speed of 5-10 ℃/min and is kept for 2-6 h.
The mass percent of the metal M in the prepared laminar graphite phase carbon nitride loaded monoatomic metal M catalytic material (M is one or more than two of Ag, Pd, Rh and Pt) is 0.1-3%, and the metal M exists in a form of a zero valence monoatomic atom.
The method adopts a metal precursor and carbon nitrogen precursor complexing mode, inhibits the agglomeration of metal atoms through the interaction between a metal center and a ligand, and improves the stability and the dispersibility of the monatomic metal catalytic material. The preparation method has the advantages of simple process conditions, cheap materials, mild reaction conditions, capability of obtaining materials with more excellent performance at lower preparation cost, and wide application range. Therefore, the method for preparing the carbon nitride supported monatomic metal catalytic material is simple, convenient, rapid, economical and environment-friendly.
Detailed Description
Example 1
2g of melamine was dispersed in 100mL of N, N-dimethylformamide and stirred at room temperature for 3 hours to obtain a melamine solution. 10mg of palladium nitrate was dispersed in 10mL of N, N-dimethylformamide and subjected to ultrasonic treatment for 30min to obtain a palladium nitrate solution. Transferring the melamine solution into a 250mL round-bottom flask, adding 5mL palladium nitrate solution into the melamine solution, configuring a reflux condenser pipe, heating to 120 ℃ under the protection of nitrogen, stirring for 36 hours in a dark place, and naturally cooling to room temperature. The solvent was removed from the mixed solution by rotary evaporation to give a solid metal carbon nitrogen adduct, which was dried under vacuum for 24h and then ground to 80 mesh. And (3) placing the solid powder into a ceramic crucible, placing the ceramic crucible into a tubular furnace, and heating under the protection of nitrogen. First heated to 300 ℃ at a rate of 2 ℃/min for 2h, then heated to 500 ℃ at a rate of 7 ℃/min for 2 h. Naturally cooling to room temperature, and grinding the obtained solid to 80 meshes again. And finally, placing the solid powder into a ceramic crucible, placing the ceramic crucible into a tubular furnace, heating the ceramic crucible to 550 ℃ at the speed of 10 ℃/min under the protection of nitrogen, keeping the temperature for 1h, and naturally cooling the ceramic crucible to room temperature to obtain the carbon nitride supported monatomic metal Pd catalytic material. The actual load specific gravity of Pd in the prepared material is 0.51 percent, and the metal Pd is dispersed on the layered graphite phase carbon nitride by a single atom with a zero valence state.
Example 2
2g of melamine was dispersed in 100mL of N, N-dimethylformamide and stirred at room temperature for 3 hours to obtain a melamine solution. 10mg of platinum nitrate was dispersed in 10mL of N, N-dimethylformamide, and subjected to ultrasonic treatment for 30min to obtain a platinum nitrate solution. Transferring the melamine solution into a 250mL round-bottom flask, adding 5mL of platinum nitrate solution into the melamine solution, configuring a condensation reflux pipe, heating to 120 ℃ under the protection of nitrogen, stirring for 24 hours in a dark place, and naturally cooling to room temperature. The solvent was removed from the mixed solution by rotary evaporation to give a solid metal carbon nitrogen adduct, which was dried under vacuum for 24h and then ground to 80 mesh. And (3) placing the solid powder into a ceramic crucible, placing the ceramic crucible into a tubular furnace, and heating under the protection of nitrogen. First heated to 300 ℃ at a rate of 2 ℃/min for 2h, then heated to 550 ℃ at a rate of 5 ℃/min for 4 h. Naturally cooling to room temperature, and grinding the obtained solid to 80 meshes again. And finally, placing the solid powder into a ceramic crucible, placing the ceramic crucible into a tubular furnace, heating the ceramic crucible to 550 ℃ at the speed of 10 ℃/min under the protection of nitrogen, keeping the temperature for 1h, and naturally cooling the ceramic crucible to room temperature to obtain the carbon nitride supported monoatomic metal Pt catalytic material. The actual load specific gravity of Pt in the prepared material is 0.47%, and metal Pt is dispersed on the layered graphite phase carbon nitride by a single atom with a zero valence state.
Example 3
2g of melamine was dispersed in 100mL of methanol and stirred at room temperature for 3 hours to obtain a melamine solution. 20mg of silver nitrate is dispersed in 10mL of methanol, and ultrasonic treatment is carried out for 30min to obtain a silver nitrate solution. Transferring the melamine solution into a 250mL round-bottom flask, adding the silver nitrate solution into the melamine solution, configuring a condensation reflux pipe, heating to 60 ℃ under the protection of nitrogen, stirring for 24 hours in a dark place, and naturally cooling to room temperature. The solvent was removed from the mixed solution by rotary evaporation to give a solid metal carbon nitrogen adduct, which was dried under vacuum for 24h and then ground to 80 mesh. And (3) placing the solid powder into a ceramic crucible, placing the ceramic crucible into a tubular furnace, and heating under the protection of nitrogen. First heated to 200 ℃ at a rate of 1 ℃/min for 2h, then heated to 450 ℃ at a rate of 5 ℃/min for 2 h. Naturally cooling to room temperature, and grinding the obtained solid to 80 meshes again. And finally, placing the solid powder into a ceramic crucible, placing the ceramic crucible into a tubular furnace, heating the ceramic crucible to 550 ℃ at the speed of 10 ℃/min under the protection of nitrogen, keeping the temperature for 1h, and naturally cooling the ceramic crucible to room temperature to obtain the carbon nitride supported monoatomic metal Ag catalytic material. The actual load specific gravity of Ag in the prepared material is 1.89%, and the metal Ag is dispersed on the layered graphite phase carbon nitride by a single atom with a zero valence state.

Claims (2)

1. A preparation method of a carbon nitride loaded monoatomic metal catalytic material is characterized by comprising the following steps:
(1) dissolving a carbon-nitrogen precursor in a solvent to prepare a solution A, dissolving a metal precursor in the solvent, and carrying out ultrasonic treatment for 30min to prepare a solution B;
(2) adding the solution B into the solution A, heating to 20-150 ℃ under nitrogen, mixing and stirring for 6-36h, and then naturally cooling to room temperature;
(3) removing the solvent from the solution obtained in the step (2) to obtain a solid metal carbon nitrogen adduct, and grinding the solid metal carbon nitrogen adduct to be below 80 meshes;
(4) putting the solid powder obtained in the step (3) into a muffle furnace or a tubular furnace, carrying out temperature programming pyrolysis treatment under nitrogen, then naturally cooling to room temperature, and grinding to below 80 meshes;
(5) placing the solid powder obtained in the step (4) in a muffle furnace or a tubular furnace, heating to 450-550 ℃ at the speed of 10 ℃/min under nitrogen, keeping for 1h, and then naturally cooling to room temperature to obtain the carbon nitride-loaded monatomic metal catalytic material, wherein the metal is dispersed on the layered graphite-phase carbon nitride in a zerovalent state and monatomic state;
the concentration of the solution A is 1-500 g/L;
the concentration of the solution B is 1-100 mg/mL;
the solvent is one or more than two of water, acetonitrile, ethanol, methanol, acetone and N, N-dimethylformamide;
the temperature programming is that the temperature is heated to 200-300 ℃ at the speed of 1-5 ℃/min and kept for 1-2h, then the temperature is heated to 400-850 ℃ at the speed of 5-10 ℃/min and kept for 2-6 h;
the mass percent of metal M in the laminated graphite phase carbon nitride loaded monoatomic metal M catalytic material is 0.1-3%, and M is one or more than two of Ag, Pd, Rh and Pt;
the carbon-nitrogen precursor is one or a mixture of melamine, dicyandiamide and urea.
2. The method of claim 1, wherein:
the metal precursor is one or more than two of silver nitrate, silver carbonate, palladium nitrate, rhodium nitrate and platinum nitrate.
CN201710172875.3A 2017-03-22 2017-03-22 Preparation method of carbon nitride supported monoatomic metal catalytic material Active CN106944119B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710172875.3A CN106944119B (en) 2017-03-22 2017-03-22 Preparation method of carbon nitride supported monoatomic metal catalytic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710172875.3A CN106944119B (en) 2017-03-22 2017-03-22 Preparation method of carbon nitride supported monoatomic metal catalytic material

Publications (2)

Publication Number Publication Date
CN106944119A CN106944119A (en) 2017-07-14
CN106944119B true CN106944119B (en) 2020-01-14

Family

ID=59472967

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710172875.3A Active CN106944119B (en) 2017-03-22 2017-03-22 Preparation method of carbon nitride supported monoatomic metal catalytic material

Country Status (1)

Country Link
CN (1) CN106944119B (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109420514A (en) * 2017-08-21 2019-03-05 中国科学院上海硅酸盐研究所 A kind of nickel single-site graphite phase carbon nitride base optic catalytic material and its preparation method and application
CN107749469A (en) * 2017-10-17 2018-03-02 成都新柯力化工科技有限公司 The negative material and preparation method of a kind of lithium battery carbonitride carried titanium dioxide
WO2019109212A1 (en) * 2017-12-04 2019-06-13 北京化工大学 Metal-nitrogen carbon material with metal dispersed on an atomic scale, preparation method therefor and use thereof
CN108355701A (en) * 2018-03-23 2018-08-03 辽宁大学 Ag supports two-dimentional graphite phase carbon nitride nanosheet photocatalyst and its preparation method and application
CN108543544B (en) * 2018-04-28 2021-01-01 苏州大学 Honeycomb homoheterojunction carbon nitride composite material, preparation method thereof and application thereof in catalytic treatment of waste gas
CN108687357A (en) * 2018-05-09 2018-10-23 东南大学 A kind of preparation method of carbon-monoatomic metal composite material
CN108579791B (en) * 2018-05-28 2020-10-30 北京林业大学 Pd and carbon nanotube co-doped graphite-phase carbon nitride ternary composite catalyst and preparation method and application thereof
CN108906105A (en) * 2018-06-28 2018-11-30 湘潭大学 A kind of metal is monatomic/preparation method of phosphorus doping carbon nitride photocatalyst
CN109390597B (en) * 2018-10-22 2020-10-30 北京海得利兹新技术有限公司 High-load metal monatomic fuel cell catalytic material and preparation method thereof
CN109569720A (en) * 2018-11-29 2019-04-05 江南大学 It is a kind of using carboxylated carbon-based material as the preparation method of the monatomic catalyst of the metal of carrier
CN109908936A (en) * 2019-03-14 2019-06-21 浙江师范大学 A kind of monatomic load carbon nitride catalyst of visible light-responded manganese and its preparation method and application
CN109985653A (en) * 2019-04-17 2019-07-09 上海电力学院 It is a kind of for the nitridation carbon-based material of photocatalysis complete solution water and its preparation and application
CN110721750B (en) * 2019-10-14 2022-07-22 浙江海洋大学 Preparation method of graphite-like phase carbon nitride/MOFs catalytic material
CN112774707A (en) * 2019-11-04 2021-05-11 北京氦舶科技有限责任公司 Ru-N-C monatomic catalyst and preparation method and application thereof
CN112774709A (en) * 2019-11-11 2021-05-11 中国科学院大连化学物理研究所 Supported catalyst and preparation method and application thereof
CN110975867A (en) * 2019-12-12 2020-04-10 山西大学 Pd-ZnO/Al2O3Catalyst, preparation method and application thereof
CN111013576B (en) * 2019-12-25 2022-09-20 中南大学 Monoatomic catalyst prepared based on surface immobilization method
CN111790377A (en) * 2019-12-26 2020-10-20 东北石油大学 Monoatomic catalyst, preparation method and application thereof
CN111203260B (en) * 2020-02-25 2022-10-25 广州中国科学院沈阳自动化研究所分所 Monoatomic palladium-supported carbon nitride catalyst, preparation thereof and application thereof in removing NO
CN111203262B (en) * 2020-03-05 2023-03-31 上海纳米技术及应用国家工程研究中心有限公司 Method for rapidly preparing carbon nitride nanosheet loaded nano-copper, product and application thereof
CN113634269A (en) * 2020-05-11 2021-11-12 国家纳米科学中心 Supported cobalt monoatomic catalyst and preparation method and application thereof
CN112403500B (en) * 2020-07-22 2023-05-26 北京化工大学 Method for preparing supported metal monoatomic catalyst
CN111939961B (en) * 2020-08-24 2023-04-11 南昌航空大学 Controllable synthesis method of low-cost and high-load monatomic catalyst
CN111905725A (en) * 2020-08-25 2020-11-10 浙江工业大学 Ru-based catalyst and preparation method and application thereof
CN112354555B (en) * 2020-11-09 2022-03-11 中国科学院地球环境研究所 Metal monatomic supported carbon-nitrogen polymer catalyst and preparation method thereof
CN115106110A (en) * 2021-01-25 2022-09-27 江苏索普化工股份有限公司 Rhodium heterogeneous catalyst for methanol carbonylation reaction, preparation method and application thereof
CN112973751A (en) * 2021-02-05 2021-06-18 江苏大学 Ru monoatomic and g-C3N4Composite photocatalyst and preparation method and application thereof
CN113019421B (en) * 2021-03-22 2023-03-31 北京单原子催化科技有限公司 Supported monoatomic silver catalyst and preparation method thereof
CN113457711B (en) * 2021-07-02 2023-03-10 中国科学技术大学 Graphite-phase carbon nitride-loaded magnesium monoatomic composite material, preparation method thereof and method for preparing hydrogen peroxide through photocatalysis
CN113522339B (en) * 2021-07-20 2022-08-30 厦门大学 Preparation method and application of hydrogenation M @ C-N catalyst
CN113786853B (en) * 2021-08-06 2023-01-17 中国科学院化学研究所 Monoatomic catalyst, preparation method thereof, microelectrode, preparation method thereof and application thereof
CN113937309B (en) * 2021-10-26 2023-07-04 武汉理工大学 Monoatomic catalyst and preparation method thereof
CN114570359A (en) * 2021-12-27 2022-06-03 周口师范学院 Precious metal/carbon nanosheet composite material and preparation method thereof
CN114713257A (en) * 2022-03-18 2022-07-08 北京工业大学 Conjugated polymer loaded high-concentration monatomic metal site heterogeneous catalyst and preparation method thereof
CN114931965B (en) * 2022-06-15 2023-08-04 电子科技大学 Porous graphite-phase carbon nitride-supported non-noble metal bismuth catalyst, preparation and application thereof
CN115007186B (en) * 2022-06-15 2023-09-05 电子科技大学 Carbon nitride-based site-specific double-single-atom catalyst, preparation and application thereof
CN115805091A (en) * 2022-10-19 2023-03-17 重庆大学 Preparation method of copper-silver double-monoatomic photocatalyst
CN115722249A (en) * 2022-11-24 2023-03-03 浙江大学 Supported low-valence palladium monatomic material as well as preparation method and application thereof
CN116154200A (en) * 2022-12-30 2023-05-23 郑州大学 Multi-metal atom supported carbon nitride catalyst and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104475140A (en) * 2014-11-07 2015-04-01 江苏大学 Silver-modified carbon nitride composite photocatalytic material and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101113632B1 (en) * 2009-10-29 2012-03-13 서울대학교산학협력단 Synthesis methods of Nano-sized transition metal catalyst on a Carbon support
CN105214711A (en) * 2015-10-29 2016-01-06 江苏大学 One prepares Ag/g-C 3n 4the method of catalyst

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104475140A (en) * 2014-11-07 2015-04-01 江苏大学 Silver-modified carbon nitride composite photocatalytic material and preparation method thereof

Also Published As

Publication number Publication date
CN106944119A (en) 2017-07-14

Similar Documents

Publication Publication Date Title
CN106944119B (en) Preparation method of carbon nitride supported monoatomic metal catalytic material
CN109433242B (en) Nitrogen-doped porous carbon-loaded molybdenum carbide catalyst and preparation method and application thereof
CN106861746B (en) Preparation method of carbon nitride supported monodisperse oxidation state metal atom catalytic material
Yang et al. Highly dispersed ultrafine palladium nanoparticles encapsulated in a triazinyl functionalized porous organic polymer as a highly efficient catalyst for transfer hydrogenation of aldehydes
KR101912251B1 (en) Catalyst for dehydrogenation reaction of formic acid and method for preparing the same
Niu et al. MOF derived porous carbon supported Cu/Cu2O composite as high performance non-noble catalyst
CN110756225B (en) Metal/MOFs nano catalyst and preparation method and application thereof
WO2022012098A1 (en) Hydrogenation catalyst, preparation method therefor and use thereof
Rangraz et al. Selenium-doped graphitic carbon nitride decorated with Ag NPs as a practical and recyclable nanocatalyst for the hydrogenation of nitro compounds in aqueous media
CN110201696B (en) Preparation method of porous carbon fiber supported high-dispersion precious metal nanoparticles
CN107694565B (en) Preparation method of graphene aerogel precious metal catalyst
CN109126774A (en) A kind of monatomic noble metal catalyst of super high-dispersion loading type and preparation method thereof
CN102513104A (en) Preparation method of benzaldehydes compound and novel double-metal catalyst loaded by mesoporous carbon for preparation method
CN112916033A (en) Carbon-nitrogen-doped silicon dioxide-loaded Co catalyst and preparation method and application thereof
Sharma et al. PdO/CuO nanoparticles on zeolite-Y for nitroarene reduction and methanol oxidation
Wei et al. Solid-state nanocasting synthesis of ordered mesoporous CoN x–carbon catalysts for highly efficient hydrogenation of nitro compounds
CN108636433B (en) Nitrogen-doped porous carbon immobilized noble metal catalyst and preparation method and application thereof
CN112495417A (en) Iron monatomic catalyst and preparation method and application thereof
CN112808288A (en) Nitrogen-phosphorus or nitrogen-phosphorus-sulfur co-doped carbon-loaded metal monoatomic catalyst and microwave-assisted preparation method thereof
Saeed et al. Reuseable monolithic nanoporous graphite-supported nanocatalysts (Fe, Au, Pt, Pd, Ni, and Rh) from pyrolysis and galvanic transmetalation of ferrocene-based polyamide aerogels
CN107999081B (en) Carbon-coated structure nano iron-based Fischer-Tropsch synthesis catalyst and preparation method and application thereof
CN113751040A (en) Nitrogen-doped carbon-silicon composite material loaded cobalt-copper bimetallic catalyst and preparation method and application thereof
Nanadegani et al. Cobalt oxide NPs immobilized on environmentally benign biological macromolecule-derived N-doped mesoporous carbon as an efficient catalyst for hydrogenation of nitroarenes
CN115301270A (en) Catalyst and preparation method and application thereof
Li et al. Platinum clusters anchored on sulfur-doped ordered mesoporous carbon for chemoselective hydrogenation of halogenated nitroarenes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant