CN106892543A - 深度去除废水中高浓度硝态氮的方法 - Google Patents

深度去除废水中高浓度硝态氮的方法 Download PDF

Info

Publication number
CN106892543A
CN106892543A CN201710296407.7A CN201710296407A CN106892543A CN 106892543 A CN106892543 A CN 106892543A CN 201710296407 A CN201710296407 A CN 201710296407A CN 106892543 A CN106892543 A CN 106892543A
Authority
CN
China
Prior art keywords
coal gas
nitrate nitrogen
gas washing
nitrogen
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710296407.7A
Other languages
English (en)
Inventor
姜笔存
曲艳南
宋均轲
于伟华
胡海兰
谈政焱
陈达
王强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Environmental Protection Industry Innovation Center Co Ltd
Original Assignee
Nanjing Environmental Protection Industry Innovation Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Environmental Protection Industry Innovation Center Co Ltd filed Critical Nanjing Environmental Protection Industry Innovation Center Co Ltd
Priority to CN201710296407.7A priority Critical patent/CN106892543A/zh
Publication of CN106892543A publication Critical patent/CN106892543A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/163Nitrates

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

本发明涉及一种深度去除废水中高浓度硝态氮的方法。其目的是为了提供一种经济、高效、耐寒的深度去除废水中高浓度硝态氮的方法。本发明深度去除废水中高浓度硝态氮的方法包括以下步骤:反硝化深床滤池处理过程;磁性离子交换树脂吸附过程;磁性离子交换树脂的再生。本发明的深度去除废水中高浓度硝态氮的方法利用反硝化深床滤池技术与磁性离子交换树脂吸附技术的技术特点,集成二者的组合工艺,实现废水高浓度硝态氮的深度去除。本发明属于废水处理领域。

Description

深度去除废水中高浓度硝态氮的方法
技术领域
本发明属于废水处理领域,具体地说,涉及一种深度去除废水中高浓度硝态氮的方法。
背景技术
近年来,由于过量的氮等一些植物性营养元素污染物质大量排入水体,水体的富营养化速度大大加快。水体中的氮主要以硝态氮、亚硝态氮、氨氮、有机氮等几种形式存在。其中硝态氮的去除一直为氮污染处理难点,目前主要应用的技术有膜分离技术与生化反硝化技术。
废水处理领域中,膜分离技术是用人工合成或天然的高分子薄膜,以外界能量或化学位差为推动力,对水中污染物进行选择性分离,从而使废水得到净化的技术。HT Huang等人的研究表明,膜分离技术对高浓度硝态氮废水的处理效果较好,但该技术投资成本较高,且核心元件——膜的使用寿命短,需定期清洗、更换,操作过程复杂、运行维护费用高。经验表明,膜分离处理工艺浓缩液产生量较大,约为处理水量的25%-30%,浓缩液B/C低等原因导致浓缩液难以处理,且膜通量每年降低40%以上。
生化反硝化技术是在缺氧状态下,反硝化菌将硝态氮还原成氮气的过程。生化反硝化技术是一种常见的总氮去除技术,WW Gao等人的研究及技术应用表明,该技术受温度的影响较大,季节性温度变化容易影响反硝化工艺处理效果,当温度较低时,反硝化细菌活性下降很快,总氮去除效率大幅降低。
反硝化深床滤池技术是传统生化反硝化技术的延伸,深床模式能够更好地促进反硝化脱氮效果。SHEN Xiao-ling等人对反硝化深床滤池的应用研究表明,该技术对硝态氮的去除效率较传统生化反硝化技术高,且耐低温能力也有所提升。但废水中的硝态氮浓度较高时,单纯采用反硝化深床滤池技术处理,需向体系中投加大量碳源,运行成本过高,且难以将硝态氮彻底去除。
磁性离子交换树脂吸附技术是一种高选择性的吸附去除技术。磁性离子交换树脂具有正电性的特殊季铵盐结构,能够选择性地与水体中呈负电性的硝态氮进行作用,从而将其从水体中高效深度去除。树脂对废水中硝态氮的吸附与解吸,均为物化过程,受温度变化影响弱,可耐低温。废水中的硝态氮浓度较高时,单独的磁性离子交换树脂吸附技术虽可将硝态氮高效吸附去除,但处理成本较高。
膜技术作为一种传统的高浓度硝态氮去除技术,运行维护费用过高;而另一种生化反硝化技术,不耐低温,且对较难彻底去除高浓度的硝态氮。
发明内容
本发明是为了解决现有废水高浓度硝态氮去除存在的技术欠缺、不抗低温、去除难彻底、稳定性差的技术问题,而提供了一种经济、高效、耐寒的深度去除废水中高浓度硝态氮的方法。本发明将反硝化深床滤池技术对废水中硝态氮的初步削减能力,与磁性离子交换树脂吸附技术对废水中硝态氮的高效深度去除作用相结合,且二者均在能一定程度上耐低温的特点,集成一种经济高效深度去除废水中高浓度硝态氮的耐寒方法。
本发明涉及一种深度去除废水中高浓度硝态氮的方法,所述方法包括以下步骤:
A、反硝化深床滤池处理过程:将待处理废水泵入反硝化深床滤池,调节碳氮比和水力停留时间,将出水硝态氮浓度稳定在一定范围内;
B、磁性离子交换树脂吸附过程:将反硝化深床滤池的出水泵入磁性树脂吸附反应器,通过调节水力负荷和吸附时间深度去除硝态氮;
C、磁性离子交换树脂的再生:将磁性树脂吸附反应器中的饱和磁性离子交换树脂以一定比例输出至树脂再生器,使用再生剂对树脂进行再生,再生后的树脂输回磁性树脂吸附反应器循环利用。
优选地,步骤A中,所述的待处理废水pH为6.5~7.5,温度为15~35℃。
优选地,步骤A中,所述的碳氮比(C/N)为3~6,水力停留时间为20~60min。
优选地,步骤A中,所述的出水硝态氮浓度为30~50mg/L。
优选地,步骤B中,所述的磁性离子交换树脂为中国专利申请公布号CN 105461846A、CN 102430433 A、CN 103497281 A、CN 103435733 A公开的发明树脂中的一种或几种。
优选地,步骤B中,所述的水力负荷为3~6m3/(m2·h),吸附时间为15~45min。
优选地,步骤C中,所述的饱和磁性离子交换树脂输出至树脂再生器的量为10~30wt%。
优选地,步骤C中,所述的再生剂为10~26.7wt%的氯化钠。
优选地,所述待处理废水硝态氮浓度为60~100mg/L,磁性离子交换树脂吸附后出水硝态氮浓度为10~20mg/L。
本发明深度去除废水中高浓度硝态氮的方法与现有技术不同之处在于:
(1)本发明中的一种深度去除废水中高浓度硝态氮的方法,可实现废水中高浓度硝态氮的高效去除;
(2)本发明中的一种深度去除废水中高浓度硝态氮的方法,可实现低温条件下废水中硝态氮的深度去除;
(3)本发明中的一种深度去除废水中高浓度硝态氮的方法,可实现高浓度硝态氮的经济去除。
附图说明
图1为本发明深度去除废水中高浓度硝态氮的方法的工艺流程图。
具体实施方式
通过以下实施例对本发明的深度去除废水中高浓度硝态氮的方法作进一步的说明。
实施例1
如图1所示,本实施例的深度去除废水中高浓度硝态氮的方法按以下步骤进行:
A、反硝化深床滤池处理过程,即将NO3 --N浓度100mg/L,pH为6.5,温度为35℃的待处理废水泵入反硝化深床滤池,调节碳氮比为3,水力停留时间为20min,出水硝态氮浓度为50mg/L;
B、磁性离子交换树脂吸附过程,即将反硝化深床滤池出水泵入装填有中国专利申请公布号CN 105461846A的磁性树脂吸附反应器,调节水力负荷为6m3/(m2·h),吸附时间为15min,出水硝态氮浓度为20mg/L;
C、磁性离子交换树脂的再生,即将饱和磁性离子交换树脂以10wt%的比例输出至树脂再生器,使用10wt%的氯化钠对树脂进行再生,再生后的树脂输回磁性树脂吸附反应器循环利用。
实施例2
本实施例的深度去除废水中高浓度硝态氮的方法按以下步骤进行:
A、反硝化深床滤池处理过程,即将NO3 --N浓度80mg/L,pH为7,温度为25℃的待处理废水泵入反硝化深床滤池,调节碳氮比为4,水力停留时间为40min,出水硝态氮浓度为40mg/L;
B、磁性离子交换树脂吸附过程,即将反硝化深床滤池出水泵入装填有中国专利申请公布号CN 102430433A的磁性树脂吸附反应器,调节水力负荷为4m3/(m2·h),吸附时间为25min,出水硝态氮浓度为15mg/L;
C、磁性离子交换树脂的再生,即将饱和磁性离子交换树脂以20wt%的比例输出至树脂再生器,使用20wt%的氯化钠对树脂进行再生,再生后的树脂输回磁性树脂吸附反应器循环利用。
实施例3
本实施例的深度去除废水中高浓度硝态氮的方法按以下步骤进行:
A、反硝化深床滤池处理过程,即将NO3 --N浓度60mg/L,pH为7.5,温度为15℃的待处理废水泵入反硝化深床滤池,调节碳氮比为6,水力停留时间为60min,出水硝态氮浓度为30mg/L;
B、磁性离子交换树脂吸附过程,即将反硝化深床滤池出水泵入装填有中国专利申请公布号CN 103497281A的磁性树脂吸附反应器,调节水力负荷为3m3/(m2·h),吸附时间为45min,出水硝态氮浓度为10mg/L;
C、磁性离子交换树脂的再生,即将饱和磁性离子交换树脂以30wt%的比例输出至树脂再生器,使用26.7wt%的氯化钠对树脂进行再生,再生后的树脂输回磁性树脂吸附反应器循环利用。
通过上述实施例可知,本发明的技术方案利用反硝化深床滤池技术与磁性离子交换树脂吸附技术的技术特点,集成二者的组合工艺,实现废水高浓度硝态氮的深度去除。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式作出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (9)

1.一种深度去除废水中高浓度硝态氮的方法,其特征在于:所述方法包括以下步骤:
A、反硝化深床滤池处理过程:将待处理废水泵入反硝化深床滤池,调节碳氮比和水力停留时间,将出水硝态氮浓度稳定在一定范围内;
B、磁性树脂吸附过程:将反硝化深床滤池的出水泵入磁性树脂吸附反应器,通过调节水力负荷和吸附时间去除硝态氮;
C、磁性离子交换树脂的再生:将磁性树脂吸附反应器中的饱和磁性离子交换树脂以一定比例输出至树脂再生器,使用再生剂对树脂进行再生,再生后的树脂输回磁性树脂吸附反应器循环利用。
2.根据权利要求1所述的深度去除废水中高浓度硝态氮的方法,其特征在于:步骤A中,所述的待处理废水pH为6.5~7.5,温度为15~35℃。
3.根据权利要求1所述的深度去除废水中高浓度硝态氮的方法,其特征在于:步骤A中,所述的碳氮比为3~6,水力停留时间为20~60min。
4.根据权利要求1所述的深度去除废水中高浓度硝态氮的方法,其特征在于:步骤A中,所述的出水硝态氮浓度为30~50mg/L。
5.根据权利要求1所述的深度去除废水中高浓度硝态氮的方法,其特征在于:步骤B中,所述的磁性离子交换树脂为中国专利申请公布号CN 105461846 A、CN 102430433 A、CN103497281 A、CN 103435733 A公开的发明树脂中的一种或几种。
6.根据权利要求1所述的深度去除废水中高浓度硝态氮的方法,其特征在于:步骤B中,所述的水力负荷为3~6m3/(m2·h),吸附时间为15~45min。
7.根据权利要求1所述的深度去除废水中高浓度硝态氮的方法,其特征在于:步骤C中,所述的饱和磁性离子交换树脂输出至树脂再生器的量为10~30wt%。
8.根据权利要求1所述的深度去除废水中高浓度硝态氮的方法,其特征在于:步骤C中,所述的再生剂为10~26.7wt%的氯化钠。
9.根据权利要求1-8中任意一项权利要求所述的深度去除废水中高浓度硝态氮的方法,其特征在于:所述待处理废水硝态氮浓度为60~100mg/L,磁性离子交换树脂吸附后出水硝态氮浓度为10~20mg/L。
CN201710296407.7A 2017-04-28 2017-04-28 深度去除废水中高浓度硝态氮的方法 Pending CN106892543A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710296407.7A CN106892543A (zh) 2017-04-28 2017-04-28 深度去除废水中高浓度硝态氮的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710296407.7A CN106892543A (zh) 2017-04-28 2017-04-28 深度去除废水中高浓度硝态氮的方法

Publications (1)

Publication Number Publication Date
CN106892543A true CN106892543A (zh) 2017-06-27

Family

ID=59197152

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710296407.7A Pending CN106892543A (zh) 2017-04-28 2017-04-28 深度去除废水中高浓度硝态氮的方法

Country Status (1)

Country Link
CN (1) CN106892543A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109678242A (zh) * 2017-10-18 2019-04-26 中国石油化工股份有限公司 处理含高浓度硝态氮废水的方法
WO2019095629A1 (zh) * 2017-11-17 2019-05-23 南京大学 一种磁性树脂促进反硝化去除水中硝态氮的方法
CN110156107A (zh) * 2019-06-11 2019-08-23 泉州南京大学环保产业研究院 低浓度硝氮废水的处理方法
CN111018268A (zh) * 2019-12-31 2020-04-17 南京大学 一种树脂耦合反硝化脱氮的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347156A (en) * 1976-10-13 1978-04-27 Hitachi Ltd Method of removing nitrogen from waste water
CN102430433A (zh) * 2011-10-25 2012-05-02 南京大学 一种选择性去除硝态氮的磁性微球树脂及其制备方法
CN102531253A (zh) * 2012-03-06 2012-07-04 中国海洋大学 一种实现硝酸盐污染地下水资源化的方法和工艺
CN102603120A (zh) * 2012-03-14 2012-07-25 河海大学 处理低碳氮比污水的装置及方法
CN103435733A (zh) * 2013-08-23 2013-12-11 南京大学 一种亲水性高比表面积磁性树脂及其制备方法和应用于快速萃取水体中邻苯二甲酸酯的方法
CN103497281A (zh) * 2013-07-31 2014-01-08 南京大学 一种弱酸修饰高比表面积磁性树脂、其制备方法及其高效净化微污染水体的方法
CN104261596A (zh) * 2014-10-23 2015-01-07 湖北君集水处理有限公司 一种树脂脱污水厂出水硝酸盐氮及树脂再生液处理的方法
CN105461846A (zh) * 2014-09-05 2016-04-06 南京大学 一种去除重金属离子的磁性丙烯酸系多胺树脂及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347156A (en) * 1976-10-13 1978-04-27 Hitachi Ltd Method of removing nitrogen from waste water
CN102430433A (zh) * 2011-10-25 2012-05-02 南京大学 一种选择性去除硝态氮的磁性微球树脂及其制备方法
CN102531253A (zh) * 2012-03-06 2012-07-04 中国海洋大学 一种实现硝酸盐污染地下水资源化的方法和工艺
CN102603120A (zh) * 2012-03-14 2012-07-25 河海大学 处理低碳氮比污水的装置及方法
CN103497281A (zh) * 2013-07-31 2014-01-08 南京大学 一种弱酸修饰高比表面积磁性树脂、其制备方法及其高效净化微污染水体的方法
CN103435733A (zh) * 2013-08-23 2013-12-11 南京大学 一种亲水性高比表面积磁性树脂及其制备方法和应用于快速萃取水体中邻苯二甲酸酯的方法
CN105461846A (zh) * 2014-09-05 2016-04-06 南京大学 一种去除重金属离子的磁性丙烯酸系多胺树脂及其制备方法
CN104261596A (zh) * 2014-10-23 2015-01-07 湖北君集水处理有限公司 一种树脂脱污水厂出水硝酸盐氮及树脂再生液处理的方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109678242A (zh) * 2017-10-18 2019-04-26 中国石油化工股份有限公司 处理含高浓度硝态氮废水的方法
WO2019095629A1 (zh) * 2017-11-17 2019-05-23 南京大学 一种磁性树脂促进反硝化去除水中硝态氮的方法
US11254598B2 (en) * 2017-11-17 2022-02-22 Nanjing University Method for promoting denitrification to remove nitrate nitrogen in water by magnetic resins
CN110156107A (zh) * 2019-06-11 2019-08-23 泉州南京大学环保产业研究院 低浓度硝氮废水的处理方法
CN111018268A (zh) * 2019-12-31 2020-04-17 南京大学 一种树脂耦合反硝化脱氮的方法

Similar Documents

Publication Publication Date Title
CN106892543A (zh) 深度去除废水中高浓度硝态氮的方法
CN103570158B (zh) 一种从稀土生产废水中回收稀土且氨氮达标排放的方法
CN102515388B (zh) 一种高浓度含氰废水处理方法
CN1312063C (zh) 一种小区污水脱氨氮的方法
CN103936206B (zh) 一种同步去除污水生化尾水中有机物和磷的方法
CN204779148U (zh) 一种焦化废水深度处理及回用***
CN103288298B (zh) 一种处理焦化废水和煤化工废水的工艺
CN109354347A (zh) 一种硫酸新霉素生产废水的处理方法
CN103819024B (zh) 一种芴酮生产废水的预处理方法
CN101423314A (zh) 一种城市污水高效脱氮除磷及磷资源回收组合工艺
CN105712584A (zh) 分段短程硝化合并厌氧氨氧化同步处理养殖场沼液废水与城市污水的脱氮方法与装置
CN104591510B (zh) 一种有色冶金含氨废水的处理工艺
CN106904769B (zh) 去除废水中总氮污染物的集成吸附与脱附液套用的方法
CN107324606B (zh) 一种回用富铁剩余污泥除磷膜生物反应器污水处理***及处理方法
CN103833136B (zh) 废水亚硝化预处理设备和方法
CN105540831A (zh) 一种启动厌氧氨氧化滤柱的方法
CN112047464A (zh) 一种耐受低剂量富里酸厌氧氨氧化颗粒污泥培养方法
CN111018268A (zh) 一种树脂耦合反硝化脱氮的方法
CN105540824A (zh) 一种基于沸石吸附和生化再生的脱除低温废水氨氮的方法
CN110117135B (zh) 垃圾渗滤液处理方法
CN209940525U (zh) 一种深度处理废水中氨氮的***
CN104556459A (zh) 一种焦化废水深度处理后回用的方法
JPH06122000A (ja) 水処理方法
CN108455790B (zh) 一种焦化废水的生化和深度处理方法
CN105174352A (zh) 一种可循环的高效处理石油污染废水的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170627

RJ01 Rejection of invention patent application after publication