CN106910682A - 一种采用向改性Si薄膜引入辅助性离子提高光学性能的方法 - Google Patents

一种采用向改性Si薄膜引入辅助性离子提高光学性能的方法 Download PDF

Info

Publication number
CN106910682A
CN106910682A CN201710148341.7A CN201710148341A CN106910682A CN 106910682 A CN106910682 A CN 106910682A CN 201710148341 A CN201710148341 A CN 201710148341A CN 106910682 A CN106910682 A CN 106910682A
Authority
CN
China
Prior art keywords
ion
complementary
soi
optical property
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710148341.7A
Other languages
English (en)
Other versions
CN106910682B (zh
Inventor
王茺
冯晓旭
王荣飞
李东阳
杨杰
杨宇
刘静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan University YNU
Original Assignee
Yunnan University YNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan University YNU filed Critical Yunnan University YNU
Priority to CN201710148341.7A priority Critical patent/CN106910682B/zh
Publication of CN106910682A publication Critical patent/CN106910682A/zh
Application granted granted Critical
Publication of CN106910682B publication Critical patent/CN106910682B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提供一种采用向改性Si薄膜引入辅助性离子提高光学性能的方法,属于半导体材料发光的技术领域。本发明基于Si离子自注入技术与快速热退火工艺,在SOI衬底上的Si膜中产生发光缺陷或团簇技术,首先采用金属蒸汽真空弧离子源离子注入机进行离子注入,将Si离子和辅助性离子分别注入SOI片(顶层是200nm厚度的(100)晶向的P型单晶Si,中间层是375nm厚的SiO2,底层是厚度为6.75 µm的P型单晶Si),接着用快速退火炉对SOI进行快速退火。通过调节辅助性离子的复合注入剂量、能量以及热处理工艺,促使辅助性离子与填隙Si原子成键,从而增强中间带上的激子荧光失活能。采用本发明的技术方案亦有助于团簇发光稳定性的提升,从而提高SOI材料的光学性能。在半导体材料发光方面,对于近室温SOI—LED器件领域有推广应用。

Description

一种采用向改性Si薄膜引入辅助性离子提高光学性能的方法
技术领域
本发明涉及采用向改性Si薄膜引入辅助性离子提高光学性能的方法,特别是采用了离子注入技术、快速退火技术制备硅基发光材料,属于半导体材料发光技术领域。
背景技术
近年来,将微电子和光电子结合起来,开发硅基大规模光电子集成技术,已经成为信息技术发展的必然和业界的普遍共识。硅是实现光电子-微电子集成工程的最佳候选材料。与其它光电材料相比,硅基光电材料除具有易于兼容和集成的特点外,还具有成本低廉、可靠性高以及功能扩展性强等优点;但是硅的间接带隙特性导致其发光而不懈探索。
目前,在硅基发光材料的制备方面,基本思路有两条,一是对硅进行改性使其发光,二是在硅衬底上制备复合发光材料。材料改性和复合材料的合成正是离子注入的基本功能。阻碍缺陷Si薄膜在发光领域应用的因素归结于三个方面,即发光效率低、激子荧光湮灭速度较慢以及在高温区的发光稳定性较弱。通过采用向自离子注入Si薄膜中引入辅助性离子(铁、钴、镍及锰),产生的空穴或填隙点缺陷在硅中的运动和演化包含丰富的物理信息,其导致的高效发光对实现硅光电子集成具有极大的潜在应用价值。不仅为硅中各类缺陷形成机理和发光物理机制等基本问题的研究开辟了一条新途径,还为推动SOI材料发光技术的发展及实现室温全硅基光电子集成奠定基础。
发明内容
本发明引入辅助性离子提高Si薄膜光学性能,首先将SOI片进行RCA清洗,再采用金属蒸汽真空弧离子源离子注入机分别进行辅助性离子和Si+离子注入,接着用快速退火炉对SOI进行快速退火,其特征在于采用辅助离子和Si离子复合注入的离子注入工艺,再利用快速退火炉进行快速退火处理的退火工艺。
本发明的目的在于通过调节辅助性离子的复合注入剂量、能量以及热处理工艺,促使辅助性离子与填隙Si原子成键,从而增强中间带上的激子荧光失活能,有助于团簇发光稳定性的提升,从而提高SOI的发光稳定性能,为增强SOI材料发光性能提供一种新方法。
本发明中选择使用的SOI材料,其顶层Si厚度为~200 nm、纯度为~99.999%、电阻率为~10Ω·cm的(100)晶向的P型单晶Si,中间层是375nm厚的SiO2,而底层是厚度为675 µm的P型单晶Si。SOI结构具有特殊的光学性能,因为这种结构中SiO2和Si的折射率不相同。另外,SOI衬底中生长量子尺寸的发光中心,可以有效地对发射光谱进行修饰。
本发明其制备方法具体包括如下步骤:
(1)采用RCA标准清洗法对SOI基片进行清洗;
(2)采用SRIM软件模拟得到优化后的注入能量和注入剂量;
(3)采用离子注入机先将Si+离子注入SOI硅薄膜层,离子入射方向与SOI硅薄膜表面法线成7°,在真空环境下进行,Si+离子注入剂量为1×1017~3×1017cm-2,注入能量为60~80keV;
(4)在离子注入机上再进行复合注入少量辅助性铁、钴、镍及锰离子;
(5)把注入后的样品割成1×1cm2的小片,在氮气环境下对注入后的SOI片进行快速退火,退火温度500~700℃,退火时间30~60s。
本发明是在优化Si+自主入SOI材料发光性能的基础上,通过调节辅助性离子的复合注入剂量、能量以及热处理工艺,促使辅助性离子与填隙Si原子成键,从而增强中间带上的激子荧光失去活性。该方法有助于提高温度稳定性,从而达到增强SOI材料光学性能。
附图说明
图1为技术线路图。
图2为 1:只注入Si离子。2:同时注入Si和Fe,Si和Co,Si和Ni,Si和Mn离子。在10K~250K测试温度下的PL光谱。
具体实施方式
下面通过实施例对本发明作进一步描述。
实施例1:
本实例所述采用向改性Si薄膜引入辅助性离子提高光学性能的方法,具体包括以下步骤:
(1)选取顶层晶向为(100)的P型Si薄膜的SOI片,并用RCA标准清洗法对其进行清洗;
(2)采用离子注入机先将Si+离子注入SOI硅薄膜层,离子入射方向与SOI硅薄膜表面法线成7°,在真空室温环境下进行,Si+离子注入剂量为2×1017cm-2,注入能量为70keV;
(3)Si+离子注入完成后,再将铁离子注入该层,注入剂量为1×1015cm-2,注入能量为70keV。离子入射方向与SOI硅薄膜表面法线成7°,离子注入过程在真空室温环境下进行;
(4)把注入后的样品割成1×1cm2的小片,在氮气环境下对注入后的SOI片进行快速退火,退火温度500℃,退火时间60s。
实施例2:
步骤(1)、步骤(2)、步骤(4)与实施例1相同;
步骤(3)不同之处为:
Si+离子注入完成后,再将铁离子注入该层,注入剂量为5×1015cm-2,注入能量为70keV。
实施例3:
步骤(1)、步骤(2)、步骤(4)与实施例1相同;
步骤(3)不同之处为:
Si+离子注入完成后,再将钴离子注入该层,注入剂量为1×1015cm-2,注入能量为70keV。
实施例4:
步骤(1)、步骤(2)、步骤(4)与实施例1相同;
步骤(3)不同之处为:
Si+离子注入完成后,再将钴离子注入该层,注入剂量为5×1015cm-2,注入能量为70keV。
实施例5:
步骤(1)、步骤(2)、步骤(4)与实施例1相同;
步骤(3)不同之处为:
Si+离子注入完成后,再将镍离子注入该层,注入剂量为1×1015cm-2,注入能量为70keV。
实施例6:
步骤(1)、步骤(2)、步骤(4)与实施例1相同;
步骤(3)不同之处为:
Si+离子注入完成后,再将镍离子注入该层,注入剂量为5×1015cm-2,注入能量为70keV。
实施例7:
步骤(1)、步骤(2)、步骤(3)与实施例1相同;
步骤(4)不同之处为:
在氮气环境下对注入后的SOI片进行快速退火,退火温度700℃,退火时间60s。
实施例8:
步骤(1)、步骤(2)、步骤(3)与实施例1相同;
步骤(4)不同之处为:
在氮气环境下对注入后的SOI片进行快速退火,退火温度500℃,退火时间30s。
实施例9:
步骤(1)、步骤(2)、步骤(3)与实施例3相同;
步骤(4)不同之处为:
在氮气环境下对注入后的SOI片进行快速退火,退火温度700℃,退火时间60s。
实施例10:
步骤(1)、步骤(2)、步骤(3)与实施例3相同;
步骤(4)不同之处为:
在氮气环境下对注入后的SOI片进行快速退火,退火温度500℃,退火时间30s。
实施例11:
步骤(1)、步骤(2)、步骤(3)与实施例5相同;
步骤(4)不同之处为:
在氮气环境下对注入后的SOI片进行快速退火,退火温度700℃,退火时间60s。
实施例12:
步骤(1)、步骤(2)、步骤(3)与实施例5相同;
步骤(4)不同之处为:
在氮气环境下对注入后的SOI片进行快速退火,退火温度500℃,退火时间30s。

Claims (6)

1.一种采用向改性Si薄膜引入辅助性离子提高光学性能的方法,包括将SOI片进行RCA清洗,再采用金属蒸汽真空弧离子源离子注入机分别进行辅助性离子和Si离子注入,接着用快速退火炉对SOI进行快速退火,其特征在于采用辅助离子和Si离子复合注入的离子注入工艺,再利用快速退火炉进行快速退火处理的退火工艺。
2.根据权利要求1所述采用向改性Si薄膜引入辅助性离子提高光学性能的方法,其特征在于,所诉述在离子注入中,注入能量为60 ~80 keV。
3.根据权利要求1所述采用向改性Si薄膜引入辅助性离子提高光学性能的方法,其特征在于,所诉述在离子注入中,Si离子注入剂量为1×1017 ~3×1017 cm-2
4.根据权利要求1所述采用向改性Si薄膜引入辅助性离子提高光学性能的方法,其特征在于,所诉述在离子注入中,辅助性离子为Fe、Co、Ni及Mn离子。
5.根据权利要求1所述采用向改性Si薄膜引入辅助性离子提高光学性能的方法,其特征在于,所诉述在离子注入中,辅助性离子注入剂量为1×1015 ~1×1016 cm-2
6.根据权利要求1所述采用向改性Si薄膜引入辅助性离子提高光学性能的方法,其特征在于,所诉述在快速退火炉进行快速退火处理,其退火温度为500 ~700 ℃,退火时间为30 ~60 s。
CN201710148341.7A 2017-03-14 2017-03-14 一种采用向改性Si薄膜引入辅助性离子提高光学性能的方法 Expired - Fee Related CN106910682B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710148341.7A CN106910682B (zh) 2017-03-14 2017-03-14 一种采用向改性Si薄膜引入辅助性离子提高光学性能的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710148341.7A CN106910682B (zh) 2017-03-14 2017-03-14 一种采用向改性Si薄膜引入辅助性离子提高光学性能的方法

Publications (2)

Publication Number Publication Date
CN106910682A true CN106910682A (zh) 2017-06-30
CN106910682B CN106910682B (zh) 2020-07-14

Family

ID=59186419

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710148341.7A Expired - Fee Related CN106910682B (zh) 2017-03-14 2017-03-14 一种采用向改性Si薄膜引入辅助性离子提高光学性能的方法

Country Status (1)

Country Link
CN (1) CN106910682B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107611023A (zh) * 2017-08-28 2018-01-19 云南大学 一种Si自离子注入硅基材料改善发光性能的方法
CN108376729A (zh) * 2018-03-27 2018-08-07 云南大学 一种基于Fe+/Si+复合注入SOI材料的近红外室温发光器件
CN108962815A (zh) * 2018-07-17 2018-12-07 北京工业大学 一种soi材料的制备方法
CN111180302A (zh) * 2020-01-03 2020-05-19 中国科学院上海光学精密机械研究所 一种通过离子注入调节光学元件光学性能的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0611484B1 (de) * 1991-11-06 2000-08-09 Forschungszentrum Jülich Gmbh VERFAHREN ZUR HERSTELLUNG EINER Si/FeSi2-HETEROSTRUKTUR
JP2007109795A (ja) * 2005-10-12 2007-04-26 Osaka Prefecture Univ β−FeSi2を使った通信系光デバイス素子
JP2009111011A (ja) * 2007-10-26 2009-05-21 Kyushu Institute Of Technology 表面にβ−FeSi2層を有する光デバイス基板及びその製造方法
CN101916718A (zh) * 2010-05-25 2010-12-15 云南大学 用Si+自注入制备室温下硅晶体D1线发光材料的方法
CN101982890A (zh) * 2010-09-03 2011-03-02 云南大学 一种基于自离子注入soi材料的近红外室温发光器件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0611484B1 (de) * 1991-11-06 2000-08-09 Forschungszentrum Jülich Gmbh VERFAHREN ZUR HERSTELLUNG EINER Si/FeSi2-HETEROSTRUKTUR
JP2007109795A (ja) * 2005-10-12 2007-04-26 Osaka Prefecture Univ β−FeSi2を使った通信系光デバイス素子
JP2009111011A (ja) * 2007-10-26 2009-05-21 Kyushu Institute Of Technology 表面にβ−FeSi2層を有する光デバイス基板及びその製造方法
CN101916718A (zh) * 2010-05-25 2010-12-15 云南大学 用Si+自注入制备室温下硅晶体D1线发光材料的方法
CN101982890A (zh) * 2010-09-03 2011-03-02 云南大学 一种基于自离子注入soi材料的近红外室温发光器件

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
NIANHUA PENG等: "High concentration Mn ion implantation in Si", 《NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH B》 *
SAI LU等: "《Red Light Emission from Silicon Created by self-ion Implantation and Thermal Annealing》", 《APPLIED MECHANICS AND MATERIALS》 *
W.SKORUPA等: "《Iron gettering and doping in silicon due to MeV carbon implantation》", 《NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH B》 *
WANG CHONG等: "《Study on the defect-related emissions in the light self-ion-implanted Si films by a silicon-on-insulator structure》", 《CHIN.PHYS.B》 *
YOSHIHITO MAEDA等: "《Photoluminescence properties of ion beam synthesized beta-FeSi2》", 《THIN SOLID FILMS》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107611023A (zh) * 2017-08-28 2018-01-19 云南大学 一种Si自离子注入硅基材料改善发光性能的方法
CN107611023B (zh) * 2017-08-28 2019-10-25 云南大学 一种Si自离子注入硅基材料改善发光性能的方法
CN108376729A (zh) * 2018-03-27 2018-08-07 云南大学 一种基于Fe+/Si+复合注入SOI材料的近红外室温发光器件
CN108962815A (zh) * 2018-07-17 2018-12-07 北京工业大学 一种soi材料的制备方法
CN108962815B (zh) * 2018-07-17 2020-09-25 北京工业大学 一种soi材料的制备方法
CN111180302A (zh) * 2020-01-03 2020-05-19 中国科学院上海光学精密机械研究所 一种通过离子注入调节光学元件光学性能的方法

Also Published As

Publication number Publication date
CN106910682B (zh) 2020-07-14

Similar Documents

Publication Publication Date Title
Song et al. Organic–inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16.48%
CN106910682A (zh) 一种采用向改性Si薄膜引入辅助性离子提高光学性能的方法
Mueller et al. Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers
Liu et al. Light-emitting diodes based on all-inorganic copper halide perovskite with self-trapped excitons
Wang et al. Fast Postmoisture Treatment of Luminescent Perovskite Films for Efficient Light‐Emitting Diodes
Cheng et al. High‐performance blue quantum dot light‐emitting diodes with balanced charge injection
Fairbrother et al. Precursor stack ordering effects in Cu2ZnSnSe4 thin films prepared by rapid thermal processing
Swanson et al. CdCl2 passivation of polycrystalline CdMgTe and CdZnTe absorbers for tandem photovoltaic cells
Li et al. Carrier Dynamics in Alloyed Chalcogenide Quantum Dots and Their Light‐Emitting Devices
He et al. Efficient quantum dot light-emitting diodes with solution-processable molybdenum oxide as the anode buffer layer
TW201027780A (en) Photoelectric conversion device and method for manufacturing the same
Neo et al. CuInS2 quantum dots with thick ZnSe x S1–x shells for a luminescent solar concentrator
KR20070036835A (ko) 무기물 완충층을 포함하는 유기발광소자의 제조방법
Chang et al. Alcohol-soluble quantum dots: enhanced solution processability and charge injection for electroluminescence devices
He et al. Boosting the efficiency of quasi-2D perovskite light-emitting diodes via tailoring the PEDOT: PSS hole transport layer
Huang et al. Deep‐Red InP Core‐Multishell Quantum Dots for Highly Bright and Efficient Light‐Emitting Diodes
JP5121678B2 (ja) 化合物半導体薄膜の製法および薄膜太陽電池の製法
CN108010985A (zh) 柔性薄膜太阳能电池及其制备方法
Zhang et al. Construction of electron and grain boundary barrier in quantum dots light-emitting diodes: the role of NiO interface coating
Wang et al. Enhancing stability of CsPbBr3 nanocrystals light‐emitting diodes through polymethylmethacrylate physical adsorption
CN102231420A (zh) 一种往硅纳米晶薄膜引入额外成核点的方法
Vaillant et al. Interface properties of HCF2Cl annealed CdTe thin films for solar cells applications
Aliberti et al. Single layer of silicon quantum dots in silicon oxide matrix: Investigation of forming gas hydrogenation on photoluminescence properties and study of the composition of silicon rich oxide layers
CN105161626B (zh) 一种掺杂的纳米锡化物有机发光器件
Perveen et al. Sputtered gold nanoparticles enhanced quantum dot light-emitting diodes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200714

Termination date: 20210314

CF01 Termination of patent right due to non-payment of annual fee