CN106837443A - 一种直接燃烧加热的超临界二氧化碳动力循环***和方法 - Google Patents

一种直接燃烧加热的超临界二氧化碳动力循环***和方法 Download PDF

Info

Publication number
CN106837443A
CN106837443A CN201710062574.5A CN201710062574A CN106837443A CN 106837443 A CN106837443 A CN 106837443A CN 201710062574 A CN201710062574 A CN 201710062574A CN 106837443 A CN106837443 A CN 106837443A
Authority
CN
China
Prior art keywords
carbon dioxide
regenerator
pump
outlet
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710062574.5A
Other languages
English (en)
Inventor
郑开云
黄志强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Power Equipment Research Institute Co Ltd
Original Assignee
Shanghai Power Equipment Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Power Equipment Research Institute Co Ltd filed Critical Shanghai Power Equipment Research Institute Co Ltd
Priority to CN201710062574.5A priority Critical patent/CN106837443A/zh
Publication of CN106837443A publication Critical patent/CN106837443A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • F01K25/103Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/32Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines using steam of critical or overcritical pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种直接燃烧加热的超临界二氧化碳动力循环***和方法。所述***包括泵,泵的出口连接回热器,回热器的低压侧连接第一冷却器、水分离器、压缩机、第二冷却器、气体分离器,气体分离器的底部连接泵的入口;回热器的高压侧依次通过燃烧器、透平形成回路,透平与发电机连接。方法为:由泵将二氧化碳增压后送入回热器内,二氧化碳在回热器加热后送至燃烧器,高温混合介质进入透平推动发电机,透平出口混合介质进入回热器,换热后的混合介质进入冷却器将水液化,通过水分离器后,气体介质进入压缩机。本发明的氮氧化物排放既可以在燃烧过程中加以控制也可以在排放气体的后处理中加以控制,或者在允许的条件下直接排放。

Description

一种直接燃烧加热的超临界二氧化碳动力循环***和方法
技术领域
本发明涉及一种直接燃烧加热的超临界二氧化碳动力循环***和方法。
背景技术
清洁、高效、经济是发电技术进步所追求的核心目标,寻找新的能源形式替代传统的化石能源和开发新的、更先进的能量转换方式是实现这一目标的两个方向。当今世界,化石燃料发电仍将长期占据电力结构的主体地位,所以提高发电效率、减少排放、降低发电成本是技术创新的主要方向。
近年来,超临界二氧化碳动力循环成为研究热点,并且被认为具有诸多潜在优势。二氧化碳的临界点为31℃/7.4MPa,在温度和压力超过临界点时的状态为超临界态。超临界二氧化碳动力循环的研究始于上世纪四十年代,在六、七十年代取得阶段性研究成果,之后主要由于透平机械、紧凑式热交换器制造技术不成熟而中止,直至本世纪初,超临界二氧化碳动力循环的研究在美国再度兴起,并为世界其它国家所关注。由于二氧化碳化学性质稳定、密度高、无毒性、低成本、循环***简单、结构紧凑、效率高,超临界二氧化碳动力循环被认为在火力发电、***核能发电、聚光型太阳能热发电、余热发电、地热发电等领域具有良好的应用前景。
超临界二氧化碳动力循环有两种方式:一是直接燃烧加热方式(半闭式),二是间接加热方式(闭式)。直接燃烧加热循环的特点是超临界二氧化碳在燃烧器中被燃气直接加热至高温,燃烧产物在透平出口后的处理工艺中排放或收集;间接加热循环的特点是超临界二氧化碳通过换热器从热源中吸收热量,间接加热至高温,工质不接触热源介质,热源和动力循环是相对独立的***。间接加热循环的透平入口温度低于直接燃烧加热循环。两种循环方式的共同点是均采用回热手段,以及临界点附近压缩以减少做功,这是其具有高循环效率的两个关键因素。
直接燃烧加热的超临界二氧化碳动力循环可以达到更高的工作温度,有利于充分发挥超临界二氧化碳动力循环的高效率优势,并且后端的燃烧产物处理工艺简单,有望替代整体煤气化联合循环和天然气联合循环,实现比燃气轮机-蒸汽轮机发电更高效率和更低排放。目前,行业上研究较多的是采用纯氧燃烧而非空气燃烧,以避免产生氮氧化物,但由此带来的问题是***中需要配备空气分离装置来供给氧气,空气分离装置在整个***造价中占有较大的比例。
发明内容
本发明所要解决的技术问题是如何采用空气燃烧的方法直接加热超临界二氧化碳使其动力循环。
为了解决上述技术问题,本发明的技术方案是提供了一种直接燃烧加热的超临界二氧化碳动力循环***,其特征在于,包括泵,泵的出口连接回热器低压侧的入口,回热器低压侧的出口依次连接第一冷却器、水分离器、压缩机、第二冷却器、气体分离器,水分离器底部设有疏水口,气体分离器的顶部设有排气口,底部连接泵的入口;回热器的高压侧依次通过燃烧器、透平形成回路,燃烧器上设有气体燃料入口、空气入口,透平与发电机连接。
优选地,所述泵的出口处设有二氧化碳排放口一或/和入口处设有二氧化碳排放口二。
各部件的作用如下:
泵,用于将液态的二氧化碳增压至高压,泵的入口和出口分别设有二氧化碳排放口,可用于收集燃烧产生的多余二氧化碳,两个排放口排出的二氧化碳温度和压力不同;
具有高压侧进口、高压侧出口、低压侧进口、低压侧出口的回热器,泵产生的高压二氧化碳经由高压侧进口进入后自高压侧出口输出至燃烧器,透平排出的低压二氧化碳经由低压侧进口进入后自低压侧出口输出至第一冷却器;
燃烧器,同时输入来自回热器的二氧化碳、气体燃料、空气,燃料与空气燃烧产生的热量加热二氧化碳,在燃烧器出口,二氧化碳工质和燃烧产物及其它残余气体达到设定温度,然后输出给透平;
透平,与发电机相连,做功产生的混合介质经由低压侧进口输入回热器;
第一冷却器,用于冷却回热器的低压侧出口输出的混合介质,使其中的水转变为液体;
水分离器,将自第一冷却器的混合介质中的水与气体分离,分离后的水通过疏水口收集,分离后的气体进入压缩机;
压缩机,用于将气态的二氧化碳增压至临界压力以上;
第二冷却器,用于冷却来自压缩机混合介质,使其中的二氧化碳转变为液体;
气体分离器,将自第二冷却器的混合介质中的二氧化碳与气体分离,分离后的气体(主要成分为氮气)通过排气口收集,分离后的二氧化碳进入泵。
本发明还提供了一种直接燃烧加热的超临界二氧化碳动力循环的方法,其特征在于,采用上述直接燃烧加热的超临界二氧化碳动力循环***,具体步骤为:由泵将二氧化碳增压后送入回热器内,二氧化碳在回热器内被自低压侧进口送入的混合介质加热后自高压侧出口送至燃烧器,燃烧器中燃料燃烧产生热量及燃烧产物,高温混合介质自燃烧器出口进入透平做功并推动发电机,透平出口混合介质由低压侧进口进入回热器,换热后的混合介质进入第一冷却器将水液化,通过水分离器后,水从疏水口排出收集,气体介质进入压缩机增压,压缩机出口的混合介质经第二冷却器使二氧化碳液化,在气体分离器中,气体通过排气口排放或收集,液体二氧化碳进入泵,多余的二氧化碳可以由泵出口或入口设置的可选二氧化碳排放口一或可选二氧化碳排放口二收集。
优选地,所述泵将二氧化碳增压至25-35MPa。
优选地,所述燃烧器可以通过泵出口至回热器出口之间的二氧化碳管路中引出一旁路进行冷却。
优选地,所述透平可以通过泵出口至回热器出口之间的二氧化碳管路中引出一旁路进行冷却。
优选地,所述燃烧器可以通过控制燃烧温度、采用燃气轮机燃烧室的低氮燃烧技术(如:注蒸汽或水、干式低氮燃烧),减少氮氧化物的生成。
优选地,所述水分离器疏水口收集的水可以处理后利用或排放到环境。
优选地,所述气体分离器排放口收集的气体可以处理后利用或排放到环境。
优选地,所述泵的入口或出口可设置二氧化碳排放口,用于收集燃烧产生的多余二氧化碳。
优选地,所述压缩机可以采用中间冷却,以减少做功损耗。
与现有技术相比,本发明的有益效果是:
1、本发明的燃烧器中引入气体燃料、空气和循环回路中的二氧化碳,不需要采用空气分离装置生产纯氧作为燃烧的氧化剂。
2、本发明的氮氧化物排放既可以在燃烧过程中加以控制也可以在排放气体的后处理中加以控制,或者在允许的条件下直接排放。
附图说明
图1为本发明提供的一种直接燃烧加热的超临界二氧化碳动力循环***的示意图。
具体实施方式
为使本发明更明显易懂,兹以优选实施例,并配合附图作详细说明如下。
实施例
如图1所示,为本发明提供的一种直接燃烧加热的超临界二氧化碳动力循环***,其包括泵1,泵1的出口连接回热器3低压侧的入口,回热器3低压侧的出口依次连接第一冷却器9、水分离器10、压缩机12、第二冷却器13、气体分离器14,水分离器10底部设有疏水口11,气体分离器14的顶部设有排气口15,底部连接泵1的入口;回热器3的高压侧依次通过燃烧器4、透平7形成回路,燃烧器4上设有气体燃料入口5、空气入口6,透平7与发电机8连接。泵1的出口处设有二氧化碳排放口一2,入口处设有二氧化碳排放口二16。各个设备之间通过管道连接,根据***控制需要,管道上可布置阀门、仪表。组成***的其它部分还有辅助设施、电气***、仪控***等。
一种直接燃烧加热的超临界二氧化碳动力循环***的方法:
由泵1将二氧化碳工质增压至30MPa,然后自高压侧进口送入回热器3内,二氧化碳工质在回热器3内被自低压侧进口送入的混合介质加热后自高压侧出口送至燃烧器4,燃烧器4中燃料燃烧产生热量及燃烧产物,高温混合介质自燃烧器4出口,温度可达到1000℃以上,进入透平7做功并推动发电机8,透平7出口混合介质由低压侧进口进入回热器3,换热后的混合介质进入第一冷却器9将水液化,通过水分离器10后,水从疏水口11排出收集,气体介质进入压缩机12增压至8MPa,压缩机12出口的混合介质经第二冷却器13使二氧化碳液化,在气体分离器14中,气体通过排放口15排放或收集,液体二氧化碳进入泵1,多余的二氧化碳由泵1出入口处的二氧化碳排放口一2、二氧化碳排放口二16收集。
超临界二氧化碳动力循环的燃烧器4出口温度在设计、氮氧化物生成、成本可接受的范围内尽可能地高,以达到更高的效率,可达1000℃以上。透平7的膨胀比可根据最优化循环效率或满足其它设计要求选取。压缩机12的出口压力根据第二冷却器13的冷却能力设定,确保第二冷却器13出口的二氧化碳转变为液体,而其它介质仍为气体。

Claims (4)

1.一种直接燃烧加热的超临界二氧化碳动力循环***,其特征在于,包括泵(1),泵(1)的出口连接回热器(3)低压侧的入口,回热器(3)低压侧的出口依次连接第一冷却器(9)、水分离器(10)、压缩机(12)、第二冷却器(13)、气体分离器(14),水分离器(10)底部设有疏水口(11),气体分离器(14)的顶部设有排气口(15),底部连接泵(1)的入口;回热器(3)的高压侧依次通过燃烧器(4)、透平(7)形成回路,燃烧器(4)上设有气体燃料入口(5)、空气入口(6),透平(7)与发电机(8)连接。
2.如权利要求1所述的直接燃烧加热的超临界二氧化碳动力循环***,其特征在于,所述泵(1)的出口处设有二氧化碳排放口一(2)或/和入口处设有二氧化碳排放口二(16)。
3.一种直接燃烧加热的超临界二氧化碳动力循环的方法,其特征在于,采用权利要求1或2所述的直接燃烧加热的超临界二氧化碳动力循环***,具体步骤为:由泵(1)将二氧化碳增压后送入回热器(3)内,二氧化碳在回热器(3)内被自低压侧进口送入的混合介质加热后自高压侧出口送至燃烧器(4),燃烧器(4)中燃料燃烧产生热量及燃烧产物,高温混合介质自燃烧器(4)出口进入透平(7)做功并推动发电机(8),透平(7)出口混合介质由低压侧进口进入回热器(3),换热后的混合介质进入第一冷却器(9)将水液化,通过水分离器(10)后,水从疏水口(11)排出收集,气体介质进入压缩机(12)增压,压缩机(12)出口的混合介质经第二冷却器(13)使二氧化碳液化,在气体分离器(14)中,气体通过排气口(15)排放或收集,液体二氧化碳进入泵(1),多余的二氧化碳可以由泵(1)出口或入口设置的可选二氧化碳排放口一(2)或可选二氧化碳排放口二(16)收集。
4.如权利要求3所述的直接燃烧加热的超临界二氧化碳动力循环的方法,其特征在于,所述泵将二氧化碳增压至25-35MPa。
CN201710062574.5A 2017-01-25 2017-01-25 一种直接燃烧加热的超临界二氧化碳动力循环***和方法 Pending CN106837443A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710062574.5A CN106837443A (zh) 2017-01-25 2017-01-25 一种直接燃烧加热的超临界二氧化碳动力循环***和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710062574.5A CN106837443A (zh) 2017-01-25 2017-01-25 一种直接燃烧加热的超临界二氧化碳动力循环***和方法

Publications (1)

Publication Number Publication Date
CN106837443A true CN106837443A (zh) 2017-06-13

Family

ID=59122653

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710062574.5A Pending CN106837443A (zh) 2017-01-25 2017-01-25 一种直接燃烧加热的超临界二氧化碳动力循环***和方法

Country Status (1)

Country Link
CN (1) CN106837443A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107327325A (zh) * 2017-08-03 2017-11-07 上海发电设备成套设计研究院有限责任公司 一种超临界二氧化碳与液态金属联合循环***
CN108361554A (zh) * 2018-04-02 2018-08-03 中国石油集团川庆钻探工程有限公司工程技术研究院 一种氮气增压装置及其使用方法
CN109184915A (zh) * 2018-10-30 2019-01-11 中国华能集团清洁能源技术研究院有限公司 一种二氧化碳全捕集的超临界二氧化碳发电***及方法
CN109356721A (zh) * 2018-11-12 2019-02-19 华北电力大学 集成太阳能煤气化的超临界二氧化碳零排放发电***
CN109812304A (zh) * 2019-03-06 2019-05-28 上海发电设备成套设计研究院有限责任公司 集成二氧化碳循环与液化空气储能的调峰发电***及方法
CN110469404A (zh) * 2019-08-06 2019-11-19 碧流天能(北京)科技股份有限公司 超临界二氧化碳工质微型燃气轮机***及其工质循环方法
CN111102073A (zh) * 2019-12-16 2020-05-05 西安交通大学 一种适用煤气化的超临界二氧化碳循环***及其操作方法
CN111927723A (zh) * 2020-06-30 2020-11-13 华电电力科学研究院有限公司 一种基于微藻呼吸作用耦合太阳能与超临界水热反应的电力调峰***
CN112539673A (zh) * 2020-12-02 2021-03-23 上海发电设备成套设计研究院有限责任公司 一种电-热-电储能***及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03215139A (ja) * 1990-01-19 1991-09-20 Toyo Eng Corp 発電方法
WO1995002115A1 (en) * 1993-07-05 1995-01-19 Loeytty Ari Veli Olavi Method for exploitation of waste thermal energy in power plants
KR20160017731A (ko) * 2014-08-01 2016-02-17 현대중공업 주식회사 초임계 이산화탄소 발전시스템
CN206468384U (zh) * 2017-01-25 2017-09-05 上海发电设备成套设计研究院 一种直接燃烧加热的超临界二氧化碳动力循环***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03215139A (ja) * 1990-01-19 1991-09-20 Toyo Eng Corp 発電方法
WO1995002115A1 (en) * 1993-07-05 1995-01-19 Loeytty Ari Veli Olavi Method for exploitation of waste thermal energy in power plants
KR20160017731A (ko) * 2014-08-01 2016-02-17 현대중공업 주식회사 초임계 이산화탄소 발전시스템
CN206468384U (zh) * 2017-01-25 2017-09-05 上海发电设备成套设计研究院 一种直接燃烧加热的超临界二氧化碳动力循环***

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107327325B (zh) * 2017-08-03 2023-08-29 上海发电设备成套设计研究院有限责任公司 一种超临界二氧化碳与液态金属联合循环***
CN107327325A (zh) * 2017-08-03 2017-11-07 上海发电设备成套设计研究院有限责任公司 一种超临界二氧化碳与液态金属联合循环***
CN108361554A (zh) * 2018-04-02 2018-08-03 中国石油集团川庆钻探工程有限公司工程技术研究院 一种氮气增压装置及其使用方法
CN108361554B (zh) * 2018-04-02 2024-06-11 中国石油天然气集团有限公司 一种氮气增压装置及其使用方法
CN109184915A (zh) * 2018-10-30 2019-01-11 中国华能集团清洁能源技术研究院有限公司 一种二氧化碳全捕集的超临界二氧化碳发电***及方法
CN109356721A (zh) * 2018-11-12 2019-02-19 华北电力大学 集成太阳能煤气化的超临界二氧化碳零排放发电***
CN109812304A (zh) * 2019-03-06 2019-05-28 上海发电设备成套设计研究院有限责任公司 集成二氧化碳循环与液化空气储能的调峰发电***及方法
CN109812304B (zh) * 2019-03-06 2023-08-29 上海发电设备成套设计研究院有限责任公司 集成二氧化碳循环与液化空气储能的调峰发电***及方法
CN110469404A (zh) * 2019-08-06 2019-11-19 碧流天能(北京)科技股份有限公司 超临界二氧化碳工质微型燃气轮机***及其工质循环方法
CN111102073A (zh) * 2019-12-16 2020-05-05 西安交通大学 一种适用煤气化的超临界二氧化碳循环***及其操作方法
CN111102073B (zh) * 2019-12-16 2020-11-17 西安交通大学 一种适用煤气化的超临界二氧化碳循环***及其操作方法
CN111927723B (zh) * 2020-06-30 2022-08-23 华电电力科学研究院有限公司 一种基于微藻呼吸作用耦合太阳能与超临界水热反应的电力调峰***
CN111927723A (zh) * 2020-06-30 2020-11-13 华电电力科学研究院有限公司 一种基于微藻呼吸作用耦合太阳能与超临界水热反应的电力调峰***
CN112539673A (zh) * 2020-12-02 2021-03-23 上海发电设备成套设计研究院有限责任公司 一种电-热-电储能***及方法

Similar Documents

Publication Publication Date Title
CN106837443A (zh) 一种直接燃烧加热的超临界二氧化碳动力循环***和方法
CN209457990U (zh) 一种含液态空气储能的超临界二氧化碳发电***
CN106286170B (zh) 太阳能、海水源热泵、燃气及超临界二氧化碳船舶联合发电***
CN108368750B (zh) 使用嵌入式co2循环发电的***和方法
WO2017219656A1 (zh) 燃气轮机压水堆蒸汽轮机联合循环***
CN105820842B (zh) 一种煤气化超临界co2循环发电***
CN206468384U (zh) 一种直接燃烧加热的超临界二氧化碳动力循环***
EP0676532B1 (en) Steam injected gas turbine system with topping steam turbine
CN106703918A (zh) 集成燃料电池与二氧化碳循环的热电联供***及其方法
CN108071430B (zh) 超临界co2布雷顿循环燃煤发电***工质及烟气的工作流程
CN106098122A (zh) 一种基于超临界二氧化碳布雷顿循环的核能发电***
CN104763484B (zh) 空冷汽轮机高背压供热发电联产方法
CN108374720A (zh) 一种煤气-超临界二氧化碳再压缩循环的igcc发电***
CN106593556B (zh) 采用超临界二氧化碳循环的生物质燃烧发电***及方法
CN206468386U (zh) 集成燃料电池与二氧化碳循环的热电联供***
CN109681279A (zh) 一种含液态空气储能的超临界二氧化碳发电***及方法
CN105317484A (zh) 利用真空动力节能方法
CN107355269A (zh) 一种超临界二氧化碳与氦气联合循环***
CN110230518A (zh) 一种煤基超临界co2布雷顿循环发电***及方法
CN108843418A (zh) 一种双压高效燃气超临界二氧化碳联合循环发电***
CN206539381U (zh) 一种基于燃气及太阳能热的超临界二氧化碳循环发电***
CN209053696U (zh) 一种余热回收的煤气化超临界二氧化碳发电***
CN108999701A (zh) 基于分级燃烧的超临界二氧化碳半闭式纯氧燃烧发电***
CN111102073B (zh) 一种适用煤气化的超临界二氧化碳循环***及其操作方法
CN107476996A (zh) 发电机组

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170613

RJ01 Rejection of invention patent application after publication