CN106894015B - 氩弧熔覆高熵合金涂层及其制备方法 - Google Patents

氩弧熔覆高熵合金涂层及其制备方法 Download PDF

Info

Publication number
CN106894015B
CN106894015B CN201710108364.5A CN201710108364A CN106894015B CN 106894015 B CN106894015 B CN 106894015B CN 201710108364 A CN201710108364 A CN 201710108364A CN 106894015 B CN106894015 B CN 106894015B
Authority
CN
China
Prior art keywords
coating
entropy alloy
matrix
argon arc
high entropy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710108364.5A
Other languages
English (en)
Other versions
CN106894015A (zh
Inventor
董世知
马壮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning Technical University
Liaoning Institute of Science and Technology
Original Assignee
Liaoning Technical University
Liaoning Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning Technical University, Liaoning Institute of Science and Technology filed Critical Liaoning Technical University
Priority to CN201710108364.5A priority Critical patent/CN106894015B/zh
Publication of CN106894015A publication Critical patent/CN106894015A/zh
Application granted granted Critical
Publication of CN106894015B publication Critical patent/CN106894015B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/106Coating with metal alloys or metal elements only
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明公开了一种氩弧熔覆高熵合金涂层及其制备方法,属于合金涂层及其制备技术领域。所述制备方法以Q235钢为基体,Fe、Al、Cr、Cu、Co及Ti元素为组成高熵合金元素,利用氩弧熔覆的方法制备了高熵合金涂层。制备得到的高熵合金涂层中,FexAlCrCuCoTi0.4(x=0,1)系高熵合金涂层中的组织结构均由单一的BCC相组成,Fe1AlCrCuCoTi0.4高熵合金涂层与基体间呈冶金结合,涂层的显微硬度、磨粒磨损和耐冲蚀磨损性能均相对于基体有很大提高,满足实际生产需要,并促进了高熵合金在材料表面工程上的广泛应用。

