CN106784832A - 一种多孔材料的制备方法及其在钠离子电池中的应用 - Google Patents

一种多孔材料的制备方法及其在钠离子电池中的应用 Download PDF

Info

Publication number
CN106784832A
CN106784832A CN201611152747.4A CN201611152747A CN106784832A CN 106784832 A CN106784832 A CN 106784832A CN 201611152747 A CN201611152747 A CN 201611152747A CN 106784832 A CN106784832 A CN 106784832A
Authority
CN
China
Prior art keywords
ion battery
sodium
porous carbon
carbonized
carbon materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611152747.4A
Other languages
English (en)
Other versions
CN106784832B (zh
Inventor
沈彩
高国梁
王德宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Institute of Material Technology and Engineering of CAS
Original Assignee
Ningbo Institute of Material Technology and Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Institute of Material Technology and Engineering of CAS filed Critical Ningbo Institute of Material Technology and Engineering of CAS
Priority to CN201611152747.4A priority Critical patent/CN106784832B/zh
Publication of CN106784832A publication Critical patent/CN106784832A/zh
Application granted granted Critical
Publication of CN106784832B publication Critical patent/CN106784832B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本申请公开了一种多孔碳材料的制备方法,其特征在于,以咖啡渣为原料制备得到。该方法原料原材料来自废物利用,来源充足,制作工艺简单,为资源的二次利用提供了新思路;所制备的多孔碳材料显示出良好的储钠性能,用作钠离子电池负极,具有较高循环稳定性,是一种价格低廉,对环境无污染的新型钠离子电池负极材料。

Description

一种多孔材料的制备方法及其在钠离子电池中的应用
技术领域
本申请涉及一种多孔材料的制备方法及其在钠离子电池中的应用,属于无机材料及钠离子电池技术领域。
背景技术
随着社会经济的高速发展,化石能源资源日趋枯竭,改变现有不合理的能源结构,大力发展可再生清洁能源,已成为人类社会可持续发展面临的首要问题。锂离子电池具有能量密度大,循环寿命长、工作电压高、无记忆效应、自放电小、工作温度范围宽等优点,被认为是最有前途的绿色电源,目前已被广泛用作各种电子产品的工作电源和移动式装备的动力电池。但是,锂离子电池尚存在几个缺点:(1)全球锂资源贫乏,随着需求量的增加及锂资源的消耗,因此必然会对原材料产生非常大的压力;(2)锂离子电池的安全性问题尚未解决;(3)锂离子电池的低温性能仍不能满足实际使用的要求。因此,寻找可代替锂电池的新型储能电池显得尤为重要。同锂资源相比,钠储量十分丰富,地壳丰度约为2.74%,分布广泛,从海水中提取钠元素的技术已经成熟,且二者为同一主族元素,化学性质相近。钠离子电池的诸多优点导致其成为目前绿色能源领域的研究热点和重点,具有非常广阔的应用前景。
钠离子电池存在一个明显的缺陷:钠离子半径比锂离子大30%,因此钠离子的迁移需要更宽的扩散通道,传统的石墨负极材料并不能满足这一点。目前,钠离子电池负极材料主要为硬碳。但其一旦发生内短会引起严重放热反应,引起***的风险。此外,硬碳还存在放电电压随容量变化大等问题。因此,开发安全经济,储钠性能良好的材料成为研究热点。
发明内容
根据本申请的一个方面,提供一种多孔碳材料的制备方法。该方法原料原材料来自废物利用,来源充足,制作工艺简单,为资源的二次利用提供了新思路;所制备的多孔碳材料显示出良好的储钠性能,用作钠离子电池负极,具有较高循环稳定性,是一种价格低廉,对环境无污染的新型钠离子电池负极材料。
所述多孔碳材料的制备方法,其特征在于,以咖啡渣为原料制备得到。所述多孔碳材料,含有平均孔径为10nm~30nm的介孔。
作为一种实施方式,所述多孔碳材料的制备方法,其特征在于,至少包括以下步骤:
a)将咖啡渣置于密闭容器中,在预碳化温度120℃~200℃下保持不少于0.5小时的预碳化时间,得到预碳化样品;
b)将步骤a)所得预碳化样品置于碱性溶液中处理后,洗涤至中性,得到去油脂样品;
c)将步骤b)所得去油脂样品置于600℃~900℃温度下非活性气体气氛中碳化后,即得到所述多孔碳材料。
优选地,步骤a)中咖啡渣在置于密闭容器前,先经过去离子水洗涤和干燥。
优选地,步骤a)中所述预碳化温度为120℃~180℃。进一步优选地,步骤a)中所述预碳化温度为140℃~160℃。
优选地,步骤a)中所述预碳化时间为0.5~5小时。进一步优选地,步骤a)中所述预碳化时间为1~3小时。
优选地,步骤b)中所述碱性溶液中含有钠离子。进一步优选地,步骤b)中所述碱性溶液中含有Na2CO3和/或NaHCO3。更进一步优选地,步骤b)中所述碱性溶液中的Na2CO3和/或NaHCO3的浓度为0.5~5g/L。
优选地,步骤b)预碳化样品置于碱性溶液中处理为搅拌不少于6小时。进一步优选地,步骤b)预碳化样品置于碱性溶液中处理为搅拌6小时~10小时。
优选地,步骤c)为将步骤b)所得去油脂样品置于非活性气体气氛中,以1~10℃/min的升温速率将体系温度升至600℃~900℃并保持0.5~2小时进行碳化后,冷却至室温,即得到所述多孔碳材料。进一步优选地,升温速率为5~10℃/min。
优选地,步骤c)中所述非活性气体选自氮气、惰性气体中的至少一种。进一步优选地,步骤c)中所述非活性气体为氮气和/或氩气。
作为一种优选的实施方式,所述多孔碳材料的制备方法,其特征在于,包括以下步骤:
(1)清洗:将适量咖啡渣原材料倒入烧杯中,用大量的去离子水对咖啡渣进行清洗,重复3~4次,充分去除咖啡渣原材料漂浮的和水溶性的杂质。把清洗后的咖啡渣放置于通风干燥箱中烘干待用;
(2)预碳化:将烘干好的咖啡渣直接放入带有聚四氟乙烯内衬的高温反应釜中,放置于马弗炉中120℃~200℃下在自发压力下进行预碳化;
(3)去油脂:称取预碳化之后的咖啡渣放入烧杯中,用一定浓度的碱性溶液浸泡固定的时间,以去除材料中剩余的油脂,然后用去离子水清洗掉残留的碱性物质;
(4)碳化:将去除油脂后的咖啡渣放入管式炉中,设置升温速度,碳化温度,保温时间,进行高温碳化;
(5)微细化研磨:采用行星式球磨机,按照设定的球料比球磨一段时间,得到颗粒均匀的活性炭材料。
优选地,所述步骤(5)中球料比为70:1,转速为250r/min,球磨时间为30分钟。
根据本申请的又一方面,提供一种钠离子电池负极材料,其特征在于,含有上述任一方法制备得到的多孔碳材料。
根据本申请的又一方面,提供一种钠离子电池,其特征在于,含有上述钠离子电池负极材料。所述钠离子电池包括正极片、负极片、隔膜和电解液,所述负极片包含上述钠离子电池负极材料。
优选地,所述电解液包括有机溶剂和钠盐。进一步优选地,所述钠盐为高氯酸钠;所述有机溶剂为四乙二醇二甲醚。
本领域技术人员可根据实际需要,选择合适的隔离膜。优选地,所述隔离膜为玻璃纤维膜。
本申请的有益效果包括但不限于:
(1)本申请所提供的方法,原材料来自废弃物再利用,来源充足,为资源的二次利用提供了新思路。
(2)本申请所提供的方法,制作工艺简单,有利于大规模工业化生产。
(3)本申请所提供的方法,在脱油脂步骤采用碳酸钠和/或碳酸氢钠时,避免了在碳化过程中形成焦油,提高了去除咖啡渣油脂的能力,同时有利于咖啡碳材料多孔结构的形成。
(4)本申请所提供的钠离子电池负极材料,用于钠离子电池时,显示出良好的储钠性能,是一种价格低廉,对环境无污染的新型钠离子电池负极材料。
附图说明
图1为样品1#的扫描电镜照片。
图2为样品1#的BJH孔径分布曲线。
图3为电池C1#、C3#、C4#、C6#的电化学循环性能测试图。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
如无特别说明,本申请的实施例中的原料和器械均通过商业途径购买。
实施例中,样品的扫描电镜照片采用日立公司的S-4800型扫描电子显微镜拍摄。
实施例中,样品的孔道采用麦克公司的Asap2020HD88型比表面积和孔隙率分析仪器测定。
实施例中,电池的电学性能在武汉市蓝博测试设备有限公司的LAND电池测试***上测定。
实施例1样品1#~6#的制备
具体步骤如下:
(1)清洗:将100g咖啡渣原材料倒入烧杯中,用500mL去离子水对咖啡渣进行清洗,重复3次,充分去除咖啡渣原材料漂浮的和水溶性的杂质。把清洗后的咖啡渣放置于通风干燥箱中,于120℃烘干待用;
(2)预碳化:将烘干好的咖啡渣直接放入带有聚四氟乙烯内衬的高温反应釜中,放置于马弗炉中于预碳化温度、自发压力下预碳化一段时间;
(3)去油脂:称取预碳化之后的咖啡渣5g放入烧杯中,用250mL的碱性溶液,室温下浸泡一段时间,通过磁力搅拌器连续搅拌,以去除材料中剩余的油脂,然后用去离子水清洗掉残留的碱性物质;
(4)碳化:将去除油脂后的咖啡渣放入管式炉中,通入非活性气体,设置升温速度,碳化温度和保温时间,高温进行碳化;
(5)微细化研磨,采用行星式球磨机,按照设定的球料比70:1,转速为250r/min,球磨时间为30分钟,得到颗粒均匀的多孔炭材料。
样品编号、原料、制备条件详见表1。
表1
实施例2样品1#~6#的表征
采用扫描电镜照片对样品1#~6#微细化研磨前的形貌进行检测,检测结果显示,样品1#~6#微细化研磨前为块状片层结构,碎块的尺寸大小多为1~2μm。典型代表为样品1#,其电镜照片如图1所示。
对样品1#~6#的比表面积和孔径进行了测定,结果显示,样品1#~6#的比表面积分布在93~96m2/g之间,平均孔径分布在10nm~30nm之间。典型代表为样品1#,其BJH孔径分布曲线如图2所示。
实施例3电池C1#~C6#的制作
负极片N1#~N6#的制备
分别以样品1#~样品6#作为负极材料,制备负极片,具体步骤如下:
将负极材料、导电剂导电炭黑、粘接剂聚偏二氟乙烯在N-甲基吡咯烷酮中混合均匀,制成负极浆料。其浆料固体成分中包含70%的负极活性材料、20%的导电炭黑、10%的聚偏二氟乙烯。将负极浆料均匀地涂布在厚度为20μm的负极集流体铜箔上,随后在85℃下烘干后进行切片、压片、称重,即得负极片。分别以样品1#~样品6#作为负极材料,制备得到的负极片,分别记为N1#~N6#
电解液的制备
向四乙二醇二甲醚中加入高氯酸钠,得到高氯酸钠浓度为1mol/L的溶液,即为电解液。
钠离子二次电池C1#~C6#的制备
以玻璃纤维膜作为隔膜。
以金属钠作为正极片,在充满氩气的手套箱中(水含量和氧含量均小于1ppm)组装半电池。
分别以N1#~N6#作为负极片制备得到的钠离子电池,分别记为电池C1#~电池C6#
实施例4电池C1#~电池C9#的比容量测试
分别对实施例3中制备的电池C1#(700℃)、电池C3#(600℃)、电池C4#(800℃)和电池C6#(900℃)的比容量进行测试,具体步骤为:
在25℃下,按照一定的放电电流放电至0.01V;放电结束后,电池静置5分钟;然后以一定的电流密度恒流充电至3.0V,充电结束后,电池静置5分钟后以相同的电流密度恒流放电至0.01V;电池满充后静置5分钟,再以相同的条件充电。
前两次充放电循环电流密度为50mA/g,用小电流密度对负极电极进行活化,形成较为均匀致密的SEI膜,然后在200mA/g的电流密度下进行循环性能测试。以电池1#为例,其首次放电容量为362.6mAh/g,第二圈循环放电容量为168.1mAh/g,50圈循环后,容量仍保持在第二圈的91.7%(见图3)。
由图3可以看出,采用本申请所述方法制备的多孔碳材料作为钠离子电池负极材料时循环充放电比容量保持较好,循环性能稳定。
根据上述说明书的揭示,本申请所属领域的技术人员还可以对上述实施方式进行适当的变更和修改。因此,本申请并不局限于上面揭示和描述的具体实施方式,对本申请的一些修改和变更也应当落入本申请的权利要求的保护范围内。

Claims (10)

1.一种多孔碳材料的制备方法,其特征在于,以咖啡渣为原料制备得到。
2.根据权利要求1所述的方法,其特征在于,至少包括以下步骤:
a)将咖啡渣置于密闭容器中,在预碳化温度120℃~200℃下保持不少于0.5小时的预碳化时间,得到预碳化样品;
b)将步骤a)所得预碳化样品置于碱性溶液中处理后,洗涤至中性,得到去油脂样品;
c)将步骤b)所得去油脂样品置于600℃~900℃温度下非活性气体气氛中碳化后,即得到所述多孔碳材料。
3.根据权利要求1所述的方法,其特征在于,步骤a)中咖啡渣在置于密闭容器前,先经过去离子水洗涤和干燥。
4.根据权利要求1所述的方法,其特征在于,步骤a)中所述预碳化温度为120℃~180℃;优选地,步骤a)中所述预碳化温度为140℃~160℃;
步骤a)中所述预碳化时间为0.5~5小时;优选地,步骤a)中所述预碳化时间为1~3小时。
5.根据权利要求1所述的方法,其特征在于,步骤b)中所述碱性溶液中含有钠离子;优选地,步骤b)中所述碱性溶液中含有Na2CO3和/或NaHCO3
6.根据权利要求1所述的方法,其特征在于,步骤b)预碳化样品置于碱性溶液中处理为搅拌不少于6小时;优选地,步骤b)预碳化样品置于碱性溶液中处理为搅拌6小时~10小时。
7.根据权利要求1所述的方法,其特征在于,步骤c)为将步骤b)所得去油脂样品置于非活性气体气氛中,以1~10℃/min的升温速率将体系温度升至600℃~900℃并保持0.5~3小时进行碳化后,冷却至室温,即得到所述多孔碳材料。
8.根据权利要求1或7所述的方法,其特征在于,步骤c)中所述非活性气体选自氮气、惰性气体中的至少一种。
9.一种钠离子电池负极材料,其特征在于,含有根据权利要求1至8任一项方法制备得到的多孔碳材料。
10.一种钠离子电池,其特征在于,含有权利要求9所述的钠离子电池负极材料。
CN201611152747.4A 2016-12-14 2016-12-14 一种多孔材料的制备方法及其在钠离子电池中的应用 Active CN106784832B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611152747.4A CN106784832B (zh) 2016-12-14 2016-12-14 一种多孔材料的制备方法及其在钠离子电池中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611152747.4A CN106784832B (zh) 2016-12-14 2016-12-14 一种多孔材料的制备方法及其在钠离子电池中的应用

Publications (2)

Publication Number Publication Date
CN106784832A true CN106784832A (zh) 2017-05-31
CN106784832B CN106784832B (zh) 2019-09-17

Family

ID=58888457

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611152747.4A Active CN106784832B (zh) 2016-12-14 2016-12-14 一种多孔材料的制备方法及其在钠离子电池中的应用

Country Status (1)

Country Link
CN (1) CN106784832B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107892300A (zh) * 2017-11-15 2018-04-10 广东环境保护工程职业学院 一种咖啡渣有价组分分离回收方法及应用
CN111204731A (zh) * 2020-01-07 2020-05-29 大连理工大学 一种钠离子电池硬炭负极材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104205431A (zh) * 2012-08-09 2014-12-10 索尼公司 电极材料、制造电极材料的方法以及二次电池
CN104803384A (zh) * 2015-04-25 2015-07-29 海南大学 以槟榔壳为原料制备活性炭的方法及其得到的活性炭
CN106207197A (zh) * 2016-07-08 2016-12-07 北京化工大学 一种采用头发制备双功能电催化剂的方法
CN106185862A (zh) * 2016-06-30 2016-12-07 中国科学院物理研究所 一种热解硬碳材料及其用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104205431A (zh) * 2012-08-09 2014-12-10 索尼公司 电极材料、制造电极材料的方法以及二次电池
CN104803384A (zh) * 2015-04-25 2015-07-29 海南大学 以槟榔壳为原料制备活性炭的方法及其得到的活性炭
CN106185862A (zh) * 2016-06-30 2016-12-07 中国科学院物理研究所 一种热解硬碳材料及其用途
CN106207197A (zh) * 2016-07-08 2016-12-07 北京化工大学 一种采用头发制备双功能电催化剂的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
田文卿等: "咖啡渣制备多孔碳材料及其在锂离子电池上的应用", 《吉林大学学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107892300A (zh) * 2017-11-15 2018-04-10 广东环境保护工程职业学院 一种咖啡渣有价组分分离回收方法及应用
CN111204731A (zh) * 2020-01-07 2020-05-29 大连理工大学 一种钠离子电池硬炭负极材料的制备方法
CN111204731B (zh) * 2020-01-07 2022-05-27 大连理工大学 一种钠离子电池硬炭负极材料的制备方法

Also Published As

Publication number Publication date
CN106784832B (zh) 2019-09-17

Similar Documents

Publication Publication Date Title
CN106299365A (zh) 一种钠离子电池用生物质硬碳负极材料、制备方法及钠离子电池
CN107342421B (zh) 一种高含量吡啶氮掺杂多孔碳负极材料、制备方法及其应用
CN108059144B (zh) 一种生物质废料甘蔗渣制备的硬碳及其制备方法和应用
CN108394884A (zh) 一种壳聚糖基高比表面积氮/磷共掺杂碳纳米片的制备方法
CN101376498B (zh) 一种锂离子纽扣电池及其制备方法
CN106185862A (zh) 一种热解硬碳材料及其用途
CN104201349A (zh) 一种具有多孔结构的硒碳电极材料的制备方法及其应用
CN104124431A (zh) 一种锂离子电池用石墨负极材料及其制备方法
CN106328890A (zh) 一种碳柱撑MXene复合材料及其应用
CN107221661A (zh) 一种锂离子电池石墨负极材料的制备方法
CN109081340A (zh) 一种松树基生物质活性炭及其制备方法和在电化学储能中的应用
CN109817923A (zh) 一种氮掺杂多孔碳材料及其制备方法和应用
CN108493403B (zh) 一种自支撑钠离子电池负极的合成方法
CN107910521A (zh) 一种钌修饰的氟化碳材料、制备及应用
CN109354015A (zh) 一种以葵花盘制作锂离子负极用活性炭、电极及测试方法
CN109449376A (zh) 一种复合锂金属电极及其制备方法
CN102299334A (zh) 一种碳包覆LiFePO4多孔正极及其制备方法
CN109286002B (zh) 一种千层树皮生物质碳负载红磷钠离子电池负极材料及其制备方法
CN108199023A (zh) 生物硅碳材料的制备方法、生物硅碳材料及应用
CN110577204A (zh) N/o共掺杂硬碳材料的制备及其在钾离子电池中的应用
CN106784832B (zh) 一种多孔材料的制备方法及其在钠离子电池中的应用
CN106340631A (zh) 锂硫电池正极材料、其制备方法及锂硫电池
CN107500263A (zh) 一种稻壳衍生硬碳的制备方法及其所得材料和应用
CN104157859A (zh) 一种以甘蔗渣为原料制备高性能锂离子电池负极材料的方法
CN102610804A (zh) 锂离子电池负极材料的制备方法、锂离子电池负极及锂离子电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant