CN106811640A - 一种新型超轻高强高塑镁锂合金及其制备方法 - Google Patents

一种新型超轻高强高塑镁锂合金及其制备方法 Download PDF

Info

Publication number
CN106811640A
CN106811640A CN201510862965.6A CN201510862965A CN106811640A CN 106811640 A CN106811640 A CN 106811640A CN 201510862965 A CN201510862965 A CN 201510862965A CN 106811640 A CN106811640 A CN 106811640A
Authority
CN
China
Prior art keywords
alloy
content
strength
magnesium lithium
lithium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510862965.6A
Other languages
English (en)
Inventor
许道奎
韩恩厚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN201510862965.6A priority Critical patent/CN106811640A/zh
Publication of CN106811640A publication Critical patent/CN106811640A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明涉及高强高塑镁锂合金领域,特别是涉及一种新型超轻高强高塑镁锂合金及其制备方法,解决镁合金很难同时具有高强度和高塑性的问题。通过合理选择合金元素,将长周期结构相引入到高Li含量镁锂合金基体中,制备出具有超低密度、高强度、高塑性的Mg-Li合金。该镁锂合金材料是处于Mg-Li合金β-Li相区的单相合金,其包含的组分元素及其含量为:锂(Li)含量为11.5%~30%;锌(Zn)含量为2~6%;钇(Y)含量为3~10%和余量的镁(Mg)组成。该合金具有较强的室温成型能力,可冷轧成薄的板材(0.3~5mm),其加工工艺操作简单、方便。本发明合金材料的抗拉强度为σb=180~320MPa,屈服强度为σ0.2=130~250MPa,延伸率为δ大于40%,密度为1.1~1.6g/cm3

Description

一种新型超轻高强高塑镁锂合金及其制备方法
技术领域
本发明涉及高强高塑镁锂合金领域,特别是涉及一种同时具有超低密度、高强度、高塑性和可室温塑性成型的新型超轻高强高塑镁锂合金及其制备方法。
背景技术
镁与锂(密度为0.534g/cm3)进行合金化后,形成的将具有密度低、比强度和比刚度高等优点,可有效克服镁合金因密排六方结构引起塑性差的缺点,使的镁锂合金可作为航空航天和汽车等高新技术领域中一种潜在的候选新型轻质金属材料。对于Mg-Li合金,当Li含量低于5.5%时,其组织为Li固溶于Mg晶格中形成的α-Mg固溶体。当Li含量高于5.5wt.%,其主要相为hcp结构的α固溶体和bcc结构的β-Li相,而当Li含量高于11.5wt.%时,合金将完全由β相组成。其中,双相组织(α-Mg+β-Li)对于合金的强度和超塑性是有益的。与传统工程金属结构材料相比,镁锂合金是目前应用中最轻的。同时,该合金具有强的冷热变形能力、低的力学各向异性和良好的低温性能等特性。然而,镁锂合金也存在绝对强度低、耐高温能力差、抗蠕变性能和抗腐蚀性极差等缺点,严重制约了合金的应用与进一步的发展。近年来,文献(Mater.Lett.(材料快讯)60(2006)3272)和(Scr.Mater.(材料快报)51(2004)1057)主要侧重于下列两种强化方式来提高Mg-Li合金的强度:1)合金化强化;2)大塑性变形强化。另外,文献(Mater.Lett.(材料快讯)60(2006)1863)报道的复合强化Mg-Li合金的抗拉强度也仅为189MPa。可见,利用传统加工处理手段如合金化、热处理以及机械大变形,几乎已使镁锂合金的强度达到了极限。近年来,研究表明向镁合金中引入长周期有序(LPSO)相,可使Mg-2%Y-1%Zn合金的屈服强度提升至610MPa(Mater.Trans.(材料会刊)42(2001)1171)。因此,深入研究微观组织优化和新型强化相在镁锂合金中的引入,不仅可大幅度提升合金的力学性能,还会极大推动Mg-Li合金的工程应用。
发明内容
本发明的目的在于提供一种新型超轻高强高塑镁锂合金及其制备方法,解决镁合金不能同时具有高强高塑和可室温成型等问题。
本发明的技术方案是:
一种新型超轻高强高塑镁锂合金,Mg-Li合金是在β-Li相区的单相镁锂合金,按重量百分含量计,其包含的组分元素及其含量为:锂含量为11.5~30%,锌含量为2~6%,钇含量为3~10%,镁含量为平衡余量。
所述的新型超轻高强高塑镁锂合金,优选的成分范围,按重量百分含量计,Mg-Li合金包含的组分元素及其含量为:锂含量为15~25%;锌含量为3~5%,钇含量为5~8%,镁含量为平衡余量。
所述的新型超轻高强高塑镁锂合金,钇和锌的重量比值Y/Zn为1~2。
所述的新型超轻高强高塑镁锂合金,Mg-Li合金的密度为1.1~1.6g/cm3
所述的新型超轻高强高塑镁锂合金,Mg-Li合金进行室温塑性成型。
所述的新型超轻高强高塑镁锂合金,Mg-Li合金的抗拉强度为σb=180~320MPa,屈服强度为σ0.2=130~250MPa,延伸率为δ大于40%。
所述的新型超轻高强高塑镁锂合金的制备方法,Mg-Li合金的制备包括两个步骤:首先炼制满足成分要求的Mg-Zn-Y三元合金,然后将合金和纯Li在真空炉中进行重熔,以确保合金元素的分布均匀和减少Li元素在高温熔炼条件下的烧损。
本发明的设计思想是:
本发明通过合理选择合金元素并控制其含量和配比,使合金的基体为β-Li单相组织。同时,将长周期结构相引入到镁锂合金基体中。充分结合了β-Li单相组织具有的低密度及高塑性和长周期结构相的显著强化作用,制备出了具有超低密度、高强度、高塑性和室温可成型的超轻Mg-Li-Zn-Y合金。
本发明的优点及有益效果是:
1、本发明通过控制合金中的Li含量,极大的使合金密度得到了控制,甚至低于传统镁锂合金的密度,达到了真正意义上的超轻,为结构部件轻量化需求提供了候选材料。
2、本发明的合金在保留着较高塑形的同时,还具有工程需求的强度,特别适合于轻质、高强、高韧的用材需求。
3、本发明的合金具有室温成型能力,极大地减少了合金后续加工成本。
附图说明
图1含长程结构相镁锂合金(实施例1、实施例2和实施例3)XRD结果图。
图2为实施例1和实施例2合金的扫描电镜(SEM)观察照片及能谱结果。其中,图2(a),(b)和(g)为实施例1合金的高低倍SEM观察照片及合金相的EDS能谱分析结果;图2(c),(d)和(h)为实施例2合金的高低倍SEM观察照片及合金相的EDS能谱分析结果。图2(e)和(f)为实施例3合金的高低倍SEM观察照片。
具体实施方式
下面结合具体实施例和附图对本发明做进一步说明,需要说明的是给出的实施例是用于说明本发明,而不是对本发明的限制,本发明的保护范围并不限于以下实施的具体实施例。
实施例1
Ⅰ)、合金组成
按下列配比配置10千克含锂镁合金材料,所称取出的各合金元素的重量分别为:锂(Li)1.2千克、锌(Zn)0.2千克、钇(Y)0.4千克和余量的镁(Mg)。按重量百分比计,合金成分为Mg-12%Li-2%Zn-4%Y。
Ⅱ)、合金冶炼
合金的冶炼分两步:
1)在一个10千克容量的坩埚和电阻炉中,充分搅拌,将合金元素Y和Zn熔化,制备出Mg-2%-4%Y合金。
2)将Mg-2%-4%Y合金和纯锂放在真空炉中进行重熔。当合金完全熔化后,在720℃下保温30分钟,在真空炉内进行浇注。
Ⅲ)、均匀化和变形加工
1)将铸锭剥皮。
2)将剥皮后的铸锭用铝箔严密包裹,在450℃下进行4小时的均匀化处理。
3)将均匀化处理后的铸锭切成15mm厚的板材,在室温下进行轧制,分5次轧制成厚度为3mm的板材。
Ⅳ)、微观组织表征
组织观察的样品其制备过程如下:在煤油的保护下,对试样进行机械抛光;利用X-射线衍射分析对合金进行相分析,表明合金的相组成为β-Li和Mg12ZnY(LPSO相),相应X-射线图谱见附图1;高低倍电子扫描显微镜观察照片见附图2(a)和(b)。能谱分析结果证明,白色颗粒相的是LPSO相见附图2(g)。
Ⅴ)、力学性能测试
合金的室温力学拉伸性能样品的轴线方向平行于材料的轧向,试样标准长度为25mm,宽度为5mm,厚度为2mm。拉伸试验的应变速率为1×10-3s-1。拉伸试验在MTS(858.01M)拉扭试验机上进行。该含锂镁合金的材料的抗拉强度为270MPa,屈服强度为210MPa,延伸率为δ=56%,密度为1.31g/cm3
实施例2
Ⅰ)、合金组成
按下列配比配置10千克含锂镁合金材料所称取出的各元素为:锂(Li)1.4千克、锌(Zn)0.3千克、钇(Y)0.6千克和余量的镁(Mg)。按重量百分比计,合金成分为Mg-14%Li-3%Zn-6%Y。
Ⅱ)、合金冶炼
参考实施例1的冶炼。不同之处在于:两者的锌(Zn)和钇(Y)含量不同。
Ⅲ)、均匀化和变形加工
参考实施例1的均匀化和轧制工序。
Ⅳ)、微观组织表征
参考实施例1的微观组织表征。合金中主要相为β-Li和Mg12ZnY(LPSO相),相应X-射线图谱见附图1;与实施例1中合金相比,该合金中的LPSO相的数量有所增加,相应的扫描电晶照片见附图2(c)和(d)。能谱分析结果见附图2(h)。
Ⅴ)、力学性能测试
参考实施例1的力学性能测试。该含锂镁合金的材料的抗拉强度为310MPa,屈服强度为250MPa,延伸率为δ=45%,密度为1.29g/cm3
实施例3
Ⅰ)、合金组成
按下列配比配置10千克含锂镁合金材料所称取出的各元素为:锂(Li)1.8千克、锌(Zn)0.3千克、钇(Y)0.6千克和余量的镁(Mg)。按重量百分比计,合金成分为Mg-18%Li-3%Zn-6%Y。
Ⅱ)、合金冶炼
参考实施例1的冶炼。不同之处在于:两者的锌(Zn)和钇(Y)含量不同。
Ⅲ)、均匀化和变形加工
参考实施例1的均匀化和轧制工序。
Ⅳ)、微观组织表征
参考实施例1的微观组织表征。合金中主要相为β-Li和Mg12ZnY(LPSO相),相应X-射线图谱见附图1;与实施例2中合金相比,该合金中的LPSO相的数量基本没变,说明LPSO相的形成数量与加入的Zn和Y的量有关,相应的扫描电晶照片见附图2(e)和(f)。能谱分析结果与附图2(g)和(h)一致。
Ⅴ)、力学性能测试
参考实施例1的力学性能测试。该含锂镁合金的材料的抗拉强度为290MPa,屈服强度为240MPa,延伸率为δ=65%,密度为1.19g/cm3
实施例结果表明,本发明通过合理选择合金元素,将长周期结构相引入到高Li含量镁锂合金基体中,制备出了具有超低密度、高强度、高塑性的Mg-Li合金。该合金具有较强的室温成型能力,可冷轧成薄的板材(0.3~5mm),其加工工艺操作简单、方便。

Claims (7)

1.一种新型超轻高强高塑镁锂合金,其特征在于:Mg-Li合金是在β-Li相区的单相镁锂合金,按重量百分含量计,其包含的组分元素及其含量为:锂含量为11.5~30%,锌含量为2~6%,钇含量为3~10%,镁含量为平衡余量。
2.按照权利要求1所述的新型超轻高强高塑镁锂合金,其特征在于:优选的成分范围,按重量百分含量计,Mg-Li合金包含的组分元素及其含量为:锂含量为15~25%;锌含量为3~5%,钇含量为5~8%,镁含量为平衡余量。
3.按照权利要求1或2所述的新型超轻高强高塑镁锂合金,其特征在于:钇和锌的重量比值Y/Zn为1~2。
4.按照权利要求1所述的新型超轻高强高塑镁锂合金,其特征在于:Mg-Li合金的密度为1.1~1.6g/cm3
5.按照权利要求1所述的新型超轻高强高塑镁锂合金,其特征在于:Mg-Li合金进行室温塑性成型。
6.按照权利要求1所述的新型超轻高强高塑镁锂合金,其特征在于:Mg-Li合金的抗拉强度为σb=180~320MPa,屈服强度为σ0.2=130~250MPa,延伸率为δ大于40%。
7.一种权利要求1所述的新型超轻高强高塑镁锂合金的制备方法,其特征在于,Mg-Li合金的制备包括两个步骤:首先炼制满足成分要求的Mg-Zn-Y三元合金,然后将合金和纯Li在真空炉中进行重熔,以确保合金元素的分布均匀和减少Li元素在高温熔炼条件下的烧损。
CN201510862965.6A 2015-11-30 2015-11-30 一种新型超轻高强高塑镁锂合金及其制备方法 Pending CN106811640A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510862965.6A CN106811640A (zh) 2015-11-30 2015-11-30 一种新型超轻高强高塑镁锂合金及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510862965.6A CN106811640A (zh) 2015-11-30 2015-11-30 一种新型超轻高强高塑镁锂合金及其制备方法

Publications (1)

Publication Number Publication Date
CN106811640A true CN106811640A (zh) 2017-06-09

Family

ID=59108408

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510862965.6A Pending CN106811640A (zh) 2015-11-30 2015-11-30 一种新型超轻高强高塑镁锂合金及其制备方法

Country Status (1)

Country Link
CN (1) CN106811640A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107675053A (zh) * 2017-08-29 2018-02-09 西安理工大学 一种高强度镁锂合金及其深冷强化处理的制备方法
CN107779708A (zh) * 2017-12-08 2018-03-09 浙江海洋大学 一种高强度超轻镁锂合金及其制备方法
CN108315618A (zh) * 2018-01-22 2018-07-24 上海交通大学 一种lpso结构增强镁锂合金的制备方法
CN113584364A (zh) * 2021-05-21 2021-11-02 沈阳理工大学 高锂含量超轻镁锂基合金力学和腐蚀性能的协同提升方法
CN114807703A (zh) * 2022-03-25 2022-07-29 哈尔滨工程大学 一种基于高固溶含量的高强高塑镁锂合金制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649576A (ja) * 1992-06-19 1994-02-22 Mitsui Mining & Smelting Co Ltd 超塑性マグネシウム合金
CN1605650A (zh) * 2004-12-01 2005-04-13 北京航空航天大学 一种含锂镁合金材料及其制备方法
CN1948532A (zh) * 2006-11-01 2007-04-18 中国科学院金属研究所 一种准晶相强化镁锂合金及其制备方法
CN101381831A (zh) * 2008-10-29 2009-03-11 仝仲盛 一种高塑性镁合金
CN101768689A (zh) * 2010-01-28 2010-07-07 西安理工大学 一种高强超韧低密度镁合金及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649576A (ja) * 1992-06-19 1994-02-22 Mitsui Mining & Smelting Co Ltd 超塑性マグネシウム合金
CN1605650A (zh) * 2004-12-01 2005-04-13 北京航空航天大学 一种含锂镁合金材料及其制备方法
CN1948532A (zh) * 2006-11-01 2007-04-18 中国科学院金属研究所 一种准晶相强化镁锂合金及其制备方法
CN101381831A (zh) * 2008-10-29 2009-03-11 仝仲盛 一种高塑性镁合金
CN101768689A (zh) * 2010-01-28 2010-07-07 西安理工大学 一种高强超韧低密度镁合金及其制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107675053A (zh) * 2017-08-29 2018-02-09 西安理工大学 一种高强度镁锂合金及其深冷强化处理的制备方法
CN107675053B (zh) * 2017-08-29 2019-09-27 西安理工大学 一种高强度镁锂合金及其深冷强化处理的制备方法
CN107779708A (zh) * 2017-12-08 2018-03-09 浙江海洋大学 一种高强度超轻镁锂合金及其制备方法
CN108315618A (zh) * 2018-01-22 2018-07-24 上海交通大学 一种lpso结构增强镁锂合金的制备方法
CN113584364A (zh) * 2021-05-21 2021-11-02 沈阳理工大学 高锂含量超轻镁锂基合金力学和腐蚀性能的协同提升方法
CN113584364B (zh) * 2021-05-21 2022-05-06 沈阳理工大学 高锂含量超轻镁锂基合金力学和腐蚀性能的协同提升方法
CN114807703A (zh) * 2022-03-25 2022-07-29 哈尔滨工程大学 一种基于高固溶含量的高强高塑镁锂合金制备方法

Similar Documents

Publication Publication Date Title
Rong et al. Characterization and strengthening effects of γ′ precipitates in a high-strength casting Mg-15Gd-1Zn-0.4 Zr (wt.%) alloy
CN100432258C (zh) 一种准晶相强化镁锂合金及其制备方法
CN106811640A (zh) 一种新型超轻高强高塑镁锂合金及其制备方法
Duan et al. Developed constitutive models, processing maps and microstructural evolution of Pb-Mg-10Al-0.5 B alloy
Kong et al. Interfacial microstructure and shear strength of Ti–6Al–4V/TiAl laminate composite sheet fabricated by hot packed rolling
CN107630157A (zh) 一种lpso长周期结构增强的镁锂合金的制备方法
CN101509091A (zh) 一种高强高韧Al-Zn-Mg-Cu-Sr合金及制备方法
CN107326235B (zh) 一种含Cu的高强Mg-Zn-Al系变形镁合金及其制备方法
CN104046869B (zh) 一种镁锂硅合金的制备方法
CN107460386A (zh) 一种磁场铸造调控含lpso结构高强韧镁合金制备方法
CN106676357A (zh) 一种高塑性镁合金及其制备方法
CN110343923A (zh) 一种低密度高强度高塑性的镁锂合金及其制备方法
Emamy et al. Microstructures and tensile properties of Al/2024–Al4Sr composite after hot extrusion and T6 heat treatment
CN107541630A (zh) 有效利用稀土元素Y强化双相Mg‑Li‑Zn‑Y镁锂合金及制备方法
CN108315618A (zh) 一种lpso结构增强镁锂合金的制备方法
Meng et al. Effect of pre-deformation on aging creep of Al–Li–S4 alloy and its constitutive modeling
Yang et al. Improvement of microstructure and mechanical properties of TiAl− Nb alloy by adding Fe element
CN106967907A (zh) 船舶船体用铝合金大规格扁铸锭及其制造方法
CN107675053B (zh) 一种高强度镁锂合金及其深冷强化处理的制备方法
Peng et al. Effect of solution treatment on microstructure and mechanical properties of cast Al–3Li–1.5 Cu–0.2 Zr alloy
CN114535478A (zh) 一种超轻高强镁锂合金的旋转模锻制备方法
CN106978557A (zh) 一种镁锂合金及其制备方法
Volkov et al. Effect of annealing on the structure, mechanical and electrical properties of Cu/Mg-composite wires
CN109182858A (zh) 一种含Ho耐热镁合金及其制备方法
CN109913731A (zh) 一种高强韧Ti-Al系金属间化合物及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170609

RJ01 Rejection of invention patent application after publication