Description

氩弧熔覆高熵合金涂层及其制备方法
技术领域
本发明属于合金涂层及其制备技术领域,具体地说,是指一种氩弧熔覆高熵合金涂层及其制备方法和应用。
背景技术
随着科技的飞速发展,材料领域中新材料方面的研究已成为人们研究的新方向。因此,复合材料因其所具有的优异性能成为研究热点,并且通过应用外加、原位生成各种氮化物、碳化物、氧化物、硼化物等的方法制备出的复合材料已成功的应用在工业及实际生产中。叶均蔚等(叶均蔚.高乱度多元合金:CN,CN1353204[P].2002)在20世纪90年代提出的高熵合金,因其具有的较高的强度、耐磨性、耐腐蚀性和耐高温软化等性能备受关注。高熵合金即为多主元高熵合金,又称多主元高混乱度合金,是以多种元素为主元的合金(主元数目n≥5),各主要元素的原子百分比都较高,但不超过35%。近年来,人们在对高熵合金研究的基础上,开始对高熵合金基复合材料也进行研究,但相关报道还很少,对于其相组成、增强相的形成、强化机理以及界面的结构组成等在国内外期刊都很少报道。
目前,制备高熵合金材料的方法有很多,但是每一种制备方法都具其优势,同时也会带有弊端。所以在高熵合金的制备过程中,必须根据所选元素及所需合金具有的性能、用途来选择适合的制备方法。研究表明,粉末冶金法、高(中)频感应炉加热以及熔铸的方法是制备块状高熵合金材料的主要方法;机械合金化法是高熵合金粉料的主要制备方法;高熵合金涂层材料的制备则一般采用的是热喷涂法、激光快速熔凝法、激光熔覆法及氩弧熔覆法;对于高熵合金薄膜材料,主要采用磁控溅射法和电化学沉积法。
发明内容
为了解决现有技术中存在的问题和需求,本发明根据配置高熵合金的相关规律,选择合适的金属元素粉料(Fe、Al、Cr、Cu、Co及Ti元素),制备高熵合金粉料。以Q235钢为基体,Fe、Al、Cr、Cu、Co及Ti元素为组成高熵合金的主要元素,利用氩弧熔覆的方法制备了高熵合金涂层。
采用金相显微镜、扫描电镜、X射线衍射仪、显微硬度计、磨粒磨损实验机和冲蚀磨损实验机对氩弧熔覆高熵合金涂层及活性氩弧熔覆高熵合金涂层的显微组织结构和力学性能进行测试并分析。
本发明提供的氩弧熔覆高熵合金涂层的制备方法,包括如下步骤:
第一步,基体的制备。
采用轧制态Q235A钢作为基体材料,打磨,清洗,吹干,置于干燥箱中备用。
第二步,涂层材料选取。
选择Fe、Al、Cr、Cu、Co、Ti六种元素作为高熵合金的元素,设计FexAlCrCuCoTi0.4(x=1,0)高熵合金涂层配比。
第三步,氩弧熔覆A-TIG焊接方法制备氩弧熔覆高熵合金涂层。
根据配方称量所需高温合金元素的粉末,然后压成预制块。将预制块置于基体表面,利用氩弧熔覆的方法制备高熵合金基复合涂层,制备工艺及参数包括:焊接电流180~220A,焊接速度60~80mm·min-1,氩气流量6~7.5L·min-1,电弧长度2~4mm。
优选的,所述的焊接速度为75mm·min-1,氩气流量6L·min-1,电弧长度3.5mm,焊接电流200A。
所述的氩弧熔覆采用WS-500型交直流脉冲钨极氩弧焊机。
上述方法制备得到的高熵合金涂层中,FexAlCrCuCoTi0.4(x=0,1)系高熵合金涂层中的组织结构均由单一的BCC相组成,涂层的显微硬度497.8HV0.2~524.9HV0.2;在磨粒磨损实验中,在载荷为40N时,涂层的耐磨性较基体提高3.35~4.12倍;在载荷为60N时,较基体提高3.06~3.55倍;在冲蚀磨损实验中,在转速分别为200r/min、300r/min和400r/min时,涂层的耐冲蚀磨损性能较基体提高2.56~3.76倍;在介质浓度分别为5000:1600、5000:2800和5000:4000时,涂层的耐冲蚀磨损性能较基体提高2.59~5.27倍。Fe1AlCrCuCoTi0.4高熵合金涂层与基体间呈冶金结合,显微硬度高达524.9HV0.2,约为基体的3.07倍。涂层的磨粒磨损和耐冲蚀磨损性能均相对于基体有很大提高。
本发明的优点在于:
(1)本发明实现氩弧熔覆工艺与先进的高熵合金材料相结合,促进了高熵合金在材料表面工程上的广泛应用。
(2)本发明采用氩弧熔覆的方法,以Q235钢为基体,制备高熵合金涂层,改善了材料表面硬度、耐磨性,满足实际生产需要。
附图说明
图1A、1C和1E是本发明中Fe1涂层在焊接电流分别为180A、200A和220A时的高熵合金涂层表面形貌示意图。
图1B、1D和1F是本发明中Fe0涂层在焊接电流分别为180A、200A和220A时的高熵合金涂层表面形貌示意图。
图2A、2C和2E是本发明中Fe1涂层在焊接电流分别为180A、200A和220A时的高熵合金涂层截面形貌示意图。
图2B、2D和2F是本发明中Fe0涂层在焊接电流分别为180A、200A和220A时的高熵合金涂层截面形貌示意图。
图3A和图3B分别为Fe1涂层和Fe0涂层的XRD谱图。
图4A和图4B分别为Fe1涂层和Fe0涂层中部显微组织图像。
图5为Fe1涂层和Fe0涂层显微硬度分布曲线。
图6A和图6B分别为载荷40N和60N时测得的磨粒磨损性能失重曲线。
图7A~7D分别为转速200r/min、300r/min、400r/min的冲蚀磨损性能曲线以及不同转速条件下失重曲线。
图8A~8D分别为介质浓度为5000:1600、5000::2800、5000:4000的冲蚀磨损性能以及不同介质浓度下的失重曲线。
具体实施方式
下面将结合附图和实施例对本发明作进一步的详细说明。
本发明首先提供一种氩弧熔覆高熵合金涂层的制备方法,具体步骤如下:
第一步,基体的制备。
采用轧制态Q235A钢作为基体材料,其成分组成如表1所示。进行实验前,首先将Q235A钢板制备成尺寸为100mm×30mm×8mm的试样,然后用角磨机打磨,除去其表面的氧化皮和铁锈,最后用丙酮清洗其表面,并用吹风机将其吹干,置于干燥箱中备用。
表1 Q235A钢的化学成分(Wt%)
第二步,涂层材料选取。
选择Fe、Al、Cr、Cu、Co、Ti六种元素作为高熵合金的元素,各元素之间的原子半径差小于12%。设计FexAlCrCuCoTi0.4(x=1,0)高熵合金涂层配比。为方便起见,将高熵合金涂层记为Fex涂层,即Fe1涂层、Fe0涂层。
第三步,氩弧熔覆A-TIG焊接方法制备氩弧熔覆高熵合金涂层。
根据配方称量所需粉末的质量,放在研钵中,加入适量的模数为2.5的水玻璃,研磨均匀后倒入尺寸为80mm×10mm×2mm长方体模具中,使用WE-30液压式万能实验机在110MPa压力下将润湿粉末压成预制块,将压好的预制块阴干24h后放置在烘干箱中150℃烘干2h。然后再利用氩弧熔覆的方法制备高熵合金基复合涂层,制备工艺及参数包括:焊接电流180~220A,焊接速度60~80mm·min-1,氩气流量6~7.5L·min-1,电弧长度2~4mm。
优选的,所述的焊接速度为75mm·min-1,氩气流量6L·min-1,电弧长度3.5mm。
所述的氩弧熔覆采用WS-500型交直流脉冲钨极氩弧焊机。
实施例1:
第一步,基体的制备。
采用轧制态Q235A钢作为基体材料,首先将Q235A钢板制备成尺寸为100mm×30mm×8mm的试样,然后用角磨机打磨,除去其表面的氧化皮和铁锈,最后用丙酮清洗其表面,并用吹风机将其吹干,置于干燥箱中备用。
第二步,涂层材料选取。
选择Fe、Al、Cr、Cu、Co、Ti六种元素作为高熵合金的元素,设计Fe1AlCrCuCoTi0.4高熵合金涂层配比,将高熵合金涂层记为Fe1涂层。
第三步,氩弧熔覆A-TIG焊接方法制备氩弧熔覆高熵合金涂层。
根据配方称量所需高熵合金涂层粉末的质量,放在研钵中,加入适量的模数为2.5的水玻璃,研磨均匀后倒入尺寸为80mm×10mm×2mm长方体模具中,使用WE-30液压式万能实验机在110MPa压力下将润湿粉末压成预制块,将压好的预制块阴干24h后放置在烘干箱中150℃烘干2h。然后再利用氩弧熔覆的方法制备高熵合金基复合涂层,制备工艺及参数包括:焊接电流180A、200A和220A三种,焊接速度75mm·min-1,氩气流量6L·min-1,电弧长度3.5mm。
实施例2:
第一步,基体的制备,同实施例1。
第二步,涂层材料选取。
选择Fe、Al、Cr、Cu、Co、Ti六种元素作为高熵合金的元素,设计Fe0AlCrCuCoTi0.4高熵合金涂层配比,将高熵合金涂层记为Fe0涂层。Fe0指不外加Fe粉,而利用氩弧熔覆时基体融化提供的Fe原子。
第三步,氩弧熔覆A-TIG焊接方法制备氩弧熔覆高熵合金涂层。
同实施例1。
氩弧熔覆的方法制备高熵合金基复合涂层,制备工艺及参数包括:焊接电流180、200A、220A,焊接速度75mm·min-1,氩气流量6L·min-1,电弧长度3.5mm。
实施例3:
第一步,基体的制备,同实施例1。
第二步,涂层材料选取。
选择Fe、Al、Cr、Cu、Co、Ti六种元素作为高熵合金的元素,设计Fe1AlCrCuCoTi0.4高熵合金涂层配比。
第三步,氩弧熔覆A-TIG焊接方法制备氩弧熔覆高熵合金涂层。
同实施例1。
氩弧熔覆的方法制备高熵合金基复合涂层,制备工艺及参数包括:焊接电流200A,焊接速度80mm·min-1,氩气流量7.5L·min-1,电弧长度4mm。
实施例4:
第一步,基体的制备,同实施例1。
第二步,涂层材料选取。
选择Fe、Al、Cr、Cu、Co、Ti六种元素作为高熵合金的元素,设计Fe0AlCrCuCoTi0.4高熵合金涂层配比。
第三步,氩弧熔覆A-TIG焊接方法制备氩弧熔覆高熵合金涂层。
同实施例1。
氩弧熔覆的方法制备高熵合金基复合涂层,制备工艺及参数包括:焊接电流200A,焊接速度60mm·min-1,氩气流量7L·min-1,电弧长度2mm。
图1A、1C和1E为实施例1中Fe1涂层在三种焊接电流下的表面形貌,图1B、1D和1F为实施例2中Fe0涂层在三种焊接电流时的表面形貌。根据附图对比可知,焊接电流为180A时,焊道窄而细,高低不平,涂层高出基体很多,有很多部分未熔进基体。当焊接电流为220A时,由于热输入过大,Q235钢基体容易被焊穿,成形效果较差,而在焊接电流为200A时,通过观察可以发现,焊道均匀且纹路清晰,焊道的宽度较宽,预制块很好的熔进到基体中,且焊道四周并未出现未焊进或焊透现象。Fe0涂层的表面有少许气孔缺陷,但铺展效果好于Fe1涂层,Fe1涂层成形更加美观,表面无明显缺陷。
表2为Fe1涂层和Fe0涂层在不同电流下的焊缝尺寸。从表2中可以看出在电流为200A时,两种涂层的深宽比均达到最大。图2A~2F为涂层的截面形貌,从图中可以看出,在电流为200A时,Fe1涂层和Fe0涂层都获得了较大熔深,效果最好。但由于Fe0涂层的熔宽较大,其深宽比较小。利用USB数码显微镜测得,Fe1涂层的熔深为4.30mm,熔宽为9.91mm,深宽比为0.43;Fe0涂层的熔深为4.36mm,熔宽为14.79mm,深宽比为0.29。
表2深宽比结果
图3A和3B为分别为高熵合金Fe1AlCrCoCuTi0.4和高熵合金Fe0AlCrCoCuTi0.4涂层组织的XRD衍射图。由图可知,两种高熵合金的相组成都比较简单,均由单一的体心立方相(BCC)组成,并未有其他复杂相生成,BCC相主要为Fe-Cr固溶体和少量的AlxFey系金属间化合物。由图中可以看出,外加Fe粉的Fe1涂层的衍射峰较不外加Fe粉的Fe0涂层的明显增强,这充分说明随着Fe元素含量增多,BCC相不断增加,而有序BCC结构,以及少量的金属间化合物都会促进涂层拥有更高的硬度。
图4A和图4B分别为Fe1涂层和Fe0涂层的中部显微组织形貌,从图中可以看出,Fe1涂层和Fe0涂层的中部显微组织相似,均呈不规则的多边形网络形状分布,在多边形网络状组织上弥散分着大量颗粒状物质。对比图中Fe1涂层和Fe0涂层的组织形貌可以发现,Fe1涂层的晶界不明显,组织较细小,而Fe0涂层的晶界较清晰,但组织较粗大,充分说明了Fe元素的加入对涂层组织起到了细化作用。
图5为Fex涂层的显微硬度曲线图。从图中可以看出,Fe1涂层的显微硬度曲线位于Fe0涂层的上方,说明其显微硬度较高。两种涂层的硬度均沿熔深方向呈梯度递减趋势,而涂层显微硬度的峰值并不在最边缘处,这是因为在氩弧熔覆过程中涂层表面由于受到电弧的直接加热作用,合金元素的烧损、挥发较为严重,测试时压头容易压溃表层的松散结构,从而导致边缘处硬度较低,由表及里至一定深度时显微硬度才会达到最大值,而后平缓降低,在涂层与基体的结合区域,因稀释作用生成的硬质相颗粒数量减少,显微硬度较低。
采用4#砂纸进行磨粒磨损实验,表3和图6分别为在40N、60N载荷下进行磨粒磨损所得的数据和单位面积失重曲线图。从表中可以知道:载荷为40N时Fe0涂层和Fe1涂层的耐磨性较基体分别提高3.35和4.12倍,而载荷为60N时Fe0涂层和Fe1涂层的耐磨性较基体分别提高3.06和3.50倍。
表3不同载荷磨粒磨损单位面积损失量
从图6可以看出,基体的单位面积失重曲线图位于涂层的单位面积失重曲线图的上方且,这说明基体磨损最为严重,两种涂层的耐磨性均优于基体,其中,Fe1涂层的相对耐磨性最好。随着时间的增加,基体的磨损量曲线呈直线上升趋势,相对耐磨性较差,而Fe1涂层的失重量曲线逐渐趋于平稳态,上升的速率降低,表现出了良好的耐磨粒磨损性能。
采用控制变量法研究转速和冲蚀介质浓度对实验结果的影响。即冲蚀角为90°、砂子粒度为40~70、冲蚀时间为30min。
选择冲蚀磨损介质浓度(水砂比)为5000:2800,冲蚀角为90°,转速分别为200r/min、300r/min和400r/min。不同转速条件下基体和Fex涂层的冲蚀磨损数据如表4所示。通过进一步的计算,冲蚀磨损120min后Fe1涂层和Fe0涂层的耐冲蚀磨损性能较基体分别提高的3.67~3.76和2.56~2.59倍。
表4不同转速条件下的冲蚀磨损数据
由图7A~7C可知,在相同转速的条件下,基体的冲蚀磨损最为严重,而两种涂层的耐冲蚀磨损性能均较好。由图7D可知,随着转速的增加,冲蚀介质中的砂粒的动能增加,材料的冲蚀磨损速率增加,Fe1涂层的单位面积失重量曲线上升速率较缓慢,抗冲蚀磨损性能优于基体。
选择在冲蚀磨损转速为300r/min,冲蚀角为90°,介质浓度(水砂比)分别为5000:1600、5000:2800和5000:4000的条件下进行冲蚀磨损实验。在不同介质浓度条件下,基体和Fex涂层的冲蚀磨损失重量如表5所示。通过计算可以得出,在冲蚀磨损转速为300r/min时不同介质浓度Fe1涂层和Fe0涂层的耐冲蚀磨损性较基体分别提高的3.46~5.27和2.59~4.65倍。由图8A~8D可知,在相同转速、不同介质浓度的条件下,基体的冲蚀磨损失重量最大,而Fe1涂层冲蚀磨损失重量最小,说明其耐冲蚀磨损性能最好。在冲蚀磨损初期,基体和涂层的冲蚀磨损失重速度较快,因为基体和复合涂层表面凹凸不平且结合不牢固,在磨损过程中快速脱落,导致质量的减少。随着冲蚀磨损时间的延长,基体与涂层的质量减少量逐渐增大,但此时基体和复合涂层已进入稳态冲蚀磨损阶段,冲蚀磨损失重速度相对较慢。
表5不同介质浓度下的冲蚀磨损数据
综上可知,在转速恒定的情况下,随着水砂比的增加,基体和涂层的单位面积磨损量都先增加在减少,但总体上来说都呈上升形式。而基体的磨损量永远大于涂层的磨损量,显然,涂层的制备很大程度的提高了基体的耐磨性,其中,外加Fe粉的Fe1涂层的耐磨性明显优于不外加Fe粉的Fe0涂层的耐磨性。
通过实验可知,Fe1涂层、Fe0涂层的显微硬度最高可达到524.9HV0.2、497.8HV0.2。在磨粒磨损实验中,在载荷为40N时,Fe1涂层、Fe0涂层的耐磨性较基体分别提高4.12、3.35倍;而在载荷为60N时,较基体分别提高3.55、3.06倍。在冲蚀磨损实验中,在转速分别为200r/min、300r/min和400r/min时Fe1涂层、Fe0涂层的耐冲蚀磨损性能较基体分别提高3.67~3.76和2.56~2.59倍;在介质浓度分别为5000:1600、5000:2800和5000:4000时,Fe1涂层和Fe0涂层的耐冲蚀磨损性能较基体分别提高2.59~4.65和3.46~5.27倍。
综上,可以看出,Fe1涂层的硬度及磨损性能均优于Fe0涂层的硬度及磨损性能。结合XRD物相进行分析,Fe元素的加入,提高了***的混合熵,促进了简单固溶体的形成,降低了电负性差,同时对脆性金属间化合物的生成起到了抑制作用。

Claims (6)

1.氩弧熔覆高熵合金涂层的制备方法,其特征在于:包括如下步骤,
第一步,基体的制备;
采用轧制态Q235A钢作为基体材料,打磨,清洗,吹干,置于干燥箱中备用;
第二步,涂层材料选取;
选择Fe、Al、Cr、Cu、Co、Ti六种元素作为高熵合金的元素,设计FexAlCrCuCoTi0.4高熵合金涂层配比,x=1,0;
第三步,氩弧熔覆制备氩弧熔覆高熵合金涂层;
根据配方称量所需高温合金元素的粉末,然后压成预制块;将预制块置于基体表面,利用氩弧熔覆的方法制备高熵合金基复合涂层,制备工艺及参数包括:焊接电流180~220A,焊接速度60~80mm·min-1,氩气流量6~7.5L·min-1,电弧长度2~4mm;
上述制备得到的高熵合金涂层中的组织结构由单一的BCC相组成,涂层的显微硬度497.8HV0.2~524.9HV0.2;在磨粒磨损实验中,在载荷为40N时,涂层的耐磨性较基体提高3.35~4.12倍;在载荷为60N时,较基体提高3.06~3.55倍;在冲蚀磨损实验中,在转速分别为200r/min、300r/min和400r/min时,涂层的耐冲蚀磨损性能较基体提高2.56~3.76倍;在介质浓度分别为5000:1600、5000:2800和5000:4000时,涂层的耐冲蚀磨损性能较基体提高2.59~5.27倍。
2.根据权利要求1所述的氩弧熔覆高熵合金涂层的制备方法,其特征在于:所述的焊接速度为75mm·min-1,氩气流量6L·min-1,电弧长度3.5mm,焊接电流200A。
3.根据权利要求1所述的氩弧熔覆高熵合金涂层的制备方法,其特征在于:所述的氩弧熔覆采用WS-500型交直流脉冲钨极氩弧焊机。
4.根据权利要求1所述的氩弧熔覆高熵合金涂层的制备方法,其特征在于:所述的预制块通过如下方式制备得到:高温合金元素的粉末放在研钵中,加入模数为2.5的水玻璃,研磨均匀后倒入模具中,使用WE-30液压式万能实验机在110MPa压力下将润湿粉末压成预制块,将压好的预制块阴干24h后放置在烘干箱中150℃烘干2h。
5.一种氩弧熔覆高熵合金涂层,其特征在于:高熵合金涂层中的组织结构由单一的BCC相组成,Fe1AlCrCuCoTi0.4高熵合金涂层与基体间呈冶金结合,显微硬度高达524.9HV0.2,为基体的3.07倍。
6.根据权利要求5所述的一种氩弧熔覆高熵合金涂层,其特征在于:在磨粒磨损实验中,在载荷为40N时,涂层的耐磨性较基体提高4.12倍;在载荷为60N时,较基体提高3.55倍;在冲蚀磨损实验中,在转速分别为200r/min、300r/min和400r/min时,涂层的耐冲蚀磨损性能较基体提高3.67~3.76倍;在介质浓度分别为5000:1600、5000:2800和5000:4000时,涂层的耐冲蚀磨损性能较基体提高3.46~5.27倍。
CN201710108364.5A 2017-02-27 2017-02-27 氩弧熔覆高熵合金涂层及其制备方法 Active CN106894015B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710108364.5A CN106894015B (zh) 2017-02-27 2017-02-27 氩弧熔覆高熵合金涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710108364.5A CN106894015B (zh) 2017-02-27 2017-02-27 氩弧熔覆高熵合金涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN106894015A CN106894015A (zh) 2017-06-27
CN106894015B true CN106894015B (zh) 2019-04-16

Family

ID=59185356

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710108364.5A Active CN106894015B (zh) 2017-02-27 2017-02-27 氩弧熔覆高熵合金涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN106894015B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108486450B (zh) * 2018-05-11 2019-07-16 哈尔滨工业大学 一种生物医用高熵合金及其制备方法
CN114059065A (zh) * 2021-11-18 2022-02-18 江苏科技大学 氩弧熔覆高熵合金涂层及其制备方法和应用
CN114686741B (zh) * 2022-03-31 2022-12-16 有研工程技术研究院有限公司 一种具有涂层的难熔高熵合金及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0559229A1 (en) * 1992-03-06 1993-09-08 Sulzer Plasma Technik, Inc. Method for preparing binder-free clad powders
CN104630769A (zh) * 2015-01-28 2015-05-20 辽宁工程技术大学 粉煤灰活性氩弧熔覆Ni基氧化铝-二硼化钛复合涂层及其制备方法
CN104668817A (zh) * 2015-01-28 2015-06-03 辽宁工程技术大学 一种粉煤灰活性氩弧焊剂及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0559229A1 (en) * 1992-03-06 1993-09-08 Sulzer Plasma Technik, Inc. Method for preparing binder-free clad powders
CN104630769A (zh) * 2015-01-28 2015-05-20 辽宁工程技术大学 粉煤灰活性氩弧熔覆Ni基氧化铝-二硼化钛复合涂层及其制备方法
CN104668817A (zh) * 2015-01-28 2015-06-03 辽宁工程技术大学 一种粉煤灰活性氩弧焊剂及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Mn、V、Mo、Ti、Zr元素对AlFeCrCoCu-X高熵合金组织与高温氧化性能的影响";谢红波等;《中国有色金属学报》;20150131;第25卷(第1期);第103-110页 *
"熔覆电流对AlCrFeCoNiCu高熵合金涂层显微组织的影响";霍文燚;《金属热处理》;20140831;第39卷(第8期);第24-27页 *

Also Published As

Publication number Publication date
CN106894015A (zh) 2017-06-27

Similar Documents

Publication Publication Date Title
CN104651828B (zh) 一种铁基合金表面制备高熵合金基复合材料改性层用粉料
CN105112909B (zh) 一种添加CeO2的铁基Cr3C2激光熔覆涂层及其制备方法
CN106894016B (zh) 氩弧熔覆碳化钛增强的高熵合金基复合涂层及其制备方法
Wang et al. Microstructure and wear properties of TiC/FeCrBSi surface composite coating prepared by laser cladding
CN107299342A (zh) 一种高熵合金涂层及其制备方法和用途
Liu et al. Microstructure and wear behavior of (Cr, Fe) 7C3 reinforced composite coating produced by plasma transferred arc weld-surfacing process
CN106894015B (zh) 氩弧熔覆高熵合金涂层及其制备方法
CN108118338B (zh) 一种高频感应加热熔覆TiC增强高熵合金涂层的方法
CN103451648B (zh) 一种激光熔覆TiB2-Ni基金属陶瓷涂层及其制备方法
CN106756998A (zh) 一种钛合金表面激光熔覆镍基熔覆层及其制备工艺
CN101444981B (zh) 铜合金表面激光诱导原位制备钴基合金梯度涂层及其方法
CN106756996B (zh) 一种稀土改性激光熔覆层及其制备工艺
CN104646660B (zh) 一种铁单元素基合金表面激光高熵合金化用粉料
Cui et al. The abrasion resistance of brazed diamond using Cu–Sn–Ti composite alloys reinforced with boron carbide
Liu et al. Microstructure and high-temperature wear and oxidation resistance of laser clad γ/W2C/TiC composite coatings on γ-TiAl intermetallic alloy
CN106756997A (zh) 一种陶瓷强化金属基激光熔覆层及其制备工艺
Zhang et al. Tribological behavior of diamond reinforced FeNiCoCrTi0. 5 carbonized high-entropy alloy coating
CN109290698B (zh) 以复合粉粒和实心焊丝为堆焊材料制备高硼合金的方法
CN110295363A (zh) 一种AlCoCrFeMnNi高熵合金粉末及其熔覆层的制备方法
Ghahabi et al. Effect of iron content on the wear behavior and adhesion strength of TiC–Fe nanocomposite coatings on low carbon steel produced by air plasma spray
Chu et al. Application of pre-alloyed powders for diamond tools by ultrahigh pressure water atomization
Lin et al. Elucidating the microstructure and wear behavior for multicomponent alloy clad layers by in situ synthesis
CN105132914A (zh) 一种添加纳米Ti的激光熔覆Fe基Cr3C2复合涂层及其制备方法
CN106894014B (zh) 一种活性氩弧熔覆高熵合金涂层及其制备方法
Zhao et al. Microstructure and wear properties of niobium carbide particulates gradient-distribution composite layer fabricated in situ

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant