CN106830085A - 一种稳定氢钨青铜纳米片的制备方法 - Google Patents

一种稳定氢钨青铜纳米片的制备方法 Download PDF

Info

Publication number
CN106830085A
CN106830085A CN201710052389.8A CN201710052389A CN106830085A CN 106830085 A CN106830085 A CN 106830085A CN 201710052389 A CN201710052389 A CN 201710052389A CN 106830085 A CN106830085 A CN 106830085A
Authority
CN
China
Prior art keywords
preparation
product
tungsten bronze
nanometer sheet
ethanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710052389.8A
Other languages
English (en)
Other versions
CN106830085B (zh
Inventor
陈伟凡
方晓辰
尧牡丹
郭兰玉
卓明鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Shanna New Material Technology Co Ltd
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN201710052389.8A priority Critical patent/CN106830085B/zh
Publication of CN106830085A publication Critical patent/CN106830085A/zh
Application granted granted Critical
Publication of CN106830085B publication Critical patent/CN106830085B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Colloid Chemistry (AREA)

Abstract

一种稳定氢钨青铜纳米片的制备方法,包括以下步骤:(1)根据H0.33WO3的化学计量比及制备量,称取WO3‑x(0.05≤x≤1),配制成WO3‑x与分散剂质量比为1/10~1/2的分散液,并加入适量的表面活性剂;(2)球磨步骤(1)得到的分散液0.5~12小时;(3)洗涤和过滤步骤(2)得到的产物;(4)配制好水和乙醇的混合液,将步骤(3)的产物按照质量比为1~15%加入其中,紫外线辐照1~12小时;(5)步骤(4)的产物经洗涤、过滤和干燥后,即得氢钨青铜纳米片。本发明以还原态氧化钨为原料,经球磨超细化和紫外光辐照处制备钨氢青铜纳米片,具有原料易得、工艺简单、成本低廉和绿色环保的特点。

Description

一种稳定氢钨青铜纳米片的制备方法
技术领域
本发明属于纳米材料制备技术领域,涉及氢钨青铜纳米片的制备方法。
背景技术
WO3以其特殊的性能在光催化、传感器、光致变色等领域有着广泛的应用,通过向其晶体结构中所特有的隧道结构中掺入碱金属离子、铵离子和氢离子所制得的钨青铜,是稳定性较高的具有深蓝色金属光泽的阳离子掺杂金属氧化物,一般用MxWO3表示它的通式,呈现出金属导体或者半导体的性质,其颜色与性能随着M与x的不同也会产生相应的差异。目前,钨青铜纳米盐因其对紫外与近红外具有较高的吸收率而在光催化以及节能红外吸收透明隔热涂层中有着广泛的应用。
目前制备纳米钨青铜的方法有一些,如专利CN103496744 A公开了一种还原态铵钨青铜的合成方法,使用WCl6作为钨源,加入油酸作为溶剂,W:NH4 +的摩尔比为1:(0.2~0.3),在150~350 ℃的高温条件下晶化反应0.5~48 h,最终获得还原态铵钨青铜纳米粉体。这种方法合成时间很长,产率很低,成本很高,红外吸收性能较差。专利CN 104528829 A报道了使用钨酸盐溶液通过阳离子交换得到钨酸溶胶,再加入还原剂与铯源得到相应的前驱体,将前驱体加入到反应釜中进行水热反应后可制得铯钨青铜纳米盐。该方法在制备前躯体的过程中使用了阳离子交换法,因此单次合成的量有限,且水热合成法耗时较长,反应过程中需要高温高压条件,能耗较大,对设备的要求较高,因此纳米钨青铜特别是氢钨青铜的有工业化应用前景的合成方法成为制约其广泛应用的瓶颈。
发明内容
本发明提出了一种稳定氢钨青铜纳米片的制备方法,以还原态氧化钨为原料,有机溶剂作为分散剂,并加入少量的表面活性剂,经机械球磨超细化处理得到前驱体,然后将其分散在乙醇的水溶液中,在持续搅拌下用紫外光辐照便可以获得大小均匀,分散性好的氢青铜纳米粉体,该法原料易得、工艺简单、成本低廉、绿色环保。
本发明是通过以下技术方案实现的。
本发明所述的一种氢钨青铜纳米片的制备方法,包括以下步骤。
(1)根据氢钨青铜化学组成式H0.33WO3的化学计量比及其制备量,称取适量的WO3-x(0.05≤x≤1)粉体,制备WO3-x与分散剂的质量比为1/8~1/2的分散液,并加入分散液质量0.01~1%的表面活性剂。
(2)将步骤(1)得到的分散液放入球磨机中,球磨0.5~12 小时。
(3)将步骤(2)得到的产物取出,洗涤和过滤。
(4)配制水和乙醇的体积比为20~70%的混合液,将步骤(3)中所得产物按照质量比为1~15%加入混合液中,在持续搅拌下用波长200~400 nm的紫外光线辐照1~12小时。
(5)将步骤(4)中样品取出,经洗涤、过滤和干燥后,即得氢钨青铜纳米片。
本发明步骤(1)中所述的分散剂为水、乙醇、乙二醇或丙酮中的一种或两种以上;表面活性剂为月桂酸二乙醇酰胺、聚丙烯酰胺、辛基酚聚氧乙烯醚、十二烷基硫酸钠或烷基苯磺酸钠中的一种或两种以上。
本发明步骤(2)中所述的球磨机为行星式球磨机、搅拌磨、砂磨或振动磨。
本发明步骤(4)中所述的紫外光线为汞灯或氙灯所提供。
本发明的主要特点是:(1)产物氢钨青铜为大小均匀的纳米片,分散性好、性能稳定;(2)原料易得、工艺简单、成本低廉、绿色环保。
附图说明
图1为实施例1所用原料还原氧化钨的X射线衍射图谱,该图谱与JCPDS卡片号(84-1516) WO2.72的图谱吻合。
图2为实例1产物的X射线衍射图谱,该图谱与JCPDS卡片号(06-0706)H0.33WO3的图谱吻合。
图3为实例1产物的透射电镜照片,如图所示,产物为纳米片状结构,分散性好。
图4为实例1产物的高倍透射电镜照片以及局部的高分辨透射电镜照片(HRTEM),如图所示,产物片径大小约为20~40 nm,由HRTEM可以看清晰的晶格条纹,显示其结晶性较好,分析表明该晶面间距为0.380 nm。
图5为实例2产物的透射电镜照片,如图所示,产物为纳米片状结构,径大小约为20~40 nm,分散性好。
图6为实例3产物的透射电镜照片,如图所示,产物为纳米片状结构,径大小约为20~40 nm,分散性好。
图7为实例4产物的透射电镜照片,如图所示,产物为纳米片状结构,径大小约为20~40 nm,分散性好。
具体实施方式
本发明将通过以下实施例作进一步说明。
实施例1。
称取5 g WO2.72,分散在45 ml水中,再加入0.044 g烷基苯磺酸钠,放入行星式球磨机中,球磨3小时,然后取出产物,洗涤和过滤,即得前驱体,将前驱体分散在150 ml乙醇与水的体积比为1:1的混合液中,在持续搅拌下用紫外灯辐照8小时,经乙醇洗涤,过滤和干燥后,可得氢钨青铜纳米片。
实施例2。
称取5 g WO2.72,分散在45 ml乙醇中,再加入0.044 g聚丙烯酰胺,放入行星式球磨机中,球磨5小时,然后取出产物,洗涤和过滤,即得前驱体,将前驱体分散在150 ml乙醇与水的体积比为1:1的混合液中,在持续搅拌下用紫外灯辐照8小时,经乙醇洗涤,过滤和干燥后,可得氢钨青铜纳米片。
实施例3。
称取5 g WO2.72,分散在45 ml乙醇中,再加入0.044 g辛基酚聚氧乙烯醚,放入行星式球磨机中,球磨6 小时,然后取出产物,洗涤和过滤,即得前驱体,将前驱体分散在150ml乙醇与水的体积比为1:1的混合液中,在紫外灯下辐照12小时,经乙醇洗涤,过滤和干燥后,可得氢钨青铜纳米片。
实施例4。
称取5 g WO2.72,分散在45 ml乙醇中,再加入0.044 g月桂酸二乙醇酰胺,放入行星式球磨机中,球磨5小时,然后取出产物,洗涤和过滤,即得前驱体,将前驱体分散在150ml乙醇与水的体积比为1:1的混合液中,在紫外灯下辐照6小时,经乙醇洗涤,过滤和干燥后,可得氢钨青铜纳米片。

Claims (4)

1.一种稳定氢钨青铜纳米片的制备方法,其特征是包括以下步骤:
(1)根据氢钨青铜化学组成式H0.33WO3的化学计量比及其制备量,称取适量的WO3-x,0.05≤x≤1粉体,配制成WO3-x与分散剂的质量比为1/10~1/2的分散液,并加入分散液质量0.01~1%的表面活性剂;
(2)将步骤(1)得到的分散液放入球磨机中,球磨0.5~12 小时;
(3)将步骤(2)得到的产物取出,洗涤和过滤;
(4)配制水和乙醇的体积比为20~70%的混合液,将步骤(3)中所得产物按照质量比为1~15%加入混合液中,在持续搅拌下用波长200~400 nm的紫外线辐照1~12小时;
(5)将步骤(4)得到的产物取出,经乙醇洗涤、过滤和干燥后,即得氢钨青铜纳米片。
2.根据权利要求1所述的制备方法,其特征是步骤(1)中所述的分散剂为水、乙醇、乙二醇或丙酮中的一种或两种以上;表面活性剂为月桂酸二乙醇酰胺、聚丙烯酰胺、辛基酚聚氧乙烯醚、十二烷基硫酸钠或烷基苯磺酸钠中的一种或两种以上。
3.根据权利要求1所述的制备方法,其特征是步骤(2)中所述的球磨机为行星式球磨机、搅拌磨、砂磨机或振动磨。
4.根据权利要求1所述的制备方法,其特征是步骤(4)中所述的紫外线为汞灯或氙灯所提供。
CN201710052389.8A 2017-01-24 2017-01-24 一种稳定氢钨青铜纳米片的制备方法 Active CN106830085B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710052389.8A CN106830085B (zh) 2017-01-24 2017-01-24 一种稳定氢钨青铜纳米片的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710052389.8A CN106830085B (zh) 2017-01-24 2017-01-24 一种稳定氢钨青铜纳米片的制备方法

Publications (2)

Publication Number Publication Date
CN106830085A true CN106830085A (zh) 2017-06-13
CN106830085B CN106830085B (zh) 2018-05-22

Family

ID=59120825

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710052389.8A Active CN106830085B (zh) 2017-01-24 2017-01-24 一种稳定氢钨青铜纳米片的制备方法

Country Status (1)

Country Link
CN (1) CN106830085B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107973346A (zh) * 2018-01-18 2018-05-01 福州大学 一种可见光辅助制备纯氢钨青铜的方法
CN117205919A (zh) * 2023-11-09 2023-12-12 潍坊学院 具有全光谱光热co2催化加氢活性的催化剂及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1868967A (zh) * 2006-02-06 2006-11-29 张润铎 机械研磨制备纳米复合氧化物技术
WO2009059900A2 (en) * 2007-11-05 2009-05-14 Basf Se Tungsten oxides used to increase the heat-input amount of near infrared radiation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1868967A (zh) * 2006-02-06 2006-11-29 张润铎 机械研磨制备纳米复合氧化物技术
WO2009059900A2 (en) * 2007-11-05 2009-05-14 Basf Se Tungsten oxides used to increase the heat-input amount of near infrared radiation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
苏铭汉 等: "钨青铜化合物MxWO3的研究现状", 《哈尔滨工业大学学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107973346A (zh) * 2018-01-18 2018-05-01 福州大学 一种可见光辅助制备纯氢钨青铜的方法
CN107973346B (zh) * 2018-01-18 2019-09-13 福州大学 一种可见光辅助制备纯氢钨青铜的方法
CN117205919A (zh) * 2023-11-09 2023-12-12 潍坊学院 具有全光谱光热co2催化加氢活性的催化剂及其制备方法与应用
CN117205919B (zh) * 2023-11-09 2024-03-05 潍坊学院 具有全光谱光热co2催化加氢活性的催化剂及其制备方法与应用

Also Published As

Publication number Publication date
CN106830085B (zh) 2018-05-22

Similar Documents

Publication Publication Date Title
Liu et al. Enhanced photocatalytic mechanism of the Nd-Er co-doped tetragonal BiVO4 photocatalysts
CN101746825B (zh) 一种制备橄榄球状介孔BiVO4的有机溶剂-水热法
Wang et al. Nanostructured SrTiO 3 with different morphologies achieved by mineral acid-assisted hydrothermal method with enhanced optical, electrochemical, and photocatalytic performances
CN104310468B (zh) 一种制备单分散二氧化钛(b)纳米粒子的方法
CN104031647B (zh) 一种圆饼状铕掺杂钒酸镧红色荧光粉的制备方法
CN103183372B (zh) 一种模板法固相制备纳米氧化锌的方法
CN101624209A (zh) 一种ZnO纳米棒的制备方法
Li et al. The construction of Yb/Er/Pr triple-doped Bi2WO6 superior photocatalyst and the regulation of superoxide and hydroxyl radicals
CN103073054A (zh) 纳米带状六钛酸钾的制备方法
CN106830085B (zh) 一种稳定氢钨青铜纳米片的制备方法
Liu et al. Biomass assisted synthesis of 3D hierarchical structure BiOX (X Cl, Br)-(CMC) with enhanced photocatalytic activity
CN109382088B (zh) SnO2/α~Bi2O3/β~Bi2O3复合材料及其制备方法
CN104437559A (zh) 一种硒化锌纳米光催化剂的制备方法及其应用
CN101585518B (zh) 一种快速合成硒化锡量子点粉末的方法
CN102381727A (zh) 二氧化钛介孔纳米带材料的溶剂热法制备工艺
CN108212187B (zh) Fe掺杂Bi2O2CO3光催化剂的制备方法及Fe掺杂Bi2O2CO3光催化剂
CN104495922A (zh) 一种钇酸铋纳米棒及其制备方法和用途
Wang et al. The effect of 1-N-alkyl chain of ionic liquids [C n mim]+ Br−(n= 2, 4, 6, 8) on the aspect ratio of ZnO nanorods: syntheses, morphology, forming mechanism, photoluminescence and recyclable photocatalytic activity
CN109012653B (zh) 一种铋酸锂-氧化铋光催化材料及其制备方法
CN108273522B (zh) 一种具有梯形结构的z型半导体光催化剂及其制备方法和应用
CN109806891A (zh) 一种Ag2Se/GO微米花结构纳米材料的制备方法和应用
CN112058257B (zh) 稀土Tb掺杂钒酸铋的光催化剂及其制备方法
CN104624180A (zh) 具有可见光响应的钛基底上低维钛酸铋体系纳米材料的制备方法
CN101863507A (zh) 一种分等级二氧化锡八面体的制备方法
Merupo et al. Structural, morphological and optical properties of sol-gel prepared Cu doped BiVO4 powders

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20181107

Address after: 518116 Guangdong Shenzhen Longgang District Longgang Street thousand Lin mountain 2 District 37 floor A block 2503

Patentee after: Shenzhen Xinhao Bo Trade Co., Ltd.

Address before: 330031 999, Xuefu Avenue, Nanchang, Jiangxi.

Patentee before: Nanchang University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190320

Address after: 330000 Room 1201, 7 Upper Court of Chaoyang River, 118 Yunfei Road, Xihu District, Nanchang City, Jiangxi Province

Patentee after: Chen Weifan

Address before: 518116 Guangdong Shenzhen Longgang District Longgang Street thousand Lin mountain 2 District 37 floor A block 2503

Patentee before: Shenzhen Xinhao Bo Trade Co., Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200922

Address after: Second floor, building 17, Jinling science and Technology Park, Ganzhou economic and Technological Development Zone, Ganzhou City, Jiangxi Province

Patentee after: Jiangxi Shanna New Material Technology Co., Ltd

Address before: 330000 Room 1201, 7 Upper Court of Chaoyang River, 118 Yunfei Road, Xihu District, Nanchang City, Jiangxi Province

Patentee before: Chen Weifan

TR01 Transfer of patent right