CN106882842A - A kind of mesoporous petal-shaped ZnCo2O4The preparation method of meter Sized Materials - Google Patents
A kind of mesoporous petal-shaped ZnCo2O4The preparation method of meter Sized Materials Download PDFInfo
- Publication number
- CN106882842A CN106882842A CN201510930681.6A CN201510930681A CN106882842A CN 106882842 A CN106882842 A CN 106882842A CN 201510930681 A CN201510930681 A CN 201510930681A CN 106882842 A CN106882842 A CN 106882842A
- Authority
- CN
- China
- Prior art keywords
- znco
- petal
- mesoporous
- shaped
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
- C01G51/40—Complex oxides containing cobalt and at least one other metal element
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
Abstract
Description
技术领域technical field
本发明涉及材料合成技术领域,尤其涉及介孔花瓣状ZnCo2O4纳米固体材料的制备方法。The invention relates to the technical field of material synthesis, in particular to a method for preparing a mesoporous petal-like ZnCo 2 O 4 nanometer solid material.
背景技术Background technique
ZnCo2O4材料具备尖晶石结构特有的性质,其优良的电化学性质、气敏性质和催化性质等,已经被广泛地应用于陶瓷材料、固态气敏元件、异相催化剂、吸附材料、超级电容器等领域。近年来随着纳米科技的诞生和崛起,以及纳米材料表现出的表面与界面效应、小尺寸效应、量子尺寸效应、宏观量子隧道效应和介电限域效应等纳米效应,使纳米材料具有比块体材料更优越的光、电、磁、热、敏感特性以及物理机械特性。纳米结构的ZnCo2O4由于其稳定的结构和丰富的物理性能而引起了广泛的关注和研究。The ZnCo 2 O 4 material has the unique properties of the spinel structure. Its excellent electrochemical properties, gas sensing properties and catalytic properties have been widely used in ceramic materials, solid gas sensing elements, heterogeneous catalysts, adsorption materials, Supercapacitors and other fields. In recent years, with the birth and rise of nanotechnology, as well as the surface and interface effects, small size effects, quantum size effects, macroscopic quantum tunneling effects, and dielectric confinement effects exhibited by nanomaterials, nanomaterials have specific properties. The superior optical, electrical, magnetic, thermal, sensitive properties and physical and mechanical properties of bulk materials. Nanostructured ZnCo2O4 has attracted extensive attention and research due to its stable structure and abundant physical properties.
关于ZnCo2O4纳米颗粒的制备方法有水热合成法、化学共沉淀法、溶胶-凝胶法、高温自蔓延法、离子交换法等,这些方法制备得到的ZnCo2O4纳米颗粒虽然粒径均匀、分散度好、形貌可控。但操作过程复杂、影响因素不易控制、不能得到纯相的ZnCo2O4。本发明中采用均相沉淀法结合水热法制备出介孔花瓣状ZnCo2O4纳米固体材料。The preparation methods of ZnCo 2 O 4 nanoparticles include hydrothermal synthesis method, chemical co-precipitation method, sol-gel method, high temperature self-propagating method, ion exchange method, etc. The ZnCo 2 O 4 nanoparticles prepared by these methods are small Uniform diameter, good dispersion and controllable shape. However, the operation process is complicated, the influencing factors are not easy to control, and the pure phase ZnCo 2 O 4 cannot be obtained. In the present invention, a mesoporous petal-like ZnCo 2 O 4 nanometer solid material is prepared by using a homogeneous precipitation method combined with a hydrothermal method.
专利号CN103985858A公开了一种锂离子电池负极材料钴酸锌纳米片的制备方法。将摩尔比为1:2的锌盐和钴盐在亲水性溶剂中借助碱性试剂在微波辐照诱导性发生碱性水解反应,生成金属氢氧化物或碳氢化合物前驱体,然后进行低温热处理,得到二维超薄ZnCo2O4纳米片,最终用作锂离子电池负极材料。制备工艺简单,成本低廉,反应条件温和,整个反应过程不需要特殊设备,最终得到的产物质量较高,形貌和尺寸均匀。Patent No. CN103985858A discloses a method for preparing zinc cobaltate nanosheets, a negative electrode material for lithium ion batteries. Alkaline hydrolysis of zinc salt and cobalt salt with a molar ratio of 1:2 in a hydrophilic solvent is induced by microwave irradiation with the help of alkaline reagents to generate metal hydroxide or hydrocarbon precursors, and then low temperature After heat treatment, two-dimensional ultra-thin ZnCo 2 O 4 nanosheets are obtained, which are finally used as negative electrode materials for lithium-ion batteries. The preparation process is simple, the cost is low, the reaction conditions are mild, the whole reaction process does not require special equipment, and the finally obtained product has high quality and uniform shape and size.
发明内容Contents of the invention
本发明的目的是提供一种介孔花瓣状ZnCo2O4纳米固体材料的制备方法。与其他方法相比,本发明具有反应过程简单,反应时间短,无需任何复杂的操作及特殊的设备等优点。本发明合成的ZnCo2O4微球大小较为均一、分散性好、呈花瓣状且有介孔结构,比表面积较大,具有很好的应用前景。The object of the present invention is to provide a method for preparing a mesoporous petal-shaped ZnCo 2 O 4 nanometer solid material. Compared with other methods, the present invention has the advantages of simple reaction process, short reaction time, no complicated operation and special equipment and the like. The ZnCo 2 O 4 microspheres synthesized by the invention have relatively uniform size, good dispersibility, petal shape and mesoporous structure, large specific surface area and good application prospect.
本发明采取的技术方案为:The technical scheme that the present invention takes is:
一种介孔花瓣状ZnCo2O4纳米固体材料的制备方法,步骤如下:A preparation method of mesoporous petal-shaped ZnCo 2 O 4 nanometer solid material, the steps are as follows:
(1)室温下,将一定量含锌化合物(硫酸锌,硝酸锌,氯化锌中的一种),含钴化合物(硫酸钴,硝酸钴,氯化钴中的一种)和均相沉淀剂尿素溶于溶剂(水或/和乙醇)中,充分搅拌一定时间,形成稳定的溶液。(1) At room temperature, a certain amount of zinc-containing compound (one of zinc sulfate, zinc nitrate, and zinc chloride), cobalt-containing compound (one of cobalt sulfate, cobalt nitrate, and cobalt chloride) and homogeneous precipitation Dissolve urea in a solvent (water or/and ethanol) and stir thoroughly for a certain period of time to form a stable solution.
(2)将混合溶液转移至聚四氟乙烯内衬的不锈钢高温高压反应釜中,在120~180℃下加热12~24h,之后冷却至室温。(2) Transfer the mixed solution to a polytetrafluoroethylene-lined stainless steel high-temperature and high-pressure reactor, heat at 120-180° C. for 12-24 hours, and then cool to room temperature.
(3)所得产物用去离子水和无水乙醇分别清洗3遍,离心过滤,于50~60℃下真空干燥。得到ZnCo2O4前驱体纳米固体材料。(3) The obtained product was washed three times with deionized water and absolute ethanol respectively, centrifugally filtered, and vacuum-dried at 50-60°C. The ZnCo 2 O 4 precursor nano solid material is obtained.
(4)干燥后的产物在空气气氛中一定温度下加热一定时间,制备介孔花瓣状ZnCo2O4纳米固体材料。(4) The dried product is heated in an air atmosphere at a certain temperature for a certain period of time to prepare a mesoporous petal-like ZnCo 2 O 4 nanometer solid material.
上述实验过程得到的介孔花瓣状ZnCo2O4纳米固体材料具有均一介孔结构,实现了发明的目的。The mesoporous petal-like ZnCo 2 O 4 nano solid material obtained in the above experimental process has a uniform mesoporous structure, and the purpose of the invention is achieved.
附图说明Description of drawings
图1是制备的介孔花瓣状ZnCo2O4纳米固体材料的XRD图片。Fig. 1 is an XRD picture of the prepared mesoporous petal-like ZnCo 2 O 4 nano-solid material.
图2是制备的介孔花瓣状ZnCo2O4纳米固体材料的SEM图片。Fig. 2 is a SEM picture of the prepared mesoporous petal-like ZnCo 2 O 4 nano-solid material.
具体实施方式detailed description
下面结合具体实施例进一步说明。Further description will be given below in conjunction with specific examples.
实施例1:Example 1:
室温下,将1mmol氯化锌,2mmol氯化钴和12mmol尿素溶于50ml水和30ml乙醇中,置于磁力搅拌器上,充分搅拌使之全部溶解。搅拌30min后,将溶液转移一个100ml的具有聚四氟乙烯内衬的不锈钢高温高压反应釜中,置于马弗炉中在160℃下水热反应18h,然后冷却至室温,所得产物用无水乙醇清洗三遍,除去可能残余的杂质,离心过滤,在60℃下真空干燥。将干燥后的产物在空气气氛中于500℃下煅烧2h。得到具有介孔花瓣状ZnCo2O4纳米固体材料(如图1、图2所示)。At room temperature, dissolve 1mmol of zinc chloride, 2mmol of cobalt chloride and 12mmol of urea in 50ml of water and 30ml of ethanol, place on a magnetic stirrer, stir fully to dissolve them all. After stirring for 30 minutes, the solution was transferred to a 100ml stainless steel high-temperature and high-pressure reactor with a polytetrafluoroethylene liner, placed in a muffle furnace for hydrothermal reaction at 160°C for 18 hours, and then cooled to room temperature. The resulting product was washed with absolute ethanol Wash three times to remove possible residual impurities, centrifugally filter, and vacuum-dry at 60°C. The dried product was calcined at 500° C. for 2 h in an air atmosphere. A petal-shaped ZnCo 2 O 4 nanometer solid material with mesoporous pores was obtained (as shown in FIG. 1 and FIG. 2 ).
实施例2:Example 2:
室温下,将1mmol氯化锌,2mmol氯化钴和12mmol尿素溶于50ml水和30ml乙醇中,置于磁力搅拌器上,充分搅拌使之全部溶解。搅拌30min后,将溶液转移一个100ml的具有聚四氟乙烯内衬的不锈钢高温高压反应釜中,置于马弗炉中在120℃下水热反应12h,然后冷却至室温,所得产物用无水乙醇清洗三遍,除去可能残余的杂质,离心过滤,在60℃下真空干燥。将干燥后的产物在空气气氛中于400℃下煅烧2h。得到ZnCo2O4纳米固体材料。At room temperature, dissolve 1mmol of zinc chloride, 2mmol of cobalt chloride and 12mmol of urea in 50ml of water and 30ml of ethanol, place on a magnetic stirrer, stir fully to dissolve them all. After stirring for 30 minutes, the solution was transferred to a 100ml stainless steel high-temperature and high-pressure reactor with a polytetrafluoroethylene liner, placed in a muffle furnace for hydrothermal reaction at 120°C for 12 hours, then cooled to room temperature, and the resulting product was washed with absolute ethanol Wash three times to remove possible residual impurities, centrifugally filter, and vacuum-dry at 60°C. The dried product was calcined at 400° C. for 2 h in an air atmosphere. A ZnCo 2 O 4 nanometer solid material is obtained.
实施例3:Example 3:
室温下,将1mmol硫酸锌,2mmol硫酸钴和15mmol尿素溶于50ml水和30ml乙醇中,置于磁力搅拌器上,充分搅拌使之全部溶解。搅拌30min后,将溶液转移一个100ml的具有聚四氟乙烯内衬的不锈钢高温高压反应釜中,置于马弗炉中在180℃下水热反应24h,然后冷却至室温,所得产物用无水乙醇清洗三遍,除去可能残余的杂质,离心过滤,在60℃下真空干燥。将干燥后的产物在空气气氛中于600℃下煅烧30min。得到ZnCo2O4纳米固体材料。At room temperature, dissolve 1mmol of zinc sulfate, 2mmol of cobalt sulfate and 15mmol of urea in 50ml of water and 30ml of ethanol, place on a magnetic stirrer, and stir fully to dissolve them all. After stirring for 30 minutes, transfer the solution to a 100ml stainless steel high-temperature and high-pressure reactor with a polytetrafluoroethylene liner, place it in a muffle furnace for hydrothermal reaction at 180°C for 24 hours, and then cool to room temperature. Wash three times to remove possible residual impurities, centrifugally filter, and vacuum-dry at 60°C. The dried product was calcined at 600° C. for 30 min in an air atmosphere. A ZnCo 2 O 4 nanometer solid material is obtained.
实施例4:Example 4:
室温下,将1mmol硫酸锌,2mmol硫酸钴和15mmol尿素溶于80ml水中,置于磁力搅拌器上,充分搅拌使之全部溶解。搅拌30min后,将溶液转移一个100ml的具有聚四氟乙烯内衬的不锈钢高温高压反应釜中,置于马弗炉中在160℃下水热反应12h,然后冷却至室温,所得产物用无水乙醇清洗三遍,除去可能残余的杂质,离心过滤,在60℃下真空干燥。将干燥后的产物在空气气氛中于500℃下煅烧1h。得到ZnCo2O4纳米固体材料。At room temperature, dissolve 1mmol of zinc sulfate, 2mmol of cobalt sulfate and 15mmol of urea in 80ml of water, place on a magnetic stirrer, and stir fully to dissolve them all. After stirring for 30 minutes, transfer the solution to a 100ml stainless steel high-temperature and high-pressure reactor with a polytetrafluoroethylene liner, place it in a muffle furnace for hydrothermal reaction at 160°C for 12 hours, and then cool to room temperature. Wash three times to remove possible residual impurities, centrifugally filter, and vacuum-dry at 60°C. The dried product was calcined at 500 °C for 1 h in an air atmosphere. A ZnCo 2 O 4 nanometer solid material is obtained.
实施例5:Example 5:
室温下,将1mmol硝酸锌,2mmol硝酸钴和18mmol尿素溶于80ml水中,置于磁力搅拌器上,充分搅拌使之全部溶解。搅拌30min后,将溶液转移一个100ml的具有聚四氟乙烯内衬的不锈钢高温高压反应釜中,置于马弗炉中在120℃下水热反应18h,然后冷却至室温,所得产物用无水乙醇清洗三遍,除去可能残余的杂质,离心过滤,在60℃下真空干燥。将干燥后的产物在空气气氛中于400℃下煅烧1h。得到ZnCo2O4纳米固体材料。At room temperature, dissolve 1mmol of zinc nitrate, 2mmol of cobalt nitrate and 18mmol of urea in 80ml of water, place on a magnetic stirrer, and stir fully to dissolve them all. After stirring for 30 minutes, the solution was transferred to a 100ml stainless steel high-temperature and high-pressure reactor with a polytetrafluoroethylene liner, placed in a muffle furnace for hydrothermal reaction at 120°C for 18 hours, and then cooled to room temperature. The resulting product was washed with absolute ethanol Wash three times to remove possible residual impurities, centrifugally filter, and vacuum-dry at 60°C. The dried product was calcined at 400 °C for 1 h in an air atmosphere. A ZnCo 2 O 4 nanometer solid material is obtained.
实施案例6:Implementation case 6:
室温下,将1mmol硝酸锌,2mmol硝酸钴和18mmol尿素溶于50ml水和30ml乙醇中,置于磁力搅拌器上,充分搅拌使之全部溶解。搅拌30min后,将溶液转移一个50ml的具有聚四氟乙烯内衬的不锈钢高温高压反应釜中,置于马弗炉中在180℃下水热反应12h,然后冷却至室温,所得产物用无水乙醇清洗三遍,除去可能残余的杂质,离心过滤,在60℃下真空干燥。将干燥后的产物在空气气氛中于600℃下煅烧1h。得到ZnCo2O4纳米固体材料。At room temperature, dissolve 1mmol of zinc nitrate, 2mmol of cobalt nitrate and 18mmol of urea in 50ml of water and 30ml of ethanol, place on a magnetic stirrer, and stir fully to dissolve them all. After stirring for 30 minutes, the solution was transferred to a 50ml stainless steel high-temperature and high-pressure reactor with a polytetrafluoroethylene liner, placed in a muffle furnace for hydrothermal reaction at 180°C for 12 hours, and then cooled to room temperature. The resulting product was washed with absolute ethanol Wash three times to remove possible residual impurities, centrifugally filter, and vacuum-dry at 60°C. The dried product was calcined at 600 °C for 1 h in an air atmosphere. A ZnCo 2 O 4 nanometer solid material is obtained.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510930681.6A CN106882842A (en) | 2015-12-15 | 2015-12-15 | A kind of mesoporous petal-shaped ZnCo2O4The preparation method of meter Sized Materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510930681.6A CN106882842A (en) | 2015-12-15 | 2015-12-15 | A kind of mesoporous petal-shaped ZnCo2O4The preparation method of meter Sized Materials |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106882842A true CN106882842A (en) | 2017-06-23 |
Family
ID=59174002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510930681.6A Pending CN106882842A (en) | 2015-12-15 | 2015-12-15 | A kind of mesoporous petal-shaped ZnCo2O4The preparation method of meter Sized Materials |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106882842A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108033493A (en) * | 2018-01-22 | 2018-05-15 | 中北大学 | Porous ZnCo2O4The synthetic method of nanometer sheet and pseudo-cubic micro nano structure |
CN108539183A (en) * | 2018-05-14 | 2018-09-14 | 山东玉皇新能源科技有限公司 | Lithium titanate composite material and preparation method thereof and lithium ion battery negative material and lithium ion battery |
CN108862403A (en) * | 2018-06-19 | 2018-11-23 | 上海电力学院 | A kind of preparation method and applications of cobalt acid zinc nanometer sheet material |
CN111233049A (en) * | 2020-01-19 | 2020-06-05 | 安徽师范大学 | Sulfur-loaded composite material of zinc cobaltate microspheres with multilayer mesoporous structure and preparation method thereof, lithium-sulfur battery positive electrode and lithium-sulfur battery |
CN111239204A (en) * | 2018-11-29 | 2020-06-05 | 有研工程技术研究院有限公司 | Bimetal oxide semiconductor gas-sensitive material and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103420431A (en) * | 2013-07-31 | 2013-12-04 | 上海理工大学 | Preparation method ofzinc cobaltatenanometer material doped with zinc oxide |
-
2015
- 2015-12-15 CN CN201510930681.6A patent/CN106882842A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103420431A (en) * | 2013-07-31 | 2013-12-04 | 上海理工大学 | Preparation method ofzinc cobaltatenanometer material doped with zinc oxide |
Non-Patent Citations (2)
Title |
---|
QINGHONG WANG等: "Facile fabrication and supercapacitive properties of mesoporous zinc cobaltite microspheres", 《JOURNAL OF POWER SOURCES》 * |
SATYAJIT RATHA等: "Self-assembled flower-like ZnCo2O4 hierarchical superstructures for high capacity supercapacitors", 《RSC ADVANCES》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108033493A (en) * | 2018-01-22 | 2018-05-15 | 中北大学 | Porous ZnCo2O4The synthetic method of nanometer sheet and pseudo-cubic micro nano structure |
CN108539183A (en) * | 2018-05-14 | 2018-09-14 | 山东玉皇新能源科技有限公司 | Lithium titanate composite material and preparation method thereof and lithium ion battery negative material and lithium ion battery |
CN108539183B (en) * | 2018-05-14 | 2020-09-25 | 山东玉皇新能源科技有限公司 | Lithium titanate composite material and preparation method thereof, lithium ion battery cathode material and lithium ion battery |
CN108862403A (en) * | 2018-06-19 | 2018-11-23 | 上海电力学院 | A kind of preparation method and applications of cobalt acid zinc nanometer sheet material |
CN111239204A (en) * | 2018-11-29 | 2020-06-05 | 有研工程技术研究院有限公司 | Bimetal oxide semiconductor gas-sensitive material and preparation method thereof |
CN111233049A (en) * | 2020-01-19 | 2020-06-05 | 安徽师范大学 | Sulfur-loaded composite material of zinc cobaltate microspheres with multilayer mesoporous structure and preparation method thereof, lithium-sulfur battery positive electrode and lithium-sulfur battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101381106A (en) | Method for preparing nanometer tungsten trioxide powder | |
CN102553563B (en) | Method for preparing high catalytic activity sodium tantalate photocatalyst by hydrothermal method | |
CN104291385A (en) | Nickel cobalt oxide mesoporous microsphere and preparation method thereof | |
CN106882842A (en) | A kind of mesoporous petal-shaped ZnCo2O4The preparation method of meter Sized Materials | |
CN102826593A (en) | Preparation method for indium oxide nanometer material | |
CN103395826A (en) | Preparation method of aluminum doped zinc oxide nano powder | |
CN102093050A (en) | Preparation Method of Organic Network of ZrO2 Nano Powder | |
CN103332738B (en) | The preparation method of a kind of controlled short route nano titanium oxide | |
CN101214990A (en) | A kind of normal temperature synthetic method of nanometer zinc oxide | |
CN106882845A (en) | A kind of mesoporous sea urchin shape NiCo2O4The preparation method of meter Sized Materials | |
CN105923625A (en) | Method for preparing single-oxide uniformly-loaded graphene quantum dots | |
CN101857267B (en) | Preparation method of titanium dioxide nano material with core-shell structure | |
CN106315680B (en) | A kind of preparation method of coral-like porous δ-MnO2 | |
CN106186045A (en) | A kind of preparation method of flower shape zinc oxide nano-particle cluster | |
CN103482682B (en) | Preparation method of HEPES (hydroxyethylpiperazine ethane sulfonic acid) molecule guided porous zinc oxide microspheres | |
CN108706623A (en) | A kind of preparation method of cerium oxide nanoparticles | |
CN105932271B (en) | A kind of preparation method of cobaltosic oxide/stannic oxide composite nano materials | |
CN105460964A (en) | Method for preparing nano-hydroxy aluminum oxide powder | |
CN101239738A (en) | A kind of preparation method of titanium dioxide nanotube | |
CN104528815A (en) | Preparation method of rectangular hollow tubular single-crystal nano calcium titanate and product | |
CN104195642B (en) | A kind of method for preparing single crystal BiFeO3 nano sheet | |
CN103482672B (en) | A kind of preparation method of hexagonal prism Sm(OH)3 nanocrystal | |
CN107459064B (en) | A kind of preparation method of nano-cube stacked layered mesoporous FeMoO4 solid material | |
CN104900421A (en) | Preparation method of nickel oxide/carbon sphere composite material | |
CN105366721A (en) | Preparation method of sea cucumber-like D-phase vanadium dioxide powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170623 |