CN106774405A - 基于三级避障机制的果园植保无人机避障装置及方法 - Google Patents

基于三级避障机制的果园植保无人机避障装置及方法 Download PDF

Info

Publication number
CN106774405A
CN106774405A CN201611251528.1A CN201611251528A CN106774405A CN 106774405 A CN106774405 A CN 106774405A CN 201611251528 A CN201611251528 A CN 201611251528A CN 106774405 A CN106774405 A CN 106774405A
Authority
CN
China
Prior art keywords
avoidance
unmanned plane
closely
index
short range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611251528.1A
Other languages
English (en)
Other versions
CN106774405B (zh
Inventor
徐兴
王臻杰
李君�
杨洲
蔡坤
卢明剑
钟志清
刘伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Agricultural University
Original Assignee
South China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Agricultural University filed Critical South China Agricultural University
Priority to CN201611251528.1A priority Critical patent/CN106774405B/zh
Publication of CN106774405A publication Critical patent/CN106774405A/zh
Application granted granted Critical
Publication of CN106774405B publication Critical patent/CN106774405B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

本发明公开了一种基于三级避障机制的果园植保无人机避障装置及方法,果园植保无人机避障装置包括均与无人机飞控连接的微波雷达、若干超声波传感器以及若干近程红外传感器阵列,所述微波雷达用于探测无人机的远距离障碍物信息,所述超声波传感器用于探测无人机周边中距离障碍物信息,所述近程红外传感器用于探测无人机近距离障碍物信息;所述超声波传感器和近程红外传感器阵列数量均为4个,所述微波雷达设置于无人机飞控顶部,所述超声波传感器和近程红外传感器阵列均设置于无人机机翼上;所述近程红外传感器阵列包括5个近程红外传感器。本发明满足了山地果园环境下的地形、地貌、植被在复杂多变情况下果园无人机作业可靠的需要。

Description

基于三级避障机制的果园植保无人机避障装置及方法
技术领域
本发明涉及山地果园植保无人机避障技术领域,尤其涉及一种基于三级避障机制的果园植保无人机避障装置及方法。
背景技术
在山地丘陵环境下,果树随地形地貌的变化而起伏不平,因此果园植保无人机在进行植保作业时飞行状态需随果园果树的变化而随时进行调整,同时,果园里往往存在着果树枝干、电线杆,高压线等潜在空中隐患,因此,植保无人机在山地果园作业风险比平地作业大大增加。
目前,在无人机避障方面,目前采用的方法主要包括通过激光雷达、图像摄像头、光流传感器或者超声波传感器来识别障碍物,并反馈给飞控,进而飞控用于控制无人机规避障碍物。但这些避障方法和技术均没有分级考虑引入远、中、近三级障碍物探测及其避障处理方法,从而降低复杂作业环境下无人机飞行的可靠性。
因此,设计出一种基于三级避障机制的果园植保无人机避障装置及方法具有较高的理论和实际意义。
发明内容
为了克服现有技术存在的缺点与不足,本发明提供一种基于三级避障机制的果园植保无人机避障装置及方法,满足山地果园环境下的地形、地貌、植被在复杂多变情况下果园无人机作业可靠的需要。
为解决上述技术问题,本发明提供如下技术方案:一种基于三级避障机制的果园植保无人机避障装置,包括均与无人机飞控连接的微波雷达、若干超声波传感器以及若干近程红外传感器阵列,所述微波雷达用于探测无人机的远距离障碍物信息,所述超声波传感器用于探测无人机周边中距离障碍物信息,所述近程红外传感器用于探测无人机近距离障碍物信息。
进一步地,所述超声波传感器和近程红外传感器阵列数量均为4个,所述微波雷达设置于无人机飞控顶部,所述超声波传感器和近程红外传感器阵列均设置于无人机机翼上;所述近程红外传感器阵列包括5个近程红外传感器,所述近红外传感器相互之间夹角为90度,用于获取近距离障碍物信息。
本发明另一目的是提供一种基于三级避障机制的果园植保无人机避障方法,包括下述步骤:
S1、在无人机飞行过程中,微波雷达对无人机360度范围内的物体进行扫描,探测物体与无人机之间的距离,并建立远距离避障指数函数;
S2、无人机持续更新远距离避障指数函数的远距离避障指数,若前行路径方向的远距离避障指数大于最小远距离避障指数的设定值,则无人机在前行路径方向的正负10度范围内,选择最小避障指数值的方向进行飞行;无人机在最小避障指数值的方向飞行时,若最小避障指数值小于设定值,则无人机持续更新远距离避障指数函数的远距离避障指数;若最小避障指数值大于等于设定值,则启动超声波传感器,建立中距离避障指数函数;
S3、无人机持续更新中距离避障指数函数的中距离避障指数,若中距离避障指数小于给定值,则关闭超声波传感器,返回步骤S2;若中距离避障指数大于另一给定值,则启动近程红外传感器阵列;
S4、近程红外传感器阵列探测周边的障碍物距离,建立近距离避障指数函数;
S5、无人机持续更新近距离避障指数函数的近距离避障指数,并根据近距离避障指数调整飞行路径;
S6、若最小近距离避障指数大于调整值,则无人机进行180度调整飞行方向,并选择最小近距离避障指数方向飞行;
S7、无人机进行180度调整飞行方向后,若此时的近距离避障指数小于调整值,则关闭近程红外传感器阵列并返回步骤S2;若此时的近距离避障指数大于等于调整值,则返回步骤S6。
进一步地,所述步骤S1的远距离避障指数函数为:
其中,α(θ)表示远距离避障指数,θ表示方向角,以正北方向为零度角,按顺时针方向进行角度的增加;d(θ)表示距离障碍物的距离。
进一步地,所述步骤S2,若当前行径方向的远距离避障指数大于0.3,0.3所述设定值,则无人机在前行路径方向的正负10度范围内,选择最小避障指数值αmin(θ)的方向进行飞行,最小避障指数值αmin(θ)为:
αmin(θ)=min(α(θ)),
若最小避障指数值αmin(θ)小于0.30,则无人机持续更新远距离避障指数函数的远距离避障指数,最小避障指数值αmin(θ)大于等于0.30,则启动超声波传感器,建立中距离避障指数β(φ)函数,所述中距离避障指数β(φ)函数为:
其中,φi表示第i个超声波传感器的方向角,以正北方向为零度角;i等于1、2、3、4,分别表示安装在无人机上的四个超声波传感器;m(φi)表示超声波传感器探测到的距离障碍物的距离。
进一步地,所述步骤S3,若前行路径方向的中距离避障指数小于0.03,0.03为所述给定值,则关闭超声波传感器,返回步骤S2;若前行路径方向大于0.07,0.07为所述另一给定值,则无人机将飞行速度减半,同时启动近程红外传感器阵列。
进一步地,所述步骤S4中距离避障指数γ(xij,yij)函数为:
其中,xij表示球面坐标的方位角,yij表示球面坐标的仰角;其中i等于1、2、3、4,分别表示无人机上的四个近程红外传感器阵列;j等于1、2、3、4、5,分别表示红外近程传感器阵列中相互垂直的5个近程红外传感器;c(xij,yij)表示近程红外传感器阵列探测到的距离障碍物的距离。
进一步地,所述步骤S5中根据距离避障指数调整飞行路径,具体为:
S51、若前行路径方向的近距离避障指数小于0.012,则关闭近程红外传感器阵列,返回步骤S3;否则,进入下一步骤;
S52、若前行路径方向的近距离避障指数γ(xij,yij)小于0.03,则继续飞行;若大于等于0.03,无人机将飞行速度减半,在前行路径方向的正负90度范围内,选择最小近距离避障指数值的方向进行飞行,并进入步骤S6,其中最小近距离避障指数值表示为:
γmin(xij,yij)=min(γmin(xij,yij))
其中,
进一步地,所述步骤S6,具体为:
若最小近距离避障指数值大于0.03,0.03为所述调整值,则无人机首先180度调整其飞行方向,即:
接着,无人机选择最小近距离避障指数方向飞行;
所述步骤S6的持续时间为1秒,在1秒的持续时间内:
若近距离避障指数小于0.03,则继续飞行;
若近距离避障指数大于0.03,则无人机保持悬停,并等待人工干预操作。
进一步地,所述步骤S7,具体为:
若近距离避障指数小于0.03,0.03为所述调整值,则关闭近程红外传感器阵列,并返回步骤S2,同时方向角更新为:
若近距离避障指数大于等于0.03,则返回步骤S6。
采用上述技术方案后,本发明至少具有如下有益效果:
(1)、本发明方法采用远、中、近三级障碍物探测及其避障处理方法,提高了无人机飞行作业的可靠性;
(2)、本发明方法的近距离探测采用近程红外传感器阵列,具有成本较低、安装简单、耗电小、体积小和精度高等优点,满足果园无人机近距离障碍物高精度实时探测的需要。
附图说明
图1是本发明基于三级避障机制的果园植保无人机避障装置的结构示意图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互结合,下面结合附图和具体实施例对本申请作进一步详细说明。
本实施例所述基于三级避障机制的果园植保无人机避障装置,如图1所示,包括旋翼1、飞控2、微波雷达3、超声波传感器4、近程红外传感器阵列5。如图1所示,旋翼1、微波雷达3、超声波传感器4、近程红外传感器阵列5均与飞控2相连。
如图1所示,所述微波雷达3,部署在植保无人机正中的无人机飞控2顶部,用于探测无人机360度方向上的远距离障碍物信息,远距离范围一般指的是1-100米。
如图1所示,所述超声波传感器4,部署在植保无人机部署在植保无人机的四个方向,相对于机身方向,向外安装,用于探测无人机周边中距离障碍物信息,中距离的范围一般为1-100分米。所述超声波传感器4共有四个,分别部署在植保无人机机翼上的四个方向。
所述红外近程传感器阵列5,该阵列包括5个近红外传感器,这五个近红外传感器相互之间夹角为90度,可获取上、下、左、右和沿机翼外侧的五个方向的近距离障碍物信息,近距离的范围一般为1-100厘米,从而可探测除机身方向外,其他五个方向的近距离障碍物距离。所述红外近程传感器阵列5共有四组,分别部署在植保无人机机翼上的四个方向。
本实施例中基于上述装置的基于三级避障机制的果园植保无人机避障方法,步骤是:果园无人机通过微波雷达获取远距离障碍物信息,并计算远距离避障指数,选取远距离避障指数较小的方向飞行,如障碍物持续接近无人机,并使得远距离障碍物避障指数大于0.3,则启动超声波传感器,探测中距离障碍物信息,并计算中距离避障指数,一旦中距离障碍物避障指数大于0.07,则启动近程红外传感器阵列,并计算近距离避障指数,果园无人机根据近距离避障指数持续调整其飞行方向。
具体包括以下步骤:
(1)微波雷达对无人机360度范围内的物体进行扫描,探测其无无人机之间的距离,建立远距离避障指数α(θ)函数:
其中θ表示方向角,以正北方向为零度角,按顺时针方向角度增加;d(θ)表示距离障碍物的距离,以米为单位。
(2)无人机在飞行过程中,持续更新远距离避障指数α(θ),当前行路径方向的避障指数大于0.3,则其在前行路径方向的正负10度范围内,选择最小避障指数值αmin(θ)的方向进行飞行:
(3)如果αmin(θ)小于0.30,则回到步骤(2),如果αmin(θ)大于0.3,则进入步骤(4)。
(4)启动超声波传感器,建立中距离避障指数β(φ)函数:
其中φi表示第i个超声波传感器的方向角,以正北方向为零度角,i等于1、2、3、4,分别表示安装在无人机上的四个超声波传感器,m(φi)表示超声波传感器探测到的距离障碍物的距离,以分米为单位。
(5)无人机在飞行过程中,持续更新避障指数β(φi),当前行路径方向的中距离避障指数小于0.03,则关闭超声波传感器,返回步骤(2),否则进入步骤(6)。
(6)当前行路径方向大于0.07,则其飞行速度减半,同时启动近程红外传感器阵列。
(7)近程红外传感器阵列探测周边的障碍物距离,建立近距离避障指数γ(xij,yij)函数:
其中xij表示球面坐标的方位角,yij表示球面坐标的仰角,其中i等于1、2、3、4,分别表示无人机上的四个近程红外传感器阵列,j等于1、2、3、4、5,分别代表红外近程传感器阵列中相互垂直的五个近程红外传感器,c(xij,yij)表示近程红外传感器阵列探测到的距离障碍物的距离,以厘米为单位。
(8)无人机在飞行过程中,持续更新近距离避障指数γ(xij,yij),并根据该近距离避障指数调整飞行路径。
所述步骤(8)中,飞行路径调整过程具体如下:
(8-1)当前行路径方向的近距离避障指数小于0.012,则关闭近程红外传感器阵列,返回步骤(5),否则进入步骤(8)。
(8-2)当前行路径方向的近距离避障指数γ(xij,yij)小于0.03,则继续飞行,如果大于0.03其飞行速度减半,在前行路径方向的正负90度范围内,选择最小近距离避障指数值的方向进行飞行,并进入步骤(9):
(9)如最小近距离避障指数值大于0.03,则无人机首先180度调整其飞行方向,即:
接着,无人机选择最小近距离避障指数方向飞行:
所述步骤(9)持续时间为1秒,在1秒持续时间内:
(9-1)如近距离避障指数小于0.03,则继续飞行;
(9-2)如近距离避障指数大于0.03,则无人机保持悬停,并等待人工干预;
(10)无人机180度调整其飞行方向,
(11)如近距离避障指数小于0.03,则关闭近程红外传感器阵列,并返回步骤(2),同时方向角更新为:
如近距离避障指数大于0.03,则关闭近程红外传感器阵列,并继续返回步骤(9)。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解的是,在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种等效的变化、修改、替换和变型,本发明的范围由所附权利要求及其等同范围限定。

Claims (10)

1.一种基于三级避障机制的果园植保无人机避障装置,其特征在于,包括均与无人机飞控连接的微波雷达、若干超声波传感器以及若干近程红外传感器阵列,所述微波雷达用于探测无人机的远距离障碍物信息,所述超声波传感器用于探测无人机周边中距离障碍物信息,所述近程红外传感器用于探测无人机近距离障碍物信息。
2.如权利要求1所述的基于三级避障机制的果园植保无人机避障装置,其特征在于,所述超声波传感器和近程红外传感器阵列数量均为4个,所述微波雷达设置于无人机飞控顶部,所述超声波传感器和近程红外传感器阵列均设置于无人机机翼上;所述近程红外传感器阵列包括5个近程红外传感器,所述近红外传感器相互之间夹角为90度,用于获取近距离障碍物信息。
3.一种基于三级避障机制的果园植保无人机避障方法,其特征在于,包括下述步骤:
S1、在无人机飞行过程中,微波雷达对无人机360度范围内的物体进行扫描,探测物体与无人机之间的距离,并建立远距离避障指数函数;
S2、无人机持续更新远距离避障指数函数的远距离避障指数,若前行路径方向的远距离避障指数大于最小远距离避障指数的设定值,则无人机在前行路径方向的正负10度范围内,选择最小避障指数值的方向进行飞行;无人机在最小避障指数值的方向飞行时,若最小避障指数值小于设定值,则无人机持续更新远距离避障指数函数的远距离避障指数;若最小避障指数值大于等于设定值,则启动超声波传感器,建立中距离避障指数函数;
S3、无人机持续更新中距离避障指数函数的中距离避障指数,若中距离避障指数小于给定值,则关闭超声波传感器,返回步骤S2;若中距离避障指数大于另一给定值,则启动近程红外传感器阵列;
S4、近程红外传感器阵列探测周边的障碍物距离,建立近距离避障指数函数;
S5、无人机持续更新近距离避障指数函数的近距离避障指数,并根据近距离避障指数调整飞行路径;
S6、若最小近距离避障指数大于调整值,则无人机进行180度调整飞行方向,并选择最小近距离避障指数方向飞行;
S7、无人机进行180度调整飞行方向后,若此时的近距离避障指数小于调整值,则关闭近程红外传感器阵列并返回步骤S2;若此时的近距离避障指数大于等于调整值,则返回步骤S6。
4.如权利要求3所述的基于三级避障机制的果园植保无人机避障方法,其特征在于,所述步骤S1的远距离避障指数函数为:
α ( θ ) = a r c c t g ( d ( θ ) ) π / 2
其中,α(θ)表示远距离避障指数,θ表示方向角,以正北方向为零度角,按顺时针方向进行角度的增加;d(θ)表示距离障碍物的距离。
5.如权利要求4所述的基于三级避障机制的果园植保无人机避障方法,其特征在于,所述步骤S2,若当前行径方向的远距离避障指数大于0.3,0.3所述设定值,则无人机在前行路径方向的正负10度范围内,选择最小避障指数值αmin(θ)的方向进行飞行,最小避障指数值αmin(θ)为:
αmin(θ)=min(α(θ)),
若最小避障指数值αmin(θ)小于0.30,则无人机持续更新远距离避障指数函数的远距离避障指数,最小避障指数值αmin(θ)大于等于0.30,则启动超声波传感器,建立中距离避障指数β(φ)函数,所述中距离避障指数β(φ)函数为:
其中,φi表示第i个超声波传感器的方向角,以正北方向为零度角;i等于1、2、3、4,分别表示安装在无人机上的四个超声波传感器;m(φi)表示超声波传感器探测到的距离障碍物的距离。
6.如权利要求5所述的基于三级避障机制的果园植保无人机避障方法,其特征在于,所述步骤S3,若前行路径方向的中距离避障指数小于0.03,0.03为所述给定值,则关闭超声波传感器,返回步骤S2;若前行路径方向大于0.07,0.07为所述另一给定值,则无人机将飞行速度减半,同时启动近程红外传感器阵列。
7.如权利要求3所述的基于三级避障机制的果园植保无人机避障方法,其征在于,所述步骤S4中距离避障指数γ(xij,yij)函数为:
γ ( x i j , y i j ) = a r c c t g ( c ( x i j , y i j ) ) π / 2 , i = 1 , 2 , 3 , 4 , j = 1 , 2 , 3 , 4 , 5
其中,xij表示球面坐标的方位角,yij表示球面坐标的仰角;其中i等于1、2、3、4,分别表示无人机上的四个近程红外传感器阵列;j等于1、2、3、4、5,分别表示红外近程传感器阵列中相互垂直的5个近程红外传感器;c(xij,yij)表示近程红外传感器阵列探测到的距离障碍物的距离。
8.如权利要求7所述的基于三级避障机制的果园植保无人机避障方法,其特征在于,所述步骤S5中根据距离避障指数调整飞行路径,具体为:
S51、若前行路径方向的近距离避障指数小于0.012,则关闭近程红外传感器阵列,返回步骤S3;否则,进入下一步骤;
S52、若前行路径方向的近距离避障指数小于0.03,则继续飞行;若大于等于0.03,无人机将飞行速度减半,在前行路径方向的正负90度范围内,选择最小近距离避障指数值的方向进行飞行,并进入步骤S6,其中最小近距离避障指数值表示为:
γmin(xij,yij)=min(γmin(xij,yij))
其中,
9.如权利要求8所述的基于三级避障机制的果园植保无人机避障方法,其特征在于,所述步骤S6,具体为:
若最小近距离避障指数值大于0.03,0.03为所述调整值,则无人机首先180度调整其飞行方向,即:
接着,无人机选择最小近距离避障指数方向飞行;
所述步骤S6的持续时间为1秒,在1秒的持续时间内:
若近距离避障指数小于0.03,则继续飞行;
若近距离避障指数大于0.03,则无人机保持悬停,并等待人工干预操作。
10.如权利要求9所述的基于三级避障机制的果园植保无人机避障方法,其特征在于,所述步骤S7,具体为:
若近距离避障指数小于0.03,0.03为所述调整值,则关闭近程红外传感器阵列,并返回步骤S2,同时方向角更新为:
θ ^ = x ^ i j
若近距离避障指数大于等于0.03,则返回步骤S6。
CN201611251528.1A 2016-12-30 2016-12-30 基于三级避障机制的果园植保无人机避障装置及方法 Active CN106774405B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611251528.1A CN106774405B (zh) 2016-12-30 2016-12-30 基于三级避障机制的果园植保无人机避障装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611251528.1A CN106774405B (zh) 2016-12-30 2016-12-30 基于三级避障机制的果园植保无人机避障装置及方法

Publications (2)

Publication Number Publication Date
CN106774405A true CN106774405A (zh) 2017-05-31
CN106774405B CN106774405B (zh) 2019-09-10

Family

ID=58928418

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611251528.1A Active CN106774405B (zh) 2016-12-30 2016-12-30 基于三级避障机制的果园植保无人机避障装置及方法

Country Status (1)

Country Link
CN (1) CN106774405B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108227742A (zh) * 2018-01-10 2018-06-29 辽宁科技学院 一种飞行机器人避障装置以及飞行机器人避障方法
CN108334103A (zh) * 2017-12-21 2018-07-27 广州亿航智能技术有限公司 无人机多距离避障方法及避障***
CN108427435A (zh) * 2018-04-20 2018-08-21 东莞理工学院 一种智能避障装置及其应用的无人机
CN108568868A (zh) * 2018-03-08 2018-09-25 贵州电网有限责任公司 一种自动避障的树障清理空中机器人和避障方法
CN108693525A (zh) * 2018-03-23 2018-10-23 深圳高科新农技术有限公司 基于微波雷达的无人机避障仿地飞行***
CN109725315A (zh) * 2018-12-26 2019-05-07 成都优艾维智能科技有限责任公司 一种用于电力巡检无人机的避障探测装置
CN109739232A (zh) * 2018-12-29 2019-05-10 百度在线网络技术(北京)有限公司 障碍物追踪方法、装置、车载终端及存储介质
CN110618674A (zh) * 2018-06-19 2019-12-27 广州极飞科技有限公司 可移动设备的避障方法和装置、可移动设备及存储介质
CN111352441A (zh) * 2020-04-08 2020-06-30 安徽舒州农业科技有限责任公司 一种基于山林防治的植保无人机控制方法及***
CN115933752A (zh) * 2023-02-16 2023-04-07 杭州硬十科技有限公司 一种基于ai的无人机动态避障预测控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5315363A (en) * 1993-07-01 1994-05-24 The United States Of America As Represented By The Secretary Of The Army Night vision projected infrared cueing system
CN201918032U (zh) * 2010-12-31 2011-08-03 同济大学 一种飞行器低空飞行防撞的装置
CN203241823U (zh) * 2013-02-25 2013-10-16 洛阳理工学院 自动导引运料车
CN105173095A (zh) * 2015-09-07 2015-12-23 国网通用航空有限公司 一种直升机避障***
CN205404803U (zh) * 2016-02-24 2016-07-27 河北三丰航空科技发展有限公司 一种有人无人直升机避撞***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5315363A (en) * 1993-07-01 1994-05-24 The United States Of America As Represented By The Secretary Of The Army Night vision projected infrared cueing system
CN201918032U (zh) * 2010-12-31 2011-08-03 同济大学 一种飞行器低空飞行防撞的装置
CN203241823U (zh) * 2013-02-25 2013-10-16 洛阳理工学院 自动导引运料车
CN105173095A (zh) * 2015-09-07 2015-12-23 国网通用航空有限公司 一种直升机避障***
CN205404803U (zh) * 2016-02-24 2016-07-27 河北三丰航空科技发展有限公司 一种有人无人直升机避撞***

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
王和平,等: "基于红外与雷达一体化吊舱的直升机安全避障技术", 《科技创新导报》 *
马忠丽,等: "基于Freescale微处理器的环境探测灭火机器人", 《化工自动化及仪表》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108334103A (zh) * 2017-12-21 2018-07-27 广州亿航智能技术有限公司 无人机多距离避障方法及避障***
CN108227742A (zh) * 2018-01-10 2018-06-29 辽宁科技学院 一种飞行机器人避障装置以及飞行机器人避障方法
CN108568868A (zh) * 2018-03-08 2018-09-25 贵州电网有限责任公司 一种自动避障的树障清理空中机器人和避障方法
CN108568868B (zh) * 2018-03-08 2024-03-19 贵州电网有限责任公司 一种自动避障的树障清理空中机器人和避障方法
CN108693525A (zh) * 2018-03-23 2018-10-23 深圳高科新农技术有限公司 基于微波雷达的无人机避障仿地飞行***
CN108427435A (zh) * 2018-04-20 2018-08-21 东莞理工学院 一种智能避障装置及其应用的无人机
CN110618674B (zh) * 2018-06-19 2023-02-14 广州极飞科技股份有限公司 可移动设备的避障方法和装置、可移动设备及存储介质
CN110618674A (zh) * 2018-06-19 2019-12-27 广州极飞科技有限公司 可移动设备的避障方法和装置、可移动设备及存储介质
CN109725315A (zh) * 2018-12-26 2019-05-07 成都优艾维智能科技有限责任公司 一种用于电力巡检无人机的避障探测装置
CN109739232A (zh) * 2018-12-29 2019-05-10 百度在线网络技术(北京)有限公司 障碍物追踪方法、装置、车载终端及存储介质
CN109739232B (zh) * 2018-12-29 2022-06-07 百度在线网络技术(北京)有限公司 障碍物追踪方法、装置、车载终端及存储介质
CN111352441A (zh) * 2020-04-08 2020-06-30 安徽舒州农业科技有限责任公司 一种基于山林防治的植保无人机控制方法及***
CN115933752A (zh) * 2023-02-16 2023-04-07 杭州硬十科技有限公司 一种基于ai的无人机动态避障预测控制方法

Also Published As

Publication number Publication date
CN106774405B (zh) 2019-09-10

Similar Documents

Publication Publication Date Title
CN106774405A (zh) 基于三级避障机制的果园植保无人机避障装置及方法
CN106292699B (zh) 无人机仿地飞行的方法、装置和无人机
US11771076B2 (en) Flight control method, information processing device, program and recording medium
US20240094729A1 (en) Methods and Systems for Determining Flight Plans for Vertical Take-Off and Landing (VTOL) Aerial Vehicles
US9709993B2 (en) Wide area sensing system, in-flight detection method, and non-transitory computer readable medium storing program of wide area sensing system
CN108351649B (zh) 用于控制可移动物体的方法和设备
KR102181283B1 (ko) 나무 계측 시스템
WO2018094583A1 (zh) 无人机避障控制方法、飞行控制器及无人飞行器
CN105867397B (zh) 一种基于图像处理和模糊控制的无人机精确位置降落方法
US20190362640A1 (en) Unmanned Aerial Vehicle Operating Method and Device
Stefas et al. Vision-based monitoring of orchards with UAVs
US20180267561A1 (en) Autonomous control of unmanned aircraft
CN108519775A (zh) 一种精准喷洒的无人机***及其控制方法
CN104103200B (zh) 飞行指挥仪拉平引导
CN103529851B (zh) 一种细分分段的翼伞归航控制方法
US20190310658A1 (en) Unmanned aerial vehicle
CN104820429A (zh) 基于超声波距离检测的无人机避障***及其控制方法
WO2019167207A1 (ja) 制御装置、作業機及びプログラム
US10217368B2 (en) Flight path setting apparatus, flight path setting method, and computer readable medium
CN106043690B (zh) 固定翼无人机失速悬停降落方法及***
CN207020537U (zh) 一种无人机
EP4015993A1 (en) Aircraft sensor system synchronization
Rydell et al. Autonomous UAV-based forest mapping below the canopy
US20200375098A1 (en) Information processing apparatus, information processing method, and computer readable storage medium
TW202334613A (zh) 利用三維重建地圖搜尋路徑之方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant