CN106886792B - 一种基于分层机制构建多分类器融合模型的脑电情感识别方法 - Google Patents

一种基于分层机制构建多分类器融合模型的脑电情感识别方法 Download PDF

Info

Publication number
CN106886792B
CN106886792B CN201710053891.0A CN201710053891A CN106886792B CN 106886792 B CN106886792 B CN 106886792B CN 201710053891 A CN201710053891 A CN 201710053891A CN 106886792 B CN106886792 B CN 106886792B
Authority
CN
China
Prior art keywords
emotion
electroencephalogram
channel
classifier
classification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710053891.0A
Other languages
English (en)
Other versions
CN106886792A (zh
Inventor
李贤�
闫健卓
李东佩
盛文瑾
王静
陈建辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201710053891.0A priority Critical patent/CN106886792B/zh
Publication of CN106886792A publication Critical patent/CN106886792A/zh
Application granted granted Critical
Publication of CN106886792B publication Critical patent/CN106886792B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2411Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computational Linguistics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Evolutionary Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

本发明涉及一种基于分层机制构建多分类器融合模型的脑电情感识别方法,收集多导情感脑电数据,并对其进行分析处理,包括脑电预处理、特征提取及基于权重度量的通道选择,以构建情感脑电特征矩阵。将情感脑电特征矩阵按照电极位置进行通道划分,并针对每个通道执行最优化特征选择集成,构建多个单一情感分类模型。以各分类模型在针对同一个情感识别问题时获得的差异性和精确度作为评估准则,选择每个通道的最优单一情感分类模型,得到待融合的分类器集。利用各个最优单一情感分类模型的分类误差作为权重,并基于加权投票法构建情感识别融合模型。本发明利用多分类器融合解决了脑电样本空间上难以获得较高情感识别率的问题。

Description

一种基于分层机制构建多分类器融合模型的脑电情感识别 方法
技术领域
本发明涉及情感计算领域,涉及一种基于脑电的情感识别方法,特别涉及一种基于通道分层机制与特征选择集成构建多分类器融合的脑电情感识别方法。
背景技术
情感是人脑的高级功能,是伴随着认知和意识过程产生的心理和生理状态,综合了人的感觉、思想和行为,在人与人之间的交流中扮演着非常重要的角色。近年来,随着普适技术和和计算机技术的快速发展,情感识别作为情感计算的一个关键问题已经成为计算机科学、认知科学和人工智能等领域一项重要的交叉学科研究课题,并得到越来越多的关注和应用。在临床医疗护理中,如果能够知道患者,尤其是有表达障碍的患者的情感状态,就可以根据患者的情感采取不同的护理措施提高护理质量。在产品开发过程中,如果能够测量用户在使用产品过程时的情感,了解用户体验,就可以改善产品功能并提高产品质量,更好的满足用户的需求。对于动车、高铁及长途客运等方面的司机需要长时间保持高度注意力和警觉度,如果能提前获取司机当天的情感状态,就可以有效的避免因司机的浮躁、愤怒、抑郁等消极情绪而造成的交通事故。此外,在对精神障碍患者的心理行为监控、智能多媒体推荐***及人机交互的友好和智能化等方面目前也得到了越来越多的关注。因此,利用情感识别技术对情感进行分析和评估具有重要的应用和研究价值。
较早的情感研究通常是利用人的面部表情、语音声调、身体姿态等外显特征来识别人的不同情感,这些人体信号虽然容易获取,但往往容易被人为掩饰或伪装,难以排除主观因素的影响,有时甚至无法获知内在真实的情感状态。而伴随情感的生理反应则由神经和内分泌***支配,具有自发性,不易受主观意念控制,故基于所对应生理信号的情感识别能获得客观真实的结果,也更贴切于实际应用。呼吸、心率、体表温度、皮肤阻抗等***神经生理信号常用来检测人的情感状态,但这些信号的差异性通常较小,变化的速率也通常较慢,在需要实时的快速识别情感的情况下,这些信号就不能满足研究的需要了。认知和神经生理学理论研究表明,人的大脑活动在情感的产生和活动过程中扮演着重要的角色,并且从大脑采集到的脑电信号能够检测到与情感状态变化相关的信息。近年来,脑电信号由于其不可伪装性和实时差异性的优点,并且随着脑电信号采集设备的应用和推广、信号处理和机器学习技术的快速发展以及计算机数据处理能力的大幅提高,基于脑电的情感识别在情感计算领域得到越来越多的关注和应用。
目前,基于脑电的情感识别技术主要是基于传统的单一分类器及其改进模型,常见的有支持向量机、决策树、贝叶斯网络、神经网络及K近邻算法等,取得了不错的识别效果,但仍有提升的空间。通常,对于情感识别,我们更专注于提高识别率并且对新的数据集具有良好的泛化能力。然而,现实中由于被试的文化差异、个体性格等客观因素使得在情感诱发实验中采集到的脑电数据往往具有类别不平衡性,同时随着实验时间的增加,被试疲累及心理波动导致其具有实验抵触心理,加上外界因素干扰会使得数据中常包含较多噪声。此外,大脑的非线性混沌特征使得脑电具有多样性和复杂性,不同脑区对情感的体验程度也不完全相同。以上因素大大增加了脑电情感识别的难度,使用传统的单一分类器很难实现在整个样本空间上的准确分类。常见的解决策略是针对特定的情感识别问题,通过多次测试比较寻找一个具有最佳分类性能的分类器。然而,当先验知识不足时,很难确定最佳分类器,且如果特征之间的差异较大,则难以将他们集中到单一分类器中进行决策。虽然每个分类器的性能不同,但他们的错分样本集不一定重叠,这表明在各种单一分类器中存在着一定的互补信息。如果能利用这些互补信息组合多个分类器,并让每个分类器都在其优势空间区域发挥作用,即多分类器融合,将有望提高脑电情感识别的准确率。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提出一种基于分层机制构建多分类器融合模型的脑电情感识别方法,旨在解决针对类别不平衡、非线性非平稳的情感脑电数据进行分类时,现有的情感识别方法准确率有待提高的问题。
本发明解决其技术问题所采取的技术方案是:一种基于分层机制构建多分类器融合模型的脑电情感识别方法,该方法包括如下步骤:
(1)收集多导情感脑电数据,并对其进行分析处理,包括脑电预处理、特征提取及基于权值度量的通道选择,以构建情感脑电特征矩阵。
(2)将情感脑电特征矩阵按照电极位置进行通道划分,并针对每个通道执行最优化特征选择集成,构建多个单一情感分类模型。
(3)以各分类模型在针对同一个情感识别问题时获得的差异性和精确度作为评估准则,选择每个通道的最优单一情感分类模型,得到待融合的分类器集。
(4)利用各个最优单一情感分类模型的分类误差作为权重,并基于加权投票法构建情感识别融合模型。
进一步的,步骤(1)是基于脑电分析处理构建情感脑电特征矩阵的方法,具体步骤包括:
将采集的多导情感脑电原始信号进行预处理,包括:重设参考电极即改变原参考电位、降采样即将原始采样频率从512Hz降至128Hz、滤波去噪即采用0.1Hz~50Hz的带通滤波、去伪迹干扰即利用独立分量分析去除眼电伪迹四个步骤。
对预处理后的每一导脑电数据以长2s、重叠1s的时间窗分割成T段,分别计算时域特征、统计特征、频域特征和非线性动力学特征,得到初始的情感脑电特征矩阵。
基于ReliefF方法计算各通道权值,利用权值大小来表征各通道对于情感识别的重要程度进而实现通道的选择,具体过程包括:
对提取的脑电特征值进行归一化,并初始化脑电特征权值w0
对每个样本xi采用欧式距离度量寻找相同情感类别的k个近邻Hj和不同类别的k个近邻Mj(c);
更新每一个特征fL的权值w(fL);
重复上述步骤m次,m为总样本数,输出所有样本特征权值w;
将每个通道的所有特征权值的平均值作为该通道的权值W(T);
将通道权值按照从大到小进行排序,选择D个权值较大的通道{Ch1,Ch2,…,ChD};
按照“通道-特征-分割段”的方式进行排列,得到一个包括m行、D×q×T列的二维情感脑电特征矩阵,m为总的样本数,D为选择出来的通道数,q是每个通道下提取的各类特征的数量,T是每导脑电被分割的数量。
进一步的,步骤(2)是结合通道划分和最优化特征选择集成生成基分类器的方法,具体包括如下步骤:
每个脑电通道上利用bootstrap采样方法产生S个训练子集{SubTr1,SubTr2,…,SubTrS};
对每个训练子集利用粒子群优化(PSO)算法选择最优脑电特征子集;
在每个训练子集的最优特征子集上利用SVM学习样本,以生成S个基分类器{SVM1,SVM2,…,SVMS}。
进一步的,步骤(3)是基于差异性和精确度的各通道最优基分类器选择方法,具体包括如下步骤:
用每个通道上生成的基分类器SVMS识别测试样本,根据识别结果,计算出每个基分类器的识别准确率AccS
根据分类器的识别率按从大到小排序,选择出识别效果最好的情感分类模型集
Figure BDA0001216640500000021
计算
Figure BDA0001216640500000022
中各分类模型与其他通道分类模型之间的平均差异性Divi
计算各通道最优情感分类模型的选择评估准则Evaluationi
进一步的,步骤5所述的基于加权投票的脑电情感分类模型融合方法具体包括:
计算各通道最优情感分类模型的分类误差Errort
计算各通道最优情感分类模型的权重ωt
统计各情感类别的投票得分Scorey
将得分最高的情感类别为最终的决策输出:Label=argmax(Scorey)。
本发明能够应用于所有基于脑电的情感识别***。
有益效果:
本发明利用通道分层思想,使用ReliefF算法对脑电各通道下的特征进行权值计算,将特征的平均权值作为该通道的权值,权值较大表明该通道与目标情感类别之间的相关性较高,根据权值大小进行通道筛选,以降低计算代价和内存消耗,并有望提高后续的情感识别准确率。基于“Bagging-PSO-SVM”的特征选择集成方法生成分类性能较好的基分类器,并利用“差异性+精确度”的评估准则动态选择各通道最优分类器,使得这些分类器具有较高识别能力和较多的互补信息,最后采取加权投票法对这些最优分类器的分类结果进行融合。利用多分类器融合解决了单一分类器在具有类别不平衡及复杂性的脑电样本空间上难以获得较高情感识别率的问题。
附图说明
图1为本发明一种基于分层机制构建多分类器融合的脑电情感识别方法较佳实施例的流程图。
图2为图1所示方法中步骤S101的具体流程图。
图3为图1所示方法中步骤S102的具体流程图。
图4为图1所示方法中步骤S102的示意图。
图5为图1所示方法中步骤S103的具体流程图。
图6为图1所示方法中步骤S104的具体流程图。
具体实施方式
本发明提供一种基于分层机制多分类器融合的脑电情感识别方法,为使本发明的目的、技术方案及效果更加清楚、明确,以下结合附图对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参阅图1,图1为本发明一种基于分层机制多分类器融合的脑电情感识别的较佳实施例的流程图,如图所示,其实施步骤,包括如下:
(1)收集多导情感脑电数据,并对其进行分析处理,如图2所示,包括脑电预处理、特征提取及通道选择,构成情感脑电特征矩阵,具体过步骤如下:
将采集的多导情感脑电原始信号进行预处理,包括:重设参考电极为Cz(改变原参考电位)、降采样(将原始采样频率从512Hz降至128Hz)、滤波去噪(采用0.1Hz~50Hz的带通滤波)、去伪迹干扰(利用独立分量分析去除眼电伪迹)四个步骤。
对预处理后的每一导脑电数据采用长2s、重叠1s的时间窗分割成T段,分别计算常用于表征情感的时域特征、统计特征、频域特征和非线性动力学特征,其中频域特征针对θ波(4-7.5Hz)、α波(8-13Hz)、β波(14-30Hz)、γ波(30-45Hz)提取相应特征,如表1所示,共得到N×q×T维的情感脑电特征向量,其中N是电极数,q是提取的各类情感脑电特征的数量,T是每一导脑电信号被分割的段数。
表1各类情感脑电特征
Figure BDA0001216640500000041
基于ReliefF方法计算各通道权值,利用权值大小来表征各通道对于情感识别的重要程度进而实现通道的选择,具体过程包括:
对提取的脑电特征值进行归一化,并初始化脑电特征权值w0
对每个样本xi采用欧式距离寻找与其相同情感类别的k个近邻Hj(j=1,2,…,k)和不同类别的k个近邻Mj(c),c=1,2,…C,C为情感类别数;
根据下式更新所有脑电特征的权值w(fL):
其中,class(xi)表示样本xi所属的情感类别,
Figure BDA0001216640500000043
表示第c类情感类别的概率,m和k可根据样本数及脑电特征维数进行设定,diff(f,x1,x2)表示脑电特征f中样本x1和x2之间的差值,用来度量样本x1和样本x2关于特征f的距离,可用下式进行计算:
Figure BDA0001216640500000044
重复上述步骤,直到所有样本均执行上述操作,最终得到所有样本特征权值w;
根据下式,将每个通道的所有特征权值的平均值作为该通道的权值W(t):
Figure BDA0001216640500000045
其中,L为每个通道下的特征数量,T表示第T个通道;
将通道权值按照从大到小进行排序,选择D个权值较大的通道{Ch1,Ch2,…,ChD}进行后续处理;
按照“通道-特征-分割段”的方式进行排列,得到一个包括m行、D×q×T列的二维情感脑电特征矩阵,m为总的样本数,D为选择出来的通道数,q是每个通道下提取的各类特征的数量,T是每导脑电被分割的数量。
(2)将情感脑电特征矩阵按照电极位置进行通道划分,并针对每个通道执行最优化特征选择集成,构建多个单一情感分类模型,如图3和图4所示,具体步骤如下:
每个脑电通道上利用bootstrap采样方法产生S个训练子集{SubTr1,SubTr2,…,SubTrS};
对每个训练子集基于粒子群优化(PSO)算法选择最优情感脑电特征子集;
在每个训练子集的最优特征子集上利用SVM学习样本,以生成S个情感基分类模型{SVM1,SVM2,…,SVMS}。
(3)以各分类模型在针对同一个情感识别问题时获得的差异性和精确度作为评估准则,选择每个通道的最优单一情感分类模型,得到待融合的分类器集,如图5所示,具体步骤如下:
用每个通道上生成的基分类器SVMS识别测试样本,根据识别结果,计算出每个基分类器的识别准确率AccS
根据分类器的识别率AccS按从大到小排序,选择出识别效果最好的情感分类模型集
Figure BDA0001216640500000056
根据下式计算
Figure BDA0001216640500000057
中各分类模型与其他通道分类模型之间的平均差异性:
Figure BDA0001216640500000051
其中,Divi表示分类器集中第i个分类器与其他通道生成的基分类器之间的决策差异度,M是其他通道生成的基分类器总数,N是测试集的样本数;
根据下式计算各通道最优情感分类模型的选择评估准则:
Evaluationi=Acci+α·Divi
其中Acci表示分类器集中第i个分类器的分类准确率,α是可调参数,表示差异度Divi在评估准则中的贡献度;
选择出具有最大评估值的分类模型作为该通道的最优情感分类模型,并参与最终的融合。
(4)利用各通道的最优情感基分类模型的分类误差作为权重,并基于加权投票法构建多分类器融合模型用于脑电情感识别,具体步骤如下:
根据下式计算各通道最优情感分类模型的分类误差:
Figure BDA0001216640500000052
其中N是测试集样本数,Ft(xk)表示第t个通道的最优分类器对样本xk的分类结果,yk是真实情感类别,Num用来统计数量;
根据下式计算各通道最优情感分类模型的权重:
Figure BDA0001216640500000053
根据下式统计各情感类别的投票得分:
其中,y是情感类别,
Figure BDA0001216640500000055
表示第t个分类器对类别y的投票,如果对样本的分类结果等于该样本的真实类别,则得1分,否则得0分;
将得分最高的情感类别为最终的决策输出:Label=argmax(Scorey)。
实施例:
下面对本发明的基于分层机制构建多分类器融合的脑电情感识别方法与传统的基于单一分类器的识别方法进行比较验证,实验参数选取包括如下:
仿真数据选自公开数据集DEAP中的脑电情感数据,共32名被试参与了数据采集,年龄在19至37岁之间,每名被试均要求观看40个音乐视频短片。在情感诱发实验过程中,采用二维情感模型来量化情感,包括唤醒度(Arousal)和效价(Valence)两个维度。每名被试在观看完一个视频之后需记录下自评量表(SAM)中的每个维度的度量值,取值范围为1-9。使用国际10-20***的32导电极帽采集脑电信号,采样频率为512Hz。脑电信号的预处理采用开源的EEGLAB脑电分析工具箱进行操作。
为验证本发明对于脑电情感识别的有效性以及与其他传统方法相比性能的优劣,进行了一组对比实验,实验结果如下所示:
表2本发明方法与其他方法的比较
Figure BDA0001216640500000061
从表2中可以得到,对于单一分类模型而言,支持向量机(SVM)要比其他三种方法的分类准确率要高,朴素贝叶斯(NB)次之,决策树(C4.5)效果最差。而本发明所提的基于分层机制的多分类器融合方法无论在效价(Valence)还是唤醒度(Arousal)维度上的分类准确率都要优于任何单一分类模型。可证明在针对具有类别不平衡性、复杂性等特点的脑电数据时,本发明所提出的方法可以解决单一分类模型的情感识别准确率较低的问题。
本发明旨在提出一种基于分层机制构建多分类器融合的脑电情感识别方法,通过对通道筛选后的脑电情感特征矩阵根据电极位置进行划分,然后分别采用特征选择集成构造多个情感分类模型,根据各分类模型的准确度和差异性选择各通道的最优单一情感分类模型,最后采取加权投票法对所有最优单一分类模型进行融合得到最终的情感识别结果。应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (4)

1.一种基于分层机制构建多分类器融合模型的脑电情感识别方法,其特征在于:该方法包括如下步骤,
(1)收集多导情感脑电数据,并对其进行分析处理,包括脑电预处理、特征提取及基于权值度量的通道选择,以构建情感脑电特征矩阵;
(2)将情感脑电特征矩阵按照电极位置进行通道划分,并针对每个通道执行最优化特征选择集成,构建多个单一情感分类模型;将情感脑电特征矩阵按照电极位置进行通道划分,并针对每个通道执行最优化特征选择集成,构建多个单一情感分类模型,具体步骤如下:
每个脑电通道上利用bootstrap采样方法产生S个训练子集{SubTr1,SubTr2,...,SubTrS};
对每个训练子集基于粒子群优化(PSO)算法选择最优情感脑电特征子集;
在每个训练子集的最优特征子集上利用SVM学习样本,以生成S个情感基分类模型{SVM1,SVM2,...,SVMS};
(3)以各分类模型在针对同一个情感识别问题时获得的差异性和精确度作为评估准则,选择每个通道的最优单一情感分类模型,得到待融合的分类器集;
(4)利用各个最优单一情感分类模型的分类误差作为权重,并基于加权投票法构建情感识别融合模型。
2.根据权利要求1所述的一种基于分层机制构建多分类器融合模型的脑电情感识别方法,其特征在于:步骤(1)的基于脑电分析处理构建情感脑电特征矩阵的方法,具体步骤包括:
将采集的多导情感脑电原始信号进行预处理,包括:重设参考电极即改变原参考电位、降采样即将原始采样频率从512Hz降至128Hz、滤波去噪即采用0.1Hz~50Hz的带通滤波、去伪迹干扰即利用独立分量分析去除眼电伪迹四个步骤;
对预处理后的每一导脑电数据以长2s、重叠1s的时间窗分割成T段,分别计算时域特征、统计特征、频域特征和非线性动力学特征,得到初始的情感脑电特征矩阵;
基于ReliefF方法计算各通道权值,利用权值大小来表征各通道对于情感识别的重要程度进而实现通道的选择,具体过程包括:
对提取的脑电特征值进行归一化,并初始化脑电特征权值w0
对每个样本xi采用欧式距离度量寻找相同情感类别的k个近邻Hj和不同类别的k个近邻Mj(c);
更新每一个特征fL的权值w(fL);
重复上述步骤m次,m为总样本数,输出所有样本特征权值w;
将每个通道的所有特征权值的平均值作为该通道的权值W(T);
将通道权值按照从大到小进行排序,选择D个权值较大的通道{Ch1,Ch2,...,ChD};
按照“通道-特征-分割段”的方式进行排列,得到一个包括m行、D×q×T列的二维情感脑电特征矩阵,m为总的样本数,D为选择出来的通道数,q是每个通道下提取的各类特征的数量,T是每导脑电被分割的数量。
3.根据权利要求1所述的一种基于分层机制构建多分类器融合模型的脑电情感识别方法,其特征在于:步骤(3)的基于差异性和精确度的各通道最优基分类器选择方法,具体包括如下步骤:
用每个通道上生成的基分类器SVMS识别测试样本,根据识别结果,计算出每个基分类器的识别准确率AccS
根据分类器的识别率按从大到小排序,选择出识别效果最好的情感分类模型集
Figure FDA0002212033120000021
计算
Figure FDA0002212033120000022
中各分类模型与其他通道分类模型之间的平均差异性Divi
计算各通道最优情感分类模型的选择评估准则Evaluationi
4.根据权利要求1所述的一种基于分层机制构建多分类器融合模型的脑电情感识别方法,其特征在于:步骤(4)所述的基于加权投票的脑电情感分类模型融合方法具体包括:
计算各通道最优情感分类模型的分类误差Errort
计算各通道最优情感分类模型的权重ωt
统计各情感类别的投票得分Scorey
将得分最高的情感类别为最终的决策输出:Label=argmax(Scorey)。
CN201710053891.0A 2017-01-22 2017-01-22 一种基于分层机制构建多分类器融合模型的脑电情感识别方法 Active CN106886792B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710053891.0A CN106886792B (zh) 2017-01-22 2017-01-22 一种基于分层机制构建多分类器融合模型的脑电情感识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710053891.0A CN106886792B (zh) 2017-01-22 2017-01-22 一种基于分层机制构建多分类器融合模型的脑电情感识别方法

Publications (2)

Publication Number Publication Date
CN106886792A CN106886792A (zh) 2017-06-23
CN106886792B true CN106886792B (zh) 2020-01-17

Family

ID=59176822

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710053891.0A Active CN106886792B (zh) 2017-01-22 2017-01-22 一种基于分层机制构建多分类器融合模型的脑电情感识别方法

Country Status (1)

Country Link
CN (1) CN106886792B (zh)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107669266A (zh) * 2017-10-12 2018-02-09 公安部南昌警犬基地 一种动物脑电分析***
CN107944473A (zh) * 2017-11-06 2018-04-20 南京邮电大学 一种基于多分类器主客观融合的生理信号情感识别方法
CN108021941B (zh) * 2017-11-30 2020-08-28 四川大学 药物肝毒性预测方法及装置
CN108420430A (zh) * 2018-04-02 2018-08-21 东北电力大学 一种基于嗅觉脑电波和pso-svm的感官物质分类方法
CN108549875B (zh) * 2018-04-19 2022-04-15 北京工业大学 一种基于深度通道注意力感知的脑电癫痫发作检测方法
CN108937968B (zh) * 2018-06-04 2021-11-19 安徽大学 基于独立分量分析的情感脑电信号的导联选择方法
CN109034235B (zh) * 2018-07-20 2021-09-28 安徽理工大学 一种基于多特征的集成svm噪点检测方法
CN109117787A (zh) * 2018-08-10 2019-01-01 太原理工大学 一种情感脑电信号识别方法及***
CN109447125B (zh) * 2018-09-28 2019-12-24 北京达佳互联信息技术有限公司 分类模型的处理方法、装置、电子设备及存储介质
CN109330613A (zh) * 2018-10-26 2019-02-15 蓝色传感(北京)科技有限公司 基于实时脑电的人体情绪识别方法
CN109620152B (zh) * 2018-12-16 2021-09-14 北京工业大学 一种基于MutiFacolLoss-Densenet的心电信号分类方法
CN109656366B (zh) * 2018-12-19 2022-02-18 电子科技大学中山学院 一种情感状态识别方法、装置、计算机设备及存储介质
WO2020132941A1 (zh) * 2018-12-26 2020-07-02 中国科学院深圳先进技术研究院 识别方法及相关装置
CN110070105B (zh) * 2019-03-25 2021-03-02 中国科学院自动化研究所 基于元学习实例快速筛选的脑电情绪识别方法、***
CN110109543B (zh) * 2019-04-30 2021-08-31 福州大学 基于被试迁移的c-VEP识别方法
CN110414548A (zh) * 2019-06-06 2019-11-05 西安电子科技大学 基于脑电信号进行情感分析的层级Bagging方法
CN110472649B (zh) * 2019-06-21 2023-04-18 中国地质大学(武汉) 基于多尺度分析和集成树模型的脑电情感分类方法及***
CN110490152A (zh) * 2019-08-22 2019-11-22 珠海格力电器股份有限公司 基于图像识别的信息分享方法及电子设备
CN111134667B (zh) * 2020-01-19 2024-01-26 中国人民解放军战略支援部队信息工程大学 基于脑电信号的时间迁移情绪识别方法及***
CN111428580A (zh) * 2020-03-04 2020-07-17 威海北洋电气集团股份有限公司 基于深度学习的个体信号识别算法及***
CN111543988B (zh) * 2020-05-25 2021-06-08 五邑大学 一种自适应认知活动识别方法、装置及存储介质
CN111714118B (zh) * 2020-06-08 2023-07-18 北京航天自动控制研究所 一种基于集成学习的脑认知模型融合方法
CN111723867A (zh) * 2020-06-22 2020-09-29 山东大学 一种网络游戏迷恋度智能评估***及方法
CN111832438B (zh) * 2020-06-27 2024-02-06 西安电子科技大学 一种面向情感识别的脑电信号通道选择方法、***及应用
CN111860463B (zh) * 2020-08-07 2024-02-02 北京师范大学 一种基于联合范数的情感识别方法
CN112200016A (zh) * 2020-09-17 2021-01-08 东北林业大学 基于集成学习方法AdaBoost的脑电信号情感识别
CN112190269B (zh) * 2020-12-04 2024-03-12 兰州大学 基于多源脑电数据融合的抑郁症辅助识别模型构建方法
CN113243924A (zh) * 2021-05-19 2021-08-13 成都信息工程大学 基于脑电信号通道注意力卷积神经网络的身份识别方法
CN113408603B (zh) * 2021-06-15 2023-10-31 西安华企众信科技发展有限公司 一种基于多分类器融合的冠状动脉狭窄病变程度识别方法
CN113967022B (zh) * 2021-11-16 2023-10-31 常州大学 一种基于个体自适应的运动想象脑电特征表征方法
CN114209341B (zh) * 2021-12-23 2023-06-20 杭州电子科技大学 特征贡献度差异化脑电数据重构的情感激活模式发掘方法
CN114711790B (zh) * 2022-04-06 2022-11-29 复旦大学附属儿科医院 新生儿电惊厥类型确定方法、装置、设备和存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101187944A (zh) * 2007-11-30 2008-05-28 中国科学院合肥物质科学研究院 基于小生境粒子群优化算法的分类器集成的多层选择方法
CN101887721A (zh) * 2010-07-19 2010-11-17 东南大学 一种基于心电信号与语音信号的双模态情感识别方法
CN102106730A (zh) * 2011-03-16 2011-06-29 上海交通大学 基于分形特征的脑电信号处理及警觉度检测方法
CN102473247A (zh) * 2009-06-30 2012-05-23 陶氏益农公司 用于在包含分子遗传标志物的植物和动物数据集中挖掘关联规则,继而利用由这些关联规则创建的特征进行分类或预测的机器学习方法的应用
CN102722728A (zh) * 2012-06-11 2012-10-10 杭州电子科技大学 基于通道加权支持向量的运动想象脑电分类方法
US9147129B2 (en) * 2011-11-18 2015-09-29 Honeywell International Inc. Score fusion and training data recycling for video classification
CN105184316A (zh) * 2015-08-28 2015-12-23 国网智能电网研究院 一种基于特征权学习的支持向量机电网业务分类方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101187944A (zh) * 2007-11-30 2008-05-28 中国科学院合肥物质科学研究院 基于小生境粒子群优化算法的分类器集成的多层选择方法
CN102473247A (zh) * 2009-06-30 2012-05-23 陶氏益农公司 用于在包含分子遗传标志物的植物和动物数据集中挖掘关联规则,继而利用由这些关联规则创建的特征进行分类或预测的机器学习方法的应用
CN101887721A (zh) * 2010-07-19 2010-11-17 东南大学 一种基于心电信号与语音信号的双模态情感识别方法
CN102106730A (zh) * 2011-03-16 2011-06-29 上海交通大学 基于分形特征的脑电信号处理及警觉度检测方法
US9147129B2 (en) * 2011-11-18 2015-09-29 Honeywell International Inc. Score fusion and training data recycling for video classification
CN102722728A (zh) * 2012-06-11 2012-10-10 杭州电子科技大学 基于通道加权支持向量的运动想象脑电分类方法
CN105184316A (zh) * 2015-08-28 2015-12-23 国网智能电网研究院 一种基于特征权学习的支持向量机电网业务分类方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A multiobjective weighted voting ensemble classifier based on differential evolution algorithm for text sentiment classification;Aytu˘g Onan 等;《Expert Systems With Applications》;20160607;1-16 *
Aspect term extraction for sentiment analysis in large movie reviews using Gini Index feature selection method and SVM classifier;Asha S Manek 等;《World Wide Web》;20160204;135-154 *
Investigating Critical Frequency Bands and Channels for EEG-Based Emotion Recognition with Deep Neural Networks;Wei-Long Zheng 等;《IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT》;20150930;第7卷(第3期);162-175 *
ReliefF-Based EEG Sensor Selection Methods for Emotion Recognition;Jianhai Zhang 等;《Sensors》;20161231;1-15 *

Also Published As

Publication number Publication date
CN106886792A (zh) 2017-06-23

Similar Documents

Publication Publication Date Title
CN106886792B (zh) 一种基于分层机制构建多分类器融合模型的脑电情感识别方法
Dissanayake et al. Deep learning for patient-independent epileptic seizure prediction using scalp EEG signals
Nakisa et al. Long short term memory hyperparameter optimization for a neural network based emotion recognition framework
Liu et al. Subject-independent emotion recognition of EEG signals based on dynamic empirical convolutional neural network
George et al. Recognition of emotional states using EEG signals based on time-frequency analysis and SVM classifier.
CN110070105B (zh) 基于元学习实例快速筛选的脑电情绪识别方法、***
Rayatdoost et al. Cross-corpus EEG-based emotion recognition
CN113729707A (zh) 一种基于fecnn-lstm的眼动和ppg多模态融合的情感识别方法
Zhu et al. EEG-based emotion recognition using discriminative graph regularized extreme learning machine
KR102646257B1 (ko) 효율적인 멀티모달 특징그룹과 모델 선택 기반 감정인식을 위한 딥러닝 방법 및 장치
Soni et al. Graphical representation learning-based approach for automatic classification of electroencephalogram signals in depression
Wang et al. Maximum weight multi-modal information fusion algorithm of electroencephalographs and face images for emotion recognition
Zhuang et al. Real-time emotion recognition system with multiple physiological signals
Suchetha et al. Sequential Convolutional Neural Networks for classification of cognitive tasks from EEG signals
Immanuel et al. Recognition of emotion with deep learning using EEG signals-the next big wave for stress management in this covid-19 outbreak
Zhang et al. Four-classes human emotion recognition via entropy characteristic and random Forest
Siuly et al. Exploring Rhythms and Channels-Based EEG Biomarkers for Early Detection of Alzheimer's Disease
Saha et al. Automatic emotion recognition from multi-band EEG data based on a deep learning scheme with effective channel attention
Yang et al. Stochastic weight averaging enhanced temporal convolution network for EEG-based emotion recognition
Wang et al. EEG-based emotion identification using 1-D deep residual shrinkage network with microstate features
Weerasinghe et al. Emotional stress classification using spiking neural networks.
Liu et al. EEG-based emotion estimation using adaptive tracking of discriminative frequency components
Lu Human emotion recognition based on multi-channel EEG signals using LSTM neural network
Ilyas et al. An efficient emotion recognition frameworks for affective computing
Hasan et al. Emotion prediction through EEG recordings using computational intelligence

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant