CN106790179B - 一种检测区域定位劫持攻击的方法 - Google Patents

一种检测区域定位劫持攻击的方法 Download PDF

Info

Publication number
CN106790179B
CN106790179B CN201611254102.1A CN201611254102A CN106790179B CN 106790179 B CN106790179 B CN 106790179B CN 201611254102 A CN201611254102 A CN 201611254102A CN 106790179 B CN106790179 B CN 106790179B
Authority
CN
China
Prior art keywords
rssi
area
coordinates
positioning
coordinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611254102.1A
Other languages
English (en)
Other versions
CN106790179A (zh
Inventor
刘震宇
李嘉俊
李文成
谢信琳
罗国政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201611254102.1A priority Critical patent/CN106790179B/zh
Publication of CN106790179A publication Critical patent/CN106790179A/zh
Application granted granted Critical
Publication of CN106790179B publication Critical patent/CN106790179B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1408Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic by monitoring network traffic
    • H04L63/1416Event detection, e.g. attack signature detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1408Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic by monitoring network traffic
    • H04L63/1425Traffic logging, e.g. anomaly detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1441Countermeasures against malicious traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Image Analysis (AREA)
  • Burglar Alarm Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明提出一种检测区域定位劫持攻击的方法。通过划分空间区域,在某定位区域中某段时间内收集若干定位数据,由定位算法得到定位数据的RSSI相关坐标,基于区域信誉度阈值的评价对异常定位区域进行检测,通过对单区域和多区域异常定位区域的时效性和空间性的分析,选取可信度较高的区域坐标作为最终公布的坐标。本发明能有效地抵抗区域定位劫持攻击的行为,提高了区域检测的准确性和定位的安全性,对于复杂环境下防御定位风险和实现安全定位有着重大的意义。

Description

一种检测区域定位劫持攻击的方法
技术领域
本发明属于无线空间定位技术领域,具体涉及在复杂的室内环境下基于无线定位技术与检测定位劫持的方法。
背景技术
随着无线通信技术的发展及数据处理能力的提高,基于位置的服务成为当前互联网业务之一。特别是复杂的环境下,快速准确地获得移动终端或其持有者、设施与物品的位置信息,并提供位置服务的需求变得日益迫切。通信与定位正在相互融合、相互促进。通过无线通信及相关参数测量确定移动终端位置,而定位信息又可以用来支持位置业务和优化网络管理,提高位置服务质量和网络性能。
在室外环境,美国研发的全球定位***,我国自主研制的北斗卫星导航定位***以及蜂窝无线定位等室外导航和定位技术日趋成熟。在室内环境,常见无线定位技术包括WLAN、RFID、蓝牙、UWB、超声波、红外线等。随着无线定位技术的日益普及,对于无线定位安全危险防御的需求也越来越深入。当前出现的虚假定位坐标点,对用户的定位服务存在单点欺骗攻击,区域干扰攻击等定位劫持攻击的情况,通过修改真实位置的坐标信息,劫持真实位置的坐标信息,公布错误的坐标信息,导致出现一定范围内的定位错误,攻击的存在会使得用户接收到错误的位置信息或者达到干扰者实施其他违法行为的目的。目前,针对基于区域定位的安全防御方面只有比较少的相关研究,故提出本发明方法,以此提高复杂环境下的基于无线技术定位的安全性。
发明内容
为了判定定位区域是否存在劫持攻击的情况,本发明基于无线空间定位的技术,提出一种检测区域定位中出现的定位劫持攻击的方法。通过对单区域和多区域异常定位区域的时效性和空间性的分析,选取可信度高的区域坐标作为最终公布的坐标,对于复杂环境下防御定位风险和实现安全定位有着重大的意义。
本发明采用如下技术方案来实现一种检测区域定位劫持攻击的方法。本发明分为五个主要步骤,分别为收集某区域某时间段内的定位数据,获取该区域的相关坐标,单区域异常时效性和空间性分析,多区域异常时效性和空间性分析及公布最新的区域坐标。下面则详细介绍本发明方法的实现过程。
步骤1:A区域中在时间T收集N个定位数据,该区域标记为AT
步骤2:获得N个数据的RSSI相关坐标AT(XT,YT);
步骤3:单区域异常时效性和空间性分析;
步骤4:多区域异常时效性和空间性分析;
步骤5:公布最新的区域坐标。
优选地,步骤1所述的内容具体如下:
在检测的定位区域A中,在时间T内收集了N个定位的数据,
N{{(xt1,yt1)|RSSI1,RSSI2,…RSSIr,…,RSSIR|t1};{(xt2,yt2)|RSSI1,RSSI2,…RSSIr,…,RSSIR|t2};……;{(xtn,ytn)|RSSI1,RSSI2,…RSSIr,…,RSSIR|tn};……;{(xtN,ytN)|RSSI1,RSSI2,…RSSIr,…,RSSIR|tN}(n=1,2,…,N;r=1,2,…,R)},并将该区域A标记为AT
优选地,步骤2所述内容具体如下:
通过步骤1获得的N个定位数据,通过相关的定位算法,计算得到RSSI信号值的相关坐标AT(XT,YT),用以表示区域A下述步骤的坐标表示。
步骤31:从步骤2中获取RSSI相关坐标AT(XT,YT),进行同区域同时间检测;
步骤32:通过距离公式计算RSSI相关坐标AT(XT,YT)与公布坐标(x’,y’)的间距L1
步骤33:判断RSSI相关坐标AT(XT,YT)与公布坐标(x’,y’)的间距L1是否在安全阈值ε1范围之内,如果满足,则当前区域AT正常,标记U为0,以RSSI相关坐标AT(XT,YT)作为最新的区域坐标(x’=XT,y’=YT),并执行步骤5,否则执行步骤34;
步骤34:通过距离公式计算区域AT中所有收集数据N的各自坐标(xtn,ytn)与公布坐标(x’,y’)的间距L2
步骤35:判断区域AT中所有采集数据N的各自坐标(xtn,ytn)与公布坐标(x’,y’)的间距L2是否在安全阈值ε2范围之内,如果满足,删除所有收集数据N中小于安全阈值ε2范围之内的数据,否则执行步骤36;
步骤36:记录大于安全阈值ε2的数据,设集合为N’{(xt1’,yt1’),(xt2’,yt2’),…,(xtn’,ytn’),…,(xtN’,ytN’)}(n’=1’,2’,…,N’);
步骤37:判断计算L2的数据是否达到最后一个,如果是,则执行步骤38,否则返回执行步骤34;
步骤38:计算收集数据N中的剩余数据N’是否在收集的μ*N(0<μ<1)个数据内,如果满足,则当前区域AT正常,标记U为0,用最新的RSSI相关坐标作为公布坐标(x’,y’),执行步骤5,否则当前区域AT不正常,标记U为1,执行步骤4;
优选地,步骤4所述内容具体如下,包括以下步骤:
步骤41:进行同区域不同时间检测,结束之后执行步骤42;
步骤42:进行不同区域不同时间检测;
优选地,步骤41所述内容具体如下,包括以下步骤:
步骤41_1:设置并初始化信誉度RA,可信值αA,不可信值βA的计算参数;
步骤41_2:通过距离公式分别计算RSSI相关坐标AT(XT,YT)与公布坐标(x’,y’)前M个时段坐标(x’(t-m),y’(t-m))(m=1,2,…,M)的间距L3
步骤41_3:分别判断RSSI相关坐标AT(XT,YT)与公布坐标(x’,y’)前M个时段坐标(x’(t-m),y’(t-m))(m=1,2,…,M)的间距L3是否在安全阈值ε3范围之内,如果满足,执行步骤41_4,否则执行步骤41_5;
步骤41_4:若间距L3在安全阈值ε3范围之内,则标记该数据为可信,可信值αA记录的次数加1,并储存;
步骤41_5:若间距L3不在安全阈值ε3范围之内,则标记该数据为不可信,不可信值βA记录的次数加1,并储存;
步骤41_6:当前时间段m计算完毕,进入下一个时间段m+1的计算,并判断时间段m是否达到前M个时段,如果满足,执行步骤41_7,否则返回步骤41_2,继续计算间距L3
步骤41_7:通过步骤41_4的可信值αA和步骤41_5的不可信值βA,计算当前区域AT的信誉度RA=αA/(αAA),若信誉度RA大于等于信誉度阈值ξA(0<ξA<1),则当前区域AT正常,标记U为0,用最新的RSSI相关坐标作为公布坐标(x’,y’),执行步骤5,否则当前区域AT不正常,标记U为1,执行步骤42;
优选地,步骤42所述内容具体如下,包括以下步骤:
步骤42_1:在时间T中与A区域相邻最近的区域B,标记为BT,设置并初始化信誉度RB,可信值αB,不可信值βB的计算参数;
步骤42_2:使用结构算法遍历探寻区域BT,区域BT中有K个子区域,分别标记为k1,k2,…kk,…,kK;
步骤42_3:通过距离公式分别计算RSSI相关坐标AT(XT,YT)与公布坐标(x’,y’),在区域BT中K个子区域各自前M个时段坐标(x’(k-m),y’(k-m))(k=1,2,…,K,m=1,2,…,M)的间距L4
步骤42_4:分别判断RSSI相关坐标AT(XT,YT)与公布坐标(x’,y’),在区域BT中K个子区域各自前M个时段坐标(x’(k-m),y’(k-m))(k=1,2,…,K,m=1,2,…,M)的间距L4是否在安全阈值ε4范围之内,如果满足,执行步骤42_5,否则执行步骤42_6;
步骤42_5:若间距L4在安全阈值ε4范围之内,则标记该数据为可信,可信值αB记录的次数加1,并储存;
步骤42_6:若间距L4不在安全阈值ε4范围之内,则标记该数据为不可信,不可信值βB记录的次数加1,并储存;
步骤42_7:当前时间段m计算完毕,进入下一个时间段计算,并判断时间段m是否达到前M个时段,如果满足,执行步骤42_8,否则返回步骤42_3,继续计算间距L4
步骤42_8:通过步骤42_5的可信值αB和步骤42_6的不可信值βB,计算当前区域AT的信誉度RB=αB/(αBB),若信誉度RB大于等于信誉度阈值ξB(0<ξB<1),则当前BT的子区域正常,标记U为0,区域AT用最新的RSSI相关坐标作为公布坐标(x’,y’),执行步骤5,否则当前BT的子区域不正常,标记U为1,进入下一个子区域k+1的计算,执行步骤42_9;
步骤42_9:计算当前BT的子区域数k是否达到区域BT中子区域的总数K,如果满足,执行步骤42_10;若区域BT中子区域k的RB仍小于安全阈值ξB,则认为这个区域仍然受到区域干扰攻击,则将该区域设置为A,再次计算与A最邻近的子区域BT,直到所有最邻近的子区域k的RB大于等于安全阈值ξB,返回步骤42_3,继续计算间距L4
步骤42_10:区域BT中不正常的子区域,标记U为1,该区域受到定位劫持攻击,区域BT的其余子区域正常,标记U为0,该区域没有受到定位劫持攻击,用最新的RSSI相关坐标作为公布坐标(x’,y’),执行步骤5。
优选地,步骤5所述内容具体如下:
若出现区域定位劫持攻击的情况,则维持检测前最新的公布坐标(x’,y’),用作公共区域定位服务的准确坐标,若没出现攻击的情况,则根据最新的检测结果,用最新的RSSI相关坐标作为公布坐标(x’,y’)。
与现有技术相比,本发明具有如下的优点:
1、本发明对定位区域进行划分,基于区域信誉度阈值的评价对异常定位区域开始进行检测,检测区域取决于各区域的信誉度阈值,保证了各区域定位位置的可信度,提高了区域检测的准确性和定位的安全性。
2、本发明采用定位区域时效性的分析,根据异常定位的时刻反查前几个时段的区域信誉度,时效性可以根据具体需求设置,满足不同时间段的安全检测,便于检测历史的安全反查,提高了检测区域定位的劫持攻击的准确性。
3、本发明采用定位区域空间性的分析,根据异常定位的区域查询异常定位区域最邻近的多个区域,对这多个区域进行区域信誉度的计算,直到异常定位的邻近区域的信誉度达到信誉度阈值,从而确定受到定位劫持攻击的范围,从另一方面提高了检测的准确性。
附图说明
为了更清楚地说明本发明的技术方案,将结合以下附图对本发明作简单地介绍:
图1为本发明的一种检测区域定位劫持攻击的方法的整体流程图;
图2为本发明方法中单区域异常时效性和空间性分析的同区域同时间检测的流程图;
图3为本发明方法中多区域异常时效性和空间性分析的同区域不同时间检测的流程图;
图4为本发明方法中多区域异常时效性和空间性分析的不同区域不同时间检测的流程图;
图5为本发明的定位区域受到攻击的示意图例。
具体实施方式
为了更加清楚地描述本发明,下面将结合实例对本发明进行详细说明。
本发明采用如下技术方案来实现一种检测区域定位劫持攻击的方法。由图1所示,本发明分为五个主要步骤,具体步骤如下:
步骤1:A区域中在时间T收集N个定位数据,该区域标记为AT
在检测的定位区域A中,在时间T内收集了N个定位的数据,N{{(xt1,yt1)|RSSI1,RSSI2,…RSSIr,…,RSSIR|t1};{(xt2,yt2)|RSSI1,RSSI2,…RSSIr,…,RSSIR|t2};…;{(xtn,ytn)|RSSI1,RSSI2,…RSSIr,…,RSSIR|tn};…;{(xtN,ytN)|RSSI1,RSSI2,…RSSIr,…,RSSIR|tN}(n=1,2,…,N;r=1,2,…,R)},并将该区域A标记为AT
表1表示在区域A(正方形区域边长为2(单位:米),公布坐标(x’,y’)(中心坐标)为(0,0),如图5所示)在时间T=11:00~12:00时收集了N=10个RSSI值(单位:dBm)的定位数据,该区域有R=10个AP,通过定位算法计算得到各时间的定位坐标,该区域标记为AT
表1
时间 AP1 AP2 AP3 AP4 AP5 AP6 AP7 AP8 AP9 AP10 定位坐标
t1 -52 -66 -62 -57 -57 -73 -65 -70 -73 -73 (0.5,0.4)
t2 -58 -68 -65 -60 -64 -72 -62 -68 -70 -77 (0.2,0.5)
t3 -55 -67 -61 -56 -62 -75 -63 -69 -71 -76 (-0.6,0.3)
t4 -54 -65 -61 -59 -67 -71 -61 -69 -74 -75 (0.2,-0.3)
t5 -86 -70 -80 -79 -85 -92 -97 -96 -95 -89 (2.2,3.6)
t6 -85 -75 -82 -78 -83 -93 -99 -99 -97 -86 (3.1,3.4)
t7 -86 -79 -87 -78 -84 -95 -97 -91 -95 -85 (2.6,3.1)
t8 -82 -80 -84 -79 -82 -96 -98 -95 -97 -83 (2.7,1.6)
t9 -85 -78 -85 -75 -87 -97 -98 -93 -90 -81 (1.5,2.5)
t10 -87 -77 -82 -70 -85 -93 -96 -94 -93 -85 (2.0,3.8)
步骤2:获得N个数据的RSSI相关坐标AT(XT,YT)。
从区域AT中通过RSSI值计算得出的定位坐标,再通过同一时间段内的RSSI信号值的关联性,对这一时段内求得10个数据的平均定位坐标,作为RSSI相关坐标AT(XT,YT),即AT(1.44,1.89)。
步骤3:单区域异常时效性和空间性分析,由图2所示,具体步骤如下:
步骤31:从步骤2中获取RSSI相关坐标AT(XT,YT),即AT(1.44,1.89),进行同区域同时间检测;
步骤32:通过距离公式(如欧式距离公式:L1=|(XT-x’)2+(YT-y’)2|1/2)计算RSSI相关坐标AT(XT,YT)与公布坐标(x’,y’)的间距L1
L1=|(XT-x’)2+(YT-y’)2|1/2=|(1.44-0)2+(1.89-0)2|1/2=2.38
步骤33:判断RSSI相关坐标AT(XT,YT)与公布坐标(x’,y’)的间距L1是否在安全阈值ε1范围之内,如果满足,则当前区域AT正常,标记U为0,以RSSI相关坐标AT(XT,YT)作为最新的区域坐标(x’=XT,y’=YT),并执行步骤5,否则执行步骤34;
设安全阈值ε1为0~1之间,从上述例子可知L1=2.38>1,判定当前区域AT不正常,执行步骤34;
步骤34:通过距离公式(如欧式距离公式:L2=|(xtn-x’)2+(ytn-y’)2|1/2(n=1,2,…,N))计算区域AT中所有收集数据N的各自坐标(xtn,ytn)与公布坐标(x’,y’)的间距L2
表2为数据N的各自坐标(xtn,ytn)与公布坐标(x’,y’)的间距L2
表2
时间 定位坐标 间距L<sub>2</sub>
t1 (0.5,0.4) 0.64
t2 (0.2,0.5) 0.53
t3 (-0.6,0.3) 0.67
t4 (0.2,-0.3) 0.36
t5 (2.2,3.6) 4.22
t6 (3.1,3.4) 4.60
t7 (2.6,3.1) 4.05
t8 (2.7,1.6) 3.14
t9 (1.5,2.5) 2.92
t10 (2.0,3.8) 4.29
步骤35:判断区域AT中所有采集数据N的各自坐标(xtN,ytN)与公布坐标(x’,y’)的间距L2是否在安全阈值ε2范围之内,如果满足,删除所有收集数据N中小于安全阈值ε2范围之内的数据,否则执行步骤36;
设安全阈值ε2为0~1之间,从表2可以看出,t1~t4的定位坐标满足安全阈值ε2,将其从计算列表中删除,执行步骤36。
步骤36:记录大于安全阈值ε2的数据,设集合为N’{(xt1’,yt1’),(xt2’,yt2’),…,(xtn’,ytn’),…,(xtN’,ytN’)}(n’=1’,2’,…,N’);
从表2可以看出,t5~t10的定位坐标不满足安全阈值ε2,将其记录为集合N’,如表3所示:
表3
时间 定位坐标 间距L<sub>2</sub>
t1’ (2.2,3.6) 4.22
t2’ (3.1,3.4) 4.60
t3’ (2.6,3.1) 4.05
t4’ (2.7,1.6) 3.14
t5’ (1.5,2.5) 2.92
t6’ (2.0,3.8) 4.29
步骤37:判断计算L2的数据是否达到最后一个,如果是,则执行步骤38,否则返回执行步骤34;
步骤38:计算收集数据N中的剩余数据N’是否在收集的μ*N(0<μ<1)个数据内,如果满足,则当前区域AT正常,标记U为0,用最新的RSSI相关坐标作为公布坐标(x’,y’),执行步骤5,否则当前区域AT不正常,标记U为1,执行步骤4;
不满足安全阈值ε2的定位坐标数目N’=6,设μ=0.2,μ*N=0.2*10=2,不满足步骤38的要求,因此当前区域AT不正常,将其标记U为1。
步骤4:多区域异常时效性和空间性分析,包括进行同区域不同时间检测和进行不同区域不同时间检测两个步骤。
步骤41:进行同区域不同时间检测,由图3所示,其中包括以下步骤。
步骤41_1:设置并初始化计算参数;
设初始化信誉度RA=0,可信值αA=0,不可信值βA=0;
步骤41_2:通过距离公式(如欧式距离公式:L3=|(XT–x’(t-m))2+(YT–y’(t-m))2|1/2(m=1,2,…,M))分别计算RSSI相关坐标AT(XT,YT)与公布坐标(x’,y’)前M(设M=10)个时段坐标(x’(t-m),y’(t-m))(m=1,2,…,10)的间距L3
步骤41_3:分别判断RSSI相关坐标AT(XT,YT)与公布坐标(x’,y’)前M=10个时段坐标(x’(t-m),y’(t-m))(m=1,2,…,10)的间距L3是否在安全阈值ε3范围之内,如果满足,执行步骤41_4,否则执行步骤41_5;
设安全阈值ε3范围为0~1,计算结果如表4所示:
表4
时段M 定位坐标 间距L<sub>3</sub> 是否可信 α<sub>A</sub> β<sub>A</sub>
m1 (1.2,2.1) 2.42 不可信 1
m2 (0.6,0.2) 0.63 可信 1
m3 (-1.3,0.5) 1.39 不可信 1
m4 (0.2,0.8) 0.82 可信 1
m5 (-0.9,-0.7) 1.14 不可信 1
m6 (1.4,2.6) 2.95 不可信 1
m7 (-1.5,2.2) 2.66 不可信 1
m8 (0.7,0.2) 0.73 可信 1
m9 (1.7,0.5) 1.77 不可信 1
m10 (1.1,0.6) 1.25 不可信 1
步骤41_4:若间距L3在安全阈值ε3范围之内,则标记该数据为可信,可信值αA记录的次数加1,并储存;
步骤41_5:若间距L3不在安全阈值ε3范围之内,则标记该数据为不可信,不可信值βA记录的次数加1,并储存;
步骤41_6:当前时间段m计算完毕,进入下一个时间段m+1的计算,并判断时间段m是否达到前M个时段,如果满足,执行步骤41_7,否则返回步骤41_2,继续计算间距L3
步骤41_7:通过步骤41_4的可信值αA和步骤41_5的不可信值βA,计算当前区域AT的信誉度RA=αA/(αAA),若信誉度RA大于等于信誉度阈值ξA(0<ξA<1),则当前区域AT正常,标记U为0,用最新的RSSI相关坐标作为公布坐标(x’,y’),执行步骤5,否则当前区域AT不正常,标记U为1,执行步骤42;
计算当前区域AT的信誉度RA=αA/(αAA)=3/10=0.3,即当前区域AT只有30%的信誉度,设信誉度阈值ξA为80%,RA<ξA,因此区域AT不正常,标记U为1,执行步骤42。
步骤42:进行不同区域不同时间检测,由图4所示,其中包括以下步骤:
步骤42_1:在时间T中与A区域相邻最近的区域B,标记为BT
设置初始化计算参数,初始化信誉度RB=0,可信值αB=0,不可信值βB=0;
步骤42_2:使用结构算法(如遍历算法)遍历探寻区域BT,区域BT中有K个子区域,分别标记为k1,k2,…kk,…,kK;
如图5所示,在图中与A区域相邻最近的区域BT,区域BT中有K=8个子区域,分别标记为k1,k2,…k8;
步骤42_3:通过距离公式(如欧式距离公式:L4=|(XT–x’(k-m))2+(YT–y’(k-m))2|1/2(k=1,2,…,K,m=1,2,…,M))分别计算RSSI相关坐标AT(XT,YT)与公布坐标(x’,y’),在区域BT中K=8个子区域各自前M=10个时段坐标(x’(k-m),y’(k-m))(k=1,2,…,8,m=1,2,…,10)的间距L4
步骤42_4:分别判断RSSI相关坐标AT(XT,YT)与公布坐标(x’,y’),在区域BT中K=8个子区域各自前M=10个时段坐标(x’(k-m),y’(k-m))(k=1,2,…,8;m=1,2,…,10)的间距L4是否在安全阈值ε4范围之内,如果满足,执行步骤42_5,否则执行步骤42_6;
表5
Figure GDA0002364284400000141
Figure GDA0002364284400000151
Figure GDA0002364284400000161
步骤42_5:若间距L4在安全阈值ε4范围之内,则标记该数据为可信,可信值αB记录的次数加1,并储存;
步骤42_6:若间距L4不在安全阈值ε4范围之内,则标记该数据为不可信,不可信值βB记录的次数加1,并储存;
设安全阈值ε4范围为0~1,由表5所记录k1~k8个子区域中各子区域的前m1~m10时间的定位坐标,记录各时间的间距L4是否在安全阈值以内,统计相应的可信值αB和不可信值βB
步骤42_7:当前时间段m计算完毕,进入下一个时间段计算,并判断时间段m是否达到前M个时段,如果满足,执行步骤42_8,否则返回步骤42_3,继续计算间距L4
当完成与A区域相邻最近的区域BT的k1~k8子区域,各区域的m1~m10时段的计算,执行步骤42_8。
步骤42_8:通过步骤42_5的可信值αB和步骤42_6的不可信值βB,计算当前区域AT的信誉度RB=αB/(αBB)(设信誉度阈值ξB=80%),见下表6所示。
若信誉度RB大于等于信誉度阈值ξB(0<ξB<1),则当前BT的子区域正常,标记U为0,区域AT用最新的RSSI相关坐标作为公布坐标(x’,y’),执行步骤5,否则当前BT的子区域不正常,标记U为1,进入下一个子区域k+1的计算,执行步骤42_9;
表6
Figure GDA0002364284400000171
Figure GDA0002364284400000181
步骤42_9:计算当前BT的子区域数k是否达到区域BT中子区域的总数K,如果满足,执行步骤42_10,否则返回步骤42_3,继续计算间距L4
如图5所示:区域BT中子区域k1~k8中的k2、k3、k6的信誉度RB小于信誉度阈值ξB,认为子区域k2、k3、k6仍然受到劫持攻击,则由先后顺序将k2、k3、k6设置为区域AT,再次计算与AT最邻近的子区域BT的子区域k,直到所有最邻近的子区域k的RB大于等于信誉度阈值ξB,并执行步骤42_10。
步骤42_10:区域BT中不正常的子区域,标记U为1,标记为1的区域受到定位劫持攻击,区域BT的其余子区域正常,标记U为0,标记为0的区域没有受到定位劫持,用最新的RSSI相关坐标作为公布坐标(x’,y’),执行步骤5。
如图5所示,U=1的区域确定为受到定位劫持攻击的区域,从而确定受到攻击的范围,说明攻击行为在该范围的区域之中。
步骤5:公布最新的区域坐标。
若出现区域定位劫持攻击的情况,则维持检测前最新的公布坐标(x’,y’),用作公共区域定位服务的准确坐标,若没出现攻击的情况,则根据最新的检测结果,用最新的RSSI相关坐标作为公布坐标(x’,y’)。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (4)

1.一种检测区域定位劫持攻击的方法,所述方法用于无线定位,其特征在于,包括以下步骤:
步骤1:对于A区域,在时间T收集N个定位数据,该区域标记为AT
步骤2:获得所述N个定位数据的RSSI相关坐标AT(XT,YT),所述的RSSI指接收信号的强度指示;
步骤3:进行单区域异常时效性和空间性分析;
步骤4:进行多区域异常时效性和空间性分析;
步骤5:公布最新的区域坐标;
步骤3所述的单区域异常时效性和空间性分析具体包括以下步骤:
步骤31:从步骤2中获取RSSI相关坐标AT(XT,YT),进行同区域同时间检测;
步骤32:通过距离公式计算RSSI相关坐标AT(XT,YT)与公布坐标(x’,y’)的间距L1
步骤33:判断RSSI相关坐标AT(XT,YT)与公布坐标(x’,y’)的间距L1是否在安全阈值ε1范围之内,如果满足,则当前区域AT正常,标记U为0,以RSSI相关坐标AT(XT,YT)作为最新的区域坐标(x’=XT,y’=YT),并执行步骤5,否则执行步骤34;
步骤34:通过距离公式计算区域AT中所有收集数据N的各自坐标(xtn,ytn)与公布坐标(x’,y’)的间距L2
步骤35:判断区域AT中所有采集数据N的各自坐标(xtn,ytn)与公布坐标(x’,y’)的间距L2是否在安全阈值ε2范围之内,如果满足,删除所有收集数据N中小于安全阈值ε2范围之内的数据,否则执行步骤36;
步骤36:记录大于安全阈值ε2的数据,设集合为N’{(xt1’,yt1’),(xt2’,yt2’),…,(xtn’,ytn’),…,(xtn’,ytn’)}(n’=1’,2’,…,N’);
步骤37:判断计算L2的数据是否达到最后一个,如果是,则执行步骤38,否则返回执行步骤34;
步骤38:计算收集数据N中的剩余数据N’是否在收集的μ*N(0<μ<1)个数据内,如果满足,则当前区域AT正常,标记U为0,用最新的RSSI相关坐标作为公布坐标(x’,y’),执行步骤5,否则当前区域AT不正常,标记U为1,执行步骤4;
步骤4所述的多区域异常时效性和空间性分析具体包括步骤41进行同区域不同时间检测和步骤42进行不同区域不同时间检测;
步骤41中进行同区域不同时间的检测具体包括以下步骤:
步骤41_1:设置并初始化信誉度RA,可信值αA,不可信值βA的计算参数;
步骤41_2:通过距离公式分别计算RSSI相关坐标AT(XT,YT)与公布坐标(x’,y’)前M个时段坐标(x’(t-m),y’(t-m))(m=1,2,…,M)的间距L3
步骤41_3:分别判断RSSI相关坐标AT(XT,YT)与公布坐标(x’,y’)前M个时段坐标(x’(t-m),y’(t-m))(m=1,2,…,M)的间距L3是否在安全阈值ε3范围之内,如果满足,执行步骤41_4,否则执行步骤41_5;
步骤41_4:若间距L3在安全阈值ε3范围之内,则标记该数据为可信,可信值αA记录的次数加1,并储存;
步骤41_5:若间距L3不在安全阈值ε3范围之内,则标记该数据为不可信,不可信值βA记录的次数加1,并储存;
步骤41_6:当前时间段m计算完毕,进入下一个时间段m+1的计算,并判断时间段m是否达到前M个时段,如果满足,执行步骤41_7,否则返回步骤41_2,继续计算间距L3
步骤41_7:通过步骤41_4的可信值αA和步骤41_5的不可信值βA,计算当前区域AT的信誉度RA=αA/(αAA),若信誉度RA大于等于信誉度阈值ξA(0<ξA<1),则当前区域AT正常,标记U为0,用最新的RSSI相关坐标作为公布坐标(x’,y’),执行步骤5,否则当前区域AT不正常,标记U为1,执行步骤42;
步骤42中进行不同区域不同时间的检测具体包括以下步骤:
步骤42_1:在时间T中与A区域相邻最近的区域B,标记为BT,设置并初始化信誉度RB,可信值αB,不可信值βB的计算参数;
步骤42_2:使用结构算法遍历探寻区域BT,区域BT中有K个子区域,分别标记为k1,k2,…kk,…,kK;
步骤42_3:通过距离公式分别计算RSSI相关坐标AT(XT,YT)与公布坐标(x’,y’),在区域BT中K个子区域各自前M个时段坐标(x’(k-m),y’(k-m))(k=1,2,…,K,m=1,2,…,M)的间距L4
步骤42_4:分别判断RSSI相关坐标AT(XT,YT)与公布坐标(x’,y’),在区域BT中K个子区域各自前M个时段坐标(x’(k-m),y’(k-m)) (k=1,2,…,K,m=1,2,…,M)的间距L4是否在安全阈值ε4范围之内,如果满足,执行步骤42_5,否则执行步骤42_6;
步骤42_5:若间距L4在安全阈值ε4范围之内,则标记该数据为可信,可信值αB记录的次数加1,并储存;
步骤42_6:若间距L4不在安全阈值ε4范围之内,则标记该数据为不可信,不可信值βB区域定位记录的次数加1,并储存;
步骤42_7:当前时间段m计算完毕,进入下一个时间段计算,并判断时间段m是否达到前M个时段,如果满足,执行步骤42_8,否则返回步骤42_3,继续计算间距L4
步骤42_8:通过步骤42_5的可信值αB和步骤42_6的不可信值βB,计算当前区域AT的信誉度RB=αB/(αBB),若信誉度RB大于等于信誉度阈值ξB(0<ξB<1),则当前BT的子区域正常,标记U为0,区域AT用最新的RSSI相关坐标作为公布坐标(x’,y’),执行步骤5,否则当前BT的子区域不正常,标记U为1,进入下一个子区域k+1的计算,执行步骤42_9;
步骤42_9:计算当前BT的子区域数k是否达到区域BT中子区域的总数K,如果满足,执行步骤42_10;若区域BT中子区域k的RB仍小于安全阈值ξB,则认为这个区域仍然受到区域干扰攻击,则将该区域设置为A,再次计算与A最邻近的子区域BT,直到所有最邻近的子区域k的RB大于等于安全阈值ξB,返回步骤42_3,继续计算间距L4
步骤42_10:区域BT中不正常的子区域,标记U为1,该区域受到定位劫持攻击,区域BT的其余子区域正常,标记U为0,该区域没有受到定位劫持攻击,用最新的RSSI相关坐标作为公布坐标(x’,y’),执行步骤5。
2.根据权利要求1所述的一种检测区域定位劫持攻击的方法,其特征在于,步骤1具体包括:
在检测的定位区域A中,在时间T内收集了N个定位数据记录为:N{{(xt1,yt1)|RSSI1,RSSI2,…RSSIr,…,RSSIR|t1};
{(xt2,yt2)|RSSI1,RSSI2,…RSSIr,…,RSSIR|t2};…;
{(xtn,ytn)|RSSI1,RSSI2,…RSSIr,…,RSSIR|tn};…;
{(xtN,ytN)|RSSI1,RSSI2,…RSSIr,…,RSSIR|tN},
(n=1,2,…,N;r=1,2,…,R)},并将该区域A标记为AT,R表示该区域内AP的个数。
3.根据权利要求1所述的一种检测区域定位劫持攻击的方法,其特征在于,步骤2所述的内容具体如下:
通过步骤1获得的N个定位数据,通过定位算法,计算得到RSSI信号值的相关坐标AT(XT,YT),用以表示区域A在步骤3、4的坐标表示。
4.根据权利要求1所述的一种检测区域定位劫持攻击的方法,其特征在于,步骤5所述的内容具体如下:
若出现区域定位劫持攻击的情况,则维持检测前最新的公布坐标(x’,y’),用作公共区域定位服务的准确坐标,若没出现攻击的情况,则根据最新的检测结果,用最新的RSSI相关坐标作为公布坐标(x’,y’)。
CN201611254102.1A 2016-12-30 2016-12-30 一种检测区域定位劫持攻击的方法 Active CN106790179B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611254102.1A CN106790179B (zh) 2016-12-30 2016-12-30 一种检测区域定位劫持攻击的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611254102.1A CN106790179B (zh) 2016-12-30 2016-12-30 一种检测区域定位劫持攻击的方法

Publications (2)

Publication Number Publication Date
CN106790179A CN106790179A (zh) 2017-05-31
CN106790179B true CN106790179B (zh) 2020-06-02

Family

ID=58954327

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611254102.1A Active CN106790179B (zh) 2016-12-30 2016-12-30 一种检测区域定位劫持攻击的方法

Country Status (1)

Country Link
CN (1) CN106790179B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016171486A (ja) * 2015-03-13 2016-09-23 オムロンオートモーティブエレクトロニクス株式会社 車両無線通信システム、車両制御装置、携帯機

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104869638B (zh) * 2015-05-28 2018-04-13 北京嘀嘀无限科技发展有限公司 Gps坐标作弊的检测方法及装置
CN105549034A (zh) * 2015-12-07 2016-05-04 北京奇虎科技有限公司 Gps攻击的检测方法及装置
CN106211318A (zh) * 2016-07-06 2016-12-07 蓝盾信息安全技术有限公司 一种基于WiFi的路径损耗定位方法和***

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016171486A (ja) * 2015-03-13 2016-09-23 オムロンオートモーティブエレクトロニクス株式会社 車両無線通信システム、車両制御装置、携帯機

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Attack-resistant location estimation in sensor networks;Donggang Liu.etc;《IEEE》;20050613;全文 *
Research of PUE attack based on location;LiuKaiWang.etc;《IEEE》;20130404;全文 *

Also Published As

Publication number Publication date
CN106790179A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN111521969B (zh) 基于Wi-Fi的被动式室内定位方法
He et al. Contour-based trilateration for indoor fingerprinting localization
CN106597370B (zh) 一种基于rfid的室内无线定位方法
Laitinen et al. Access point significance measures in WLAN-based location
WO2013041885A1 (en) Positioning method
CN105519140B (zh) 一种定位ap的方法和装置
CN102610000A (zh) 基于Wi-Fi技术的员工考勤定位的方法
CN109819394A (zh) 基于WiFi与超声波混合的室内定位方法及其***
CN109490826A (zh) 一种基于无线电波场强rssi的测距与位置定位方法
CN104581945B (zh) 基于距离约束的半监督apc聚类算法的wlan室内定位方法
Leu et al. Improving indoor positioning precision by using received signal strength fingerprint and footprint based on weighted ambient Wi-Fi signals
CN109511085A (zh) 一种基于MeanShift和加权k近邻算法的UWB指纹定位方法
CN109324321A (zh) 一种基于rfid带修正的室内定位算法
KR101865120B1 (ko) 테스트 노드 기반의 무선 측위 방법 및 그 장치
Shakir et al. Position location based on measurement reports in LTE cellular networks
CN106790179B (zh) 一种检测区域定位劫持攻击的方法
Swangmuang et al. On clustering RSS fingerprints for improving scalability of performance prediction of indoor positioning systems
CN108521631B (zh) 一种面向室内定位的移动ap识别方法
CN107872873A (zh) 物联网终端定位方法和装置
CN104023389A (zh) 一种快速ap匹配定位方法
Ananthasubramaniam et al. Cooperative localization using angle of arrival measurements in non-line-of-sight environments
KR101955023B1 (ko) 네트워크 기반의 객체 위치 추적 방법 및 장치
Khandker et al. Positioning error prediction and training data evaluation in rf fingerprinting method
Yang et al. Robust wireless localization to attacks on access points
CN109275106B (zh) 一种基于无线接收信号强度的室内定位方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant