CN106862564B - 基于激光选区烧结技术的结构电路一体化部件的制作方法 - Google Patents

基于激光选区烧结技术的结构电路一体化部件的制作方法 Download PDF

Info

Publication number
CN106862564B
CN106862564B CN201710021711.0A CN201710021711A CN106862564B CN 106862564 B CN106862564 B CN 106862564B CN 201710021711 A CN201710021711 A CN 201710021711A CN 106862564 B CN106862564 B CN 106862564B
Authority
CN
China
Prior art keywords
laser
layer
unitary member
structural circuit
galvanometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710021711.0A
Other languages
English (en)
Other versions
CN106862564A (zh
Inventor
田宗军
谢德巧
严惠
梁绘昕
沈理达
邱明波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201710021711.0A priority Critical patent/CN106862564B/zh
Publication of CN106862564A publication Critical patent/CN106862564A/zh
Application granted granted Critical
Publication of CN106862564B publication Critical patent/CN106862564B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/62Treatment of workpieces or articles after build-up by chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/49Scanners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/68Cleaning or washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/17Auxiliary heating means to heat the build chamber or platform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • B22F2003/242Coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种基于激光选区烧结技术的结构电路一体化部件的制作方法,其特征是首先,建立所需加工部件的三维模型并导入具有双振镜***的激光选区烧结机床,利用该机床上的CO2激光扫描熔化粉末原料,与之相配合使用三倍频Nd:YAG激光扫描使特定位置的金属原子出露,从而完成部件基体成形加工,再将加工好的基体放进化学镀液进行镀铜或是镀镍。本发明方法可实现结构部件内复杂电路的三维打印,在航空航天与精密电子电器领域有着良好的应用前景。

Description

基于激光选区烧结技术的结构电路一体化部件的制作方法
技术领域
本发明一种3D打印技术,尤其是一种利用3D打印技术制作结构电路一体化部件的技术,具体地说是一种基于激光选区烧结技术的结构电路一体化部件的制作方法。
背景技术
结构电路一体化部件是指具有特定结构形状,且内部分布有复杂导电通道的特殊零件。随着科技的不断发展,人们对产品的轻量化要求日益增高,尤其是在航空航天领域,技术人员依旧在为减轻飞行器一克重量而奋斗。结构电路一体化部件在轻量化与降低装配难度方面给予了人们新的思路,其兼具结构支撑和线束导电功能,可对现有布线方式进行全新优化;在进行结构设计时可直接对电路布局与承载方式进行综合考虑,合理利用空间,免去复杂的电路搭接,排布电线等复杂过程,降低装配难度。同时通过对结构的拓扑优化可以有效地减轻结构件自身的重量。这些优势使得结构电路一体化部件在航空航天,武器装备,精密电器等领域有着良好的应用前景。
目前,制作结构电路一体化部件主要采用激光直接电路成形LDS技术,该技术的主要流程如下:采用通用的工艺将具有LDS性能的塑料注射成型,然后用激光光束照射,即激光成型,把设计的电路图案用激光转移到塑料壳体上。该技术已经成功运用到手机天线等零部件的制作上。但是该技术工艺流程繁琐,只能在零部件表面生成简单的二维导电通道,若要生成内部导电通道还需要复杂的装配过程,所以应用领域受到极大限制。
因此,有必要寻找一种全新的可以在结构件内部生成复杂三维导电通道的方法。
发明内容
本发明的目的是针对现有的结构电路制作存在工艺流程繁琐,只能在零部件表面生成简单的二维导电通道,无法在结构件内部生成复杂三维导电通道,需要通过装配才能完成空间三维结构电路的问题,提供一种基于激光选区烧结技术的结构电路一体化部件的制作方法。
本发明的技术方案是:
一种基于激光选区烧结技术的结构电路一体化部件的制作方法,其特征是:首先,建立所需加工部件的三维模型并导入具有双振镜***的激光选区烧结机床;其次,利用激光选区烧结机床上的CO2激光扫描熔化粉末原料,与之相配合使用三倍频Nd:YAG激光扫描使特定位置的金属原子出露,从而完成结构电路一体化部件的成形加工;第三,将加工好的结构电路一体化部件放进化学镀液进行镀铜或者镀镍;最后,对镀液进行清洗,干燥、打麻等后处理工艺即得所述的结构电路一体化部件。
具体包括步骤如下:
1)在建模软件中建立所需加工的结构电路一体化部件的三维模型,预留出导电通道的位置并用空心圆柱体代替;
2)利用切片软件对上述三维模型进行分层切片并指定双振镜的扫描路径,生成扫描切片程序并导入具有双振镜***的激光选区烧结机床;
3)控制双振镜的扫描轨迹,在上述机床上打印出相应的结构部件;
4)将打印好的结构部件清理后放入化学镀液中进行镀铜或者镀镍;
5)取出该部件,清理其溢镀层,完成加工。
优选地,上述步骤1)中具体包括:用以代替导电通道的空心圆柱体的直径为2mm。
优选地,上述步骤2)中具体包括:在指定双振镜的扫描路径时,选择CO2激光振镜***进行结构部件基体的打印,选择三倍频Nd:YAG激光振镜***对空心圆柱体的外边缘进行扫描。
优选地,上述步骤3)中具体包括:以改性塑料粉末(可根据结构电路的要求进行配制)为基体材料,在打印每一层时,通过振镜控制CO2激光路径扫描打印出单层基体结构,关闭CO2激光器,开启三倍频Nd:YAG激光器扫描该层预留导电通道圆孔边缘使该区域粗糙活化,这样层层打印,最终叠加成部件实体。
优选地,上述步骤3)中具体还包括:打印前机床成型缸基板要预热至60℃。
优选地,上述步骤3)中具体还包括:特制的改性塑料粉末内含有机金属复合材料,粉末粒径40μm,熔点为200℃。
优选地,上述步骤3)中具体还包括:CO2激光功率30W,光斑直径100μm;三倍频Nd:YAG激光聚焦光斑直径为20μm,导电通道圆孔边缘扫描宽度为50μm,搭接率为10μm。
本发明的有益效果:
1.通过双振镜激光选区烧结技术与化学镀的综合运用,解决了利用传统加工方式难以在结构部件内部加工出导电通道的问题;
2.利用激光选区烧结技术,实现了部件基体与导电通道的一体化分层打印,可打印出任意复杂的三维导电通道;
3.利用本发明加工出来的结构电路一体化部件可完全摒弃复杂的电缆接线,使该部件大幅减重;
4.本发明工序极少,工艺简单,免装配,生产周期短,尤其适合于产品的设计研发与小批量生产。
附图说明
图1是本发明的结构电路一体化部件打印示意图。
图2是本发明的结构电路一体化部件的整体结构示意图。
图3是本发明的结构电路一体化部件的内部细节示意图。
图中,1、CO2激光器及其振镜***,2、Nd:YAG激光器及其振镜***,3、粉末材料层,4、结构电路一体化部件模型,5、成型缸体,6、基板及升降丝杠,4A、预留导电通道,4B、Nd:YAG激光扫描活化层,4C、导电金属镀层。
具体实施方式
为了便于本领域技术人员的理解,下面结合实施例与附图对本发明作进一步的说明,实施方式提及的内容并非对本发明的限定。
如图1-3所示。
一种基于激光选区烧结技术的结构电路一体化部件的制作方法,具体包括步骤如下:
(1)运用计算机中的三维建模软件建立所需加工的结构电路一体化部件的三维模型4,如图2所示,对需要布置导电通道的位置用空心圆柱体代替,空心圆柱体直径2mm,建模完成后保存为STL文件。
(2)将三维模型导入到切片软件中进行添加支撑,分层切片,路径规划,参数选择;其中,在指定双振镜的扫描路径时,选择CO2激光振镜***1进行结构部件基体的打印,选择三倍频Nd:YAG激光振镜***2对空心圆柱体的外边缘进行扫描;
(3)切片完成后生成的程序导入激光选区烧结机床的控制***内,先手动模式进行预打印,将基板预热至60℃,确定合适的CO2激光扫描速度,使得作为打印基体的改性塑料粉末(内含粒径10~50μm的有机金属复合材料)能够顺利熔化并粘结,再切换至自动模式,如图1,在打印每一层时,先在激光选区烧结机床的成型缸5内铺一层粒径为20μm的粉末原料3,通过振镜控制CO2激光路径扫描粉末层打印出单层基体结构,关闭CO2激光器,开启三倍频Nd:YAG激光器通过其振镜扫描该层预留导电通道圆孔边缘使该区域粗糙活化,有金属原子出露形成薄金属层,为后续化学镀提供条件,这样层层打印,最终叠加成部件实体;
(4)将打印成功的部件实体进行去支撑,然后置于化学镀液中进行镀铜(也可镀镍),直至导电通道内铜层厚度达到0.2mm,镀铜过程中伴有电磁搅拌。
(5)将结构部件从溶液中拿出进行烘干,打磨,抛光并去除溢镀层,测试结构部件是否能够正常工作,导电通道是否可以导通,最终完成具有导电通道的结构件的加工。
本发明具体应用途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进,这些改进也应视为本发明的保护范围。
本发明未涉及部分如激光选区烧结机床、软件控制技术、打印用的改性塑料粉末配制等均与现有技术相同或可采用现有技术加以实现。

Claims (1)

1.一种基于激光选区烧结技术的结构电路一体化部件的制作方法,具体包括步骤如下:
(1)运用计算机中的三维建模软件建立所需加工的结构电路一体化部件的三维模型,对需要布置导电通道的位置用空心圆柱体代替,空心圆柱体直径2mm,建模完成后保存为STL文件;
(2)将三维模型导入到切片软件中进行添加支撑,分层切片,路径规划,参数选择;其中,在指定双振镜的扫描路径时,所述双振镜***包括CO2激光器及其振镜***和三倍频Nd:YAG激光器及其振镜***,选择CO2激光振镜***进行结构部件基体的打印,选择与之相配合使用的三倍频Nd:YAG激光振镜***对空心圆柱体的外边缘进行扫描;
(3)切片完成后生成的程序导入具有双振镜***的激光选区烧结机床的控制***内,先手动模式进行预打印,将基板预热至60℃,确定合适的CO2激光扫描速度,使得作为打印基体的改性塑料粉末能够顺利熔化并粘结,再切换至自动模式,在打印每一层时,先在激光选区烧结机床的成型缸内铺一层粒径为20μm的粉末原料,通过振镜控制CO2激光路径扫描粉末层打印出单层基体结构,关闭CO2激光器,开启三倍频Nd:YAG激光器通过其振镜扫描该层预留导电通道圆孔边缘使该区域粗糙活化,有金属原子出露形成薄金属层,为后续化学镀提供条件,这样层层打印,最终叠加成部件实体;所述的改性塑料粉末为内含粒径10~50μm的有机金属复合材料;
(4)将打印成功的部件实体进行去支撑,然后置于化学镀液中进行镀铜,直至导电通道内铜层厚度达到0.2mm,镀铜过程中伴有电磁搅拌;
最后,对镀液进行清洗,干燥、打磨处理后即得所述的结构电路一体化部件。
CN201710021711.0A 2017-01-12 2017-01-12 基于激光选区烧结技术的结构电路一体化部件的制作方法 Active CN106862564B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710021711.0A CN106862564B (zh) 2017-01-12 2017-01-12 基于激光选区烧结技术的结构电路一体化部件的制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710021711.0A CN106862564B (zh) 2017-01-12 2017-01-12 基于激光选区烧结技术的结构电路一体化部件的制作方法

Publications (2)

Publication Number Publication Date
CN106862564A CN106862564A (zh) 2017-06-20
CN106862564B true CN106862564B (zh) 2019-11-12

Family

ID=59158208

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710021711.0A Active CN106862564B (zh) 2017-01-12 2017-01-12 基于激光选区烧结技术的结构电路一体化部件的制作方法

Country Status (1)

Country Link
CN (1) CN106862564B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107745549B (zh) * 2017-09-14 2019-08-13 中北大学 一种增材制造内置电路金属复合板的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101859613A (zh) * 2009-04-09 2010-10-13 湖南美纳科技有限公司 立体电路制造工艺及激光塑胶原料的复合组份、制造方法
CN104244588A (zh) * 2014-04-30 2014-12-24 深圳光韵达光电科技股份有限公司 立体电路的制作方法及改性激光烧结粉末材料
CN104923786A (zh) * 2015-06-11 2015-09-23 广东奥基德信机电有限公司 一种双激光选区烧结及熔化非金属、金属的3d打印***

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102387669B (zh) * 2010-08-31 2015-04-08 光宏精密股份有限公司 立体电路元件及其制作方法
DE102013100016A1 (de) * 2013-01-02 2014-07-03 Lpkf Laser & Electronics Ag Verfahren zur Herstellung einer elektrisch leitfähigen Struktur auf einem nichtleitenden Trägermaterial sowie ein hierzu bestimmtes Additiv und Trägermaterial
EP2971261A4 (en) * 2013-03-15 2017-05-31 Modumetal, Inc. Electrodeposited compositions and nanolaminated alloys for articles prepared by additive manufacturing processes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101859613A (zh) * 2009-04-09 2010-10-13 湖南美纳科技有限公司 立体电路制造工艺及激光塑胶原料的复合组份、制造方法
CN104244588A (zh) * 2014-04-30 2014-12-24 深圳光韵达光电科技股份有限公司 立体电路的制作方法及改性激光烧结粉末材料
CN104923786A (zh) * 2015-06-11 2015-09-23 广东奥基德信机电有限公司 一种双激光选区烧结及熔化非金属、金属的3d打印***

Also Published As

Publication number Publication date
CN106862564A (zh) 2017-06-20

Similar Documents

Publication Publication Date Title
CN106863770B (zh) 基于熔融沉积成形技术的结构电路一体化部件的制作方法
Jasveer et al. Comparison of different types of 3D printing technologies
Chen et al. The research status and development trend of additive manufacturing technology
CN103590076B (zh) 一种激光强化电沉积快速成形加工装置及方法
CN101394710B (zh) 一种三维模塑互连器件导电线路的制作和修复方法
CN106903310B (zh) 基于立体光固化成形技术的结构电路一体化部件的制作方法
US5461769A (en) Method of manufacturing electrically conductive elements particularly EDM or ECM electrodes
Ma Research on application of SLA technology in the 3D printing technology
CN204097583U (zh) 点阵阳极式电还原金属沉积零件3d打印装备
CN106001568A (zh) 一种梯度材料金属模具3d打印一体化制备方法
EP3116706B1 (en) Sintering particulate material
EP3116670A1 (en) Forming a three dimensional object
CN103590080A (zh) 一种激光强化喷射电沉积快速成形加工装置及方法
Braun et al. The emerging role of electrodeposition in additive manufacturing
CN102672880B (zh) 一种碳纤维构件的制造方法及该方法制得的碳纤维构件
CN108971482B (zh) 一种平面阵列式磁控增材制造方法
CN109702193A (zh) 用于3d金属打印工艺的通过激光诱导的等离子体通道施加电脉冲
CN108500266A (zh) 7000系铝合金增材制造方法及***
CN106862564B (zh) 基于激光选区烧结技术的结构电路一体化部件的制作方法
CN204892952U (zh) 3d打印成型机
WO2000057253A1 (en) Manufacture of hollow metallic articles
CN201232091Y (zh) 一种数控选区电化学沉积快速成型装置
CN203593801U (zh) 一种激光强化电沉积快速成形加工装置
CN104955281A (zh) 一种在三维高分子材料表面制作或修复立体电路的方法
Shelare et al. Additive manufacturing of polymer composites: applications, challenges and opportunities

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant