CN106856331B - 一种风光联合发电***并网性能测试方法 - Google Patents

一种风光联合发电***并网性能测试方法 Download PDF

Info

Publication number
CN106856331B
CN106856331B CN201510907106.4A CN201510907106A CN106856331B CN 106856331 B CN106856331 B CN 106856331B CN 201510907106 A CN201510907106 A CN 201510907106A CN 106856331 B CN106856331 B CN 106856331B
Authority
CN
China
Prior art keywords
power
wind
power generation
photovoltaic
generation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510907106.4A
Other languages
English (en)
Other versions
CN106856331A (zh
Inventor
杜慧成
王瑞明
陈晨
李少林
孙勇
张金平
谢健
张宗岩
高永恒
于雪松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cec Saipu Examination Authentication Beijing Co ltd
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
CLP Puri Zhangbei Wind Power Research and Test Ltd
Original Assignee
Cec Saipu Examination Authentication Beijing Co ltd
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
CLP Puri Zhangbei Wind Power Research and Test Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cec Saipu Examination Authentication Beijing Co ltd, State Grid Corp of China SGCC, China Electric Power Research Institute Co Ltd CEPRI, CLP Puri Zhangbei Wind Power Research and Test Ltd filed Critical Cec Saipu Examination Authentication Beijing Co ltd
Priority to CN201510907106.4A priority Critical patent/CN106856331B/zh
Publication of CN106856331A publication Critical patent/CN106856331A/zh
Application granted granted Critical
Publication of CN106856331B publication Critical patent/CN106856331B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • H02J3/383
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • H02J3/386
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Wind Motors (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本发明涉及一种风光联合发电***并网性能测试方法,包括下述步骤:步骤1:确定风光联合发电***现场检测的测试点;步骤2:确定风光联合发电***现场检测的测试条件;步骤3:确定风光联合发电***现场检测的测试内容;步骤4:测试风光联合发电***的并网点性能。本发明提供的技术方案解决了该发电***并网性能现场检测的问题,对提高风电联合发电***现场测试的规范性和准确性具有十分重要的意义。

Description

一种风光联合发电***并网性能测试方法
技术领域
本发明涉及一种新能源接入与控制的测试方法,具体涉及一种风光联合发电***并网性能测试方法。
背景技术
风光联合发电***是综合利用风能、光能的风光互补电源***,是一种合理的电源***。不仅为解决当前的能源危机和环境污染问题开辟了一条新路,而且有效提高了风电和光伏发电单独输出电力时对***稳定性和可靠性。
单独的太阳能或风能***,由于受时间和地域的约束,很难全天候利用太阳能和风能资源。而太阳能与风能在时间上和地域上都有很强的互补性,白天光照强时风小,夜间光照弱时,风能由于地表温差变化大而增强,太阳能和风能在时间上的互补性是风光互补发电***在资源利用上的最佳匹配。
风光联合发电***主要由风力发电单元、光伏发电单元等构成。风力发电单元利用风力发电机组,将风能转换为电力输出。光伏发电单元采用所需规模的光电板,将太阳光能转换为电力输出。风电和光伏两个发电方式在能源的采集上互相补充,同时又各具特色:光伏发电供电可靠、运行维护成本低、但造价高;风力发电发电量高、造价和运行维护成本低、但可靠性低。
风光联合发电***利用风能和太阳能的天然互补性,如白天太阳能充足,晚上风能充足;夏天太阳能充足冬天风能充足,可提高***的经济性和运行的可靠性。在我国西北、华北等地区,风能及太阳能资源具有互补性,冬春两季风力大,夏秋两季太阳光辐射强,因此,采用风能/太阳能互补发电统统可以很好地克服风能及太阳能提供能量的随机性、间歇性的缺点,实现不间断供电。
风光联合发电***的接入对电网调峰、稳定运行以及电能质量都有一定影响,且风、光的波动性使风光联合发电***的输出功率具有波动性,难以像常规电源一样对风光联合发电***制定和实施准确的发电计划。功率波动可能引起电网的电压波动、频率波动和输电线路传输功率的波动等问题,较大的功率冲击还可能引起电网中同步发电机组之间的功率振荡,严重时会破坏电网的稳定运行,对电网安全造成直接影响。随着风光联合发电***的发展,亟需进行风光联合发电***并网性能试验检测技术的研究,以保障风光联合发电***并网运行后,电力***的安全稳定运行。
发明内容
为解决上述现有技术中的不足,本发明的目的是提供一种风光联合发电***并网性能测试方法,对提高风电联合发电***现场测试的规范性和准确性具有十分重要的意义。
本发明的目的是采用下述技术方案实现的:
本发明提供一种风光联合发电***并网性能测试方法,其改进之处在于,所述测试方法包括下述步骤:
步骤1:确定风光联合发电***现场检测的测试点;
步骤2:确定风光联合发电***现场检测的测试条件;
步骤3:确定风光联合发电***现场检测的测试内容;
步骤4:测试风光联合发电***的并网点性能。
进一步地,所述步骤1中,根据风光联合发电***的接线方式确定测试点;包括220kV或110kV等级、35kV等级的并网测试点;所述风光联合发电***的电气采集点包括:主变压器高压侧220kV三相电压、主变压器高压侧220kV三相电流、主变压器低压侧35kV三相电压、主变压器低压侧35kV三相电流、风电支路并网点35kV三相电压、风电支路并网点35kV三相电流、光伏支路并网点35kV三相电压和光伏支路并网点35kV三相电流。
进一步地,所述步骤2中,风光联合发电***现场检测的测试条件为:具备稳定并网运行能力,并且具备风电单独发电运行、光伏单独发电运行和风光联合发电运行;测试期间,要求风速具备3-15m/s工况,以保证风机输出功率在0至95%Pn区间;要求光照辐射量满足0-7500MJ/m2,以确保光伏电站的输出功率在0至额定功率区间。
进一步地,所述步骤3中,风光联合发电***现场检测的测试内容包括:根据风光联合发电***的运行特点,在不影响发电的情况下,对以下三种运行模式下进行测试,通过采集到的数据,计算分析得出闪变、谐波和功率变化率电能质量参数(计算是按照国标GB/T12326-2008中的公式得出的):
(1)风电正常运行,光伏无出力,即在夜晚无光、有风的时间段内测试;
(2)光伏正常运行,风电无出力,即在白天有光、无风的时间段内测试;
(3)风电和光伏正常运行,即在白天风光同时具备的条件下测试。
进一步地,所述步骤4包括:
①风光联合发电***内的风电及光伏发电单元正常运行,并分别进行采集,采样频率不低于4kHz;
②风电正常运行,光伏无出力:风电输出功率从0至额定功率的95%,以10%的额定功率为区间,每个功率区间、每相至少收集风电场并网点5个10min时间序列瞬时电压和瞬时电流值的测量值;
③光伏正常运行,风电无出力:从光伏发电站持续正常运行的最小功率开始,以10%的光伏发电站所配逆变器总额定功率为一个区间,每个区间内分别测量2次10min数据;
④风电、光伏正常运行:风光输出功率从0至额定功率的95%,以10%的额定功率为区间,每个功率区间、每相至少收集风电场并网点5个10min时间序列瞬时电压和瞬时电流值的测量值。
进一步地,所述步骤4包括:依据国标《GB/T 12326-2008电能质量、电压波动和闪变》,通过对采集到的数据进行计算分析,得出闪变、谐波和功率变化率电能质量参数,从而判断被测风光联合发电***的并网点性能。
与最接近的现有技术相比,本发明提供的技术方案具有的优异效果是:
(1)测试方案设计合理:本项测试考虑了风电单独运行模式、光伏单独运行模式、风电、光伏联合发电运行模式,这三种运行模式的划分有利于分析出不同模式下的并网性能指标。
(2)现场运行模式考虑全面:因实际现场中,风电联合发电***的运行模式不同,风力发电、光伏发电之间的相互影响也不同,需要尽可能地考虑不同的运行模式。
(3)现场测试点选取合理:测试点选在不同电压等级的并网点,这样更能真实的反映出不同发电单元的并网性能指标。
附图说明
图1是本发明提供的简单接线方式采集点示意图;
图2是本发明提供的多条光伏支路采集点示意图;
图3是本发明提供的复杂接线方式采集点示意图;
图4是本发明提供的风光联合发电***并网性能测试方法的流程图。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步的详细说明。
以下描述和附图充分地示出本发明的具体实施方案,以使本领域的技术人员能够实践它们。其他实施方案可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的组件和功能是可选的,并且操作的顺序可以变化。一些实施方案的部分和特征可以被包括在或替换其他实施方案的部分和特征。本发明的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。在本文中,本发明的这些实施方案可以被单独地或总地用术语“发明”来表示,这仅仅是为了方便,并且如果事实上公开了超过一个的发明,不是要自动地限制该应用的范围为任何单个发明或发明构思。
本发明基于风光联合发电***的运行特点,提供了一种专门针对该发电***并网性能测试方法,包括风光联合发电***现场检测的测试点、测试条件、测试内容及测试方法,解决了该发电***并网性能现场检测的问题。本发明提供的风光联合发电***并网性能测试方法的流程图如图4所示:
步骤1:确定风光联合发电***现场检测的测试点:
根据风光联合发电***的接线方式,测试选点也有所不同。
(1)如图1所示,该示意图是一种较为简单的接线方式。图中标出了220kV或110kV等级、35kV等级的并网测试点,下表列出了需要采集的具体电气量。
表1图1的风光联合发电***电气采集点
序号 采集点
1 主变高压侧220kV三相电压
2 主变高压侧220kV三相电流
3 主变低压侧35kV三相电压
4 主变低压侧35kV三相电流
5 风电支路并网点35kV三相电压
6 风电支路并网点35kV三相电流
7 光伏支路并网点35kV三相电压
8 光伏支路并网点35kV三相电流
(2)如图2所示,该示意图表示一种具有多条光伏发电支路的接线方式。因多个光伏单元对整个并网点的性能指标存在差异,所以需要将该种接线方式的测试点进行单独分析。
表2图2的风光联合发电***电气采集点
Figure BDA0000872586390000041
Figure BDA0000872586390000051
(3)如图3所示,该示意图表示一种较为复杂的接线方式。
表3图3的风光联合发电***电气采集点
序号 采集点
1 第一台主变高压侧220kV三相电压
2 第一台主变高压侧220kV三相电流
3 第一台主变低压侧35kV三相电压
4 第一台主变低压侧35kV三相电流
5 第一条风电支路并网点35kV三相电压
6 第一条风电支路并网点35kV三相电流
7 第一条光伏支路并网点35kV三相电压
8 第一条光伏支路并网点35kV三相电流
9 第二台主变高压侧220kV三相电压
10 第二台主变高压侧220kV三相电流
11 第二台主变低压侧35kV三相电压
12 第二台主变低压侧35kV三相电流
13 第二条风电支路并网点35kV三相电压
14 第二条风电支路并网点35kV三相电流
15 第二条光伏支路并网点35kV三相电压
16 第二条光伏支路并网点35kV三相电流
步骤2:确定风光联合发电***现场检测的测试条件:
被测风光联合发电***应具备稳定并网运行能力,并且具备风电单独发的运行、光伏单独发电运行、风光联合发电运行。测试要求具有合理的风况和光照条件。
步骤3:确定风光联合发电***现场检测的测试内容:
根据风光联合发电***的运行特点,可以不影响发电的情况下,对以下三种运行模式下进行测试,通过采集到的数据,计算分析得出闪变,谐波,功率变化率等电能质量参数:
(1)风电正常运行,光伏无出力(在夜晚无光、有风的时间段内测试)
(2)光伏正常运行,风电无出力(在白天有光、无风的时间段内测试)
(3)风电、光伏正常运行(在白天风光同时具备的条件下测试)
步骤4:确定风光联合发电***现场检测的测试方法:依据国标《GB/T 12326-2008电能质量、电压波动和闪变》,通过对采集到的数据进行计算分析,得出闪变、谐波和功率变化率电能质量参数,从而判断被测风光联合发电***的并网点性能。
风光联合发电***内的风电及光伏发电单元正常运行,并分别进行采集,采样频率不低于4kHz。
风电正常运行,光伏无出力。风电输出功率从0至额定功率的95%,以10%的额定功率为区间,每个功率区间、每相至少收集风电场并网点5个10min时间序列瞬时电压和瞬时电流值的测量值。
光伏正常运行,风电无出力。从光伏发电站持续正常运行的最小功率开始,以10%的光伏发电站所配逆变器总额定功率为一个区间,每个区间内分别测量2次10min数据。
风电、光伏正常运行。风光输出功率从0至额定功率的95%,以10%的额定功率为区间,每个功率区间、每相至少收集风电场并网点5个10min时间序列瞬时电压和瞬时电流值的测量值。
本发明给出了风光联合发电***的现场测试内容及方法,主要包括闪变、谐波及高频分量,功率控制能力。本发明对提高风电联合发电***现场测试的规范性和准确性具有十分重要的意义。
以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员依然可以对本发明的具体实施方式进行修改或者等同替换,这些未脱离本发明精神和范围的任何修改或者等同替换,均在申请待批的本发明的权利要求保护范围之内。

Claims (3)

1.一种风光联合发电***并网性能测试方法,其特征在于,所述测试方法包括下述步骤:
步骤1:确定风光联合发电***现场检测的测试点;
步骤2:确定风光联合发电***现场检测的测试条件;
步骤3:确定风光联合发电***现场检测的测试内容;
步骤4:测试风光联合发电***的并网点性能;
所述步骤2中,风光联合发电***现场检测的测试条件为:具备稳定并网运行能力,并且具备风电单独发电运行、光伏单独发电运行和风光联合发电运行;测试期间,要求风速具备3-15m/s工况,以保证风机输出功率在0至95%额定功率区间;要求光照辐射量满足0-7500MJ/m2,以确保光伏电站的输出功率在0至额定功率区间;
所述步骤3中,风光联合发电***现场检测的测试内容包括:根据风光联合发电***的运行特点,在不影响发电的情况下,对以下三种运行模式下进行测试,通过采集到的数据,计算分析得出闪变、谐波和功率变化率电能质量参数:
(1)风电正常运行,光伏无出力,即在夜晚无光、有风的时间段内测试;
(2)光伏正常运行,风电无出力,即在白天有光、无风的时间段内测试;
(3)风电和光伏正常运行,即在白天风光同时具备的条件下测试;
所述步骤4包括:
①风光联合发电***内的风电及光伏发电单元正常运行,并分别进行采集,采样频率不低于4kHz;
②风电正常运行,光伏无出力:风电输出功率从0至额定功率的95%,以10%的额定功率为区间,每个功率区间、每相至少收集风电场并网点5个10min时间序列瞬时电压和瞬时电流值的测量值;
③光伏正常运行,风电无出力:从光伏发电站持续正常运行的最小功率开始,以10%的光伏发电站所配逆变器总额定功率为一个区间,每个区间内分别测量2次10min数据;
④风电、光伏正常运行:风光输出功率从0至额定功率的95%,以10%的额定功率为区间,每个功率区间、每相至少收集风电场并网点5个10min时间序列瞬时电压和瞬时电流值的测量值。
2.如权利要求1所述的并网性能测试方法,其特征在于,所述步骤1中,根据风光联合发电***的接线方式确定测试点;包括220kV或110kV等级、35kV等级的并网测试点;所述风光联合发电***的电气采集点包括:主变压器高压侧220kV三相电压、主变压器高压侧220kV三相电流、主变压器低压侧35kV三相电压、主变压器低压侧35kV三相电流、风电支路并网点35kV三相电压、风电支路并网点35kV三相电流、光伏支路并网点35kV三相电压和光伏支路并网点35kV三相电流。
3.如权利要求1所述的并网性能测试方法,其特征在于,所述步骤4包括:依据国标《GB/T12326-2008电能质量、电压波动和闪变》,通过对采集到的数据进行计算分析,得出闪变、谐波和功率变化率电能质量参数,从而判断被测风光联合发电***的并网点性能;
风光联合发电***内的风电及光伏发电单元正常运行,并分别进行采集,采样频率不低于4kHz;
风电正常运行,光伏无出力;风电输出功率从0至额定功率的95%,以10%的额定功率为区间,每个功率区间、每相至少收集风电场并网点5个10min时间序列瞬时电压和瞬时电流值的测量值;
光伏正常运行,风电无出力;从光伏发电站持续正常运行的最小功率开始,以10%的光伏发电站所配逆变器总额定功率为一个区间,每个区间内分别测量2次10min数据;
风电、光伏正常运行;风光输出功率从0至额定功率的95%,以10%的额定功率为区间,每个功率区间、每相至少收集风电场并网点5个10min时间序列瞬时电压和瞬时电流值的测量值。
CN201510907106.4A 2015-12-09 2015-12-09 一种风光联合发电***并网性能测试方法 Active CN106856331B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510907106.4A CN106856331B (zh) 2015-12-09 2015-12-09 一种风光联合发电***并网性能测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510907106.4A CN106856331B (zh) 2015-12-09 2015-12-09 一种风光联合发电***并网性能测试方法

Publications (2)

Publication Number Publication Date
CN106856331A CN106856331A (zh) 2017-06-16
CN106856331B true CN106856331B (zh) 2020-10-13

Family

ID=59132567

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510907106.4A Active CN106856331B (zh) 2015-12-09 2015-12-09 一种风光联合发电***并网性能测试方法

Country Status (1)

Country Link
CN (1) CN106856331B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109358244B (zh) * 2018-09-30 2021-03-30 北京天诚同创电气有限公司 模块化风电变流器的发电提升测试***和方法
CN110108955B (zh) * 2019-04-23 2021-12-10 国网山西省电力公司电力科学研究院 一种新能源并网性能自动测试分析平台及检测方法
CN110286605B (zh) * 2019-06-17 2022-04-05 东方电气风电股份有限公司 一种风电场实时测试与评估***及其方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841163A (zh) * 2010-03-15 2010-09-22 三一电气有限责任公司 一种并网型风光联合发电***及其发电方法
CN102590744A (zh) * 2011-01-13 2012-07-18 三一电气有限责任公司 一种风光储联合并网发电测试方法、平台及***
CN103208814A (zh) * 2013-03-19 2013-07-17 云南电力试验研究院(集团)有限公司电力研究院 一种基于微网广域信息的svg电能质量治理工程应用的方法
CN103278717A (zh) * 2013-05-24 2013-09-04 北京荣华恒信开关技术有限公司 新能源一体化并网测试装置
CN104242446A (zh) * 2014-07-10 2014-12-24 国家电网公司 高渗透率分布式电源的主动配电网运行监控方法
CN104753084A (zh) * 2015-04-01 2015-07-01 成都鼎智汇科技有限公司 一种可自动实现频率控制的微电网***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841163A (zh) * 2010-03-15 2010-09-22 三一电气有限责任公司 一种并网型风光联合发电***及其发电方法
CN102590744A (zh) * 2011-01-13 2012-07-18 三一电气有限责任公司 一种风光储联合并网发电测试方法、平台及***
CN103208814A (zh) * 2013-03-19 2013-07-17 云南电力试验研究院(集团)有限公司电力研究院 一种基于微网广域信息的svg电能质量治理工程应用的方法
CN103278717A (zh) * 2013-05-24 2013-09-04 北京荣华恒信开关技术有限公司 新能源一体化并网测试装置
CN104242446A (zh) * 2014-07-10 2014-12-24 国家电网公司 高渗透率分布式电源的主动配电网运行监控方法
CN104753084A (zh) * 2015-04-01 2015-07-01 成都鼎智汇科技有限公司 一种可自动实现频率控制的微电网***

Also Published As

Publication number Publication date
CN106856331A (zh) 2017-06-16

Similar Documents

Publication Publication Date Title
US8659186B2 (en) Methods and systems for controlling a power conversion system
WO2017067120A1 (zh) 一种光伏电站低电压穿越数据获取方法
CN101441239A (zh) 一种并网型光伏电站发电性能的验证方法
CN103777097A (zh) 一种低压用户侧分布式电源并网全过程通用检测平台及方法
CN107358335A (zh) 一种基于互联网的分布式光伏效率评估方法与***
CN201837674U (zh) 并网光伏发电监测及分析***
CN106856331B (zh) 一种风光联合发电***并网性能测试方法
CN101277014A (zh) 风力发电接入***方案选择方法
Liu et al. Investigation on the spatiotemporal complementarity of wind energy resources in China
Tianze et al. Application and design of solar photovoltaic system
CN104158217A (zh) 集群风光联合发电***输出功率波动特性描述方法
CN201852889U (zh) 大中型光伏电站移动检测平台
CN101789604A (zh) 一种判断电网电压跌落严重程度的方法
CN103618335A (zh) 一种用于光伏并网逆变器低电压穿越的控制方法
Price Power systems and renewable energy: design, operation, and systems analysis
CN104239979A (zh) 一种风电场发电功率超短期预测方法
CN109149636A (zh) 基于动态安全域的风电接入点暂态稳定性影响研究方法
Wei et al. A flicker assessment method for PV plants considering solar radiation condition
Oliveira et al. Ufpr microgrid: A benchmark for distributed generation and energy efficiency research
CN202748429U (zh) 风电场接入电网升压站并网点低电压穿越能力在线监测***
CN102779450A (zh) 一种风力发电综合实验平台
CN202748430U (zh) 风电场接入电网升压站并网点电能质量在线监测***
Pradhan et al. WAMS based thevenin index for voltage stability assessment of power system integrated with wind farm
CN115358639B (zh) 一种基于数据分析的海上风电运行风险分析***
Melero et al. On-site PQ Measurements in a Real DC Micro-grid

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant