CN106761950A - 一种热板均温无掺混涡轮叶片冷却装置及方法 - Google Patents

一种热板均温无掺混涡轮叶片冷却装置及方法 Download PDF

Info

Publication number
CN106761950A
CN106761950A CN201710017687.3A CN201710017687A CN106761950A CN 106761950 A CN106761950 A CN 106761950A CN 201710017687 A CN201710017687 A CN 201710017687A CN 106761950 A CN106761950 A CN 106761950A
Authority
CN
China
Prior art keywords
hot plate
samming
turbo blade
condensation segment
blending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710017687.3A
Other languages
English (en)
Other versions
CN106761950B (zh
Inventor
刘红
贾明
张威龙
闫燕安
蔡畅
奚溪
吕博文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201710017687.3A priority Critical patent/CN106761950B/zh
Publication of CN106761950A publication Critical patent/CN106761950A/zh
Application granted granted Critical
Publication of CN106761950B publication Critical patent/CN106761950B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/182Transpiration cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/203Heat transfer, e.g. cooling by transpiration cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/205Cooling fluid recirculation, i.e. after cooling one or more components is the cooling fluid recovered and used elsewhere for other purposes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

本发明提供一种热板均温无掺混涡轮叶片冷却装置及方法,包括均温热板和涡轮叶片;均温热板包括蒸发段、冷凝段和端盖,蒸发段处于涡轮叶片内部,热板的金属丝网在热板的外圈,蒸汽通道在均温热板的内部。冷凝段被端盖封闭,冷凝段内侧除了与涡轮叶片连接的壁面外,其余壁面全部分布金属丝网,冷凝段外侧设置肋片;涡轮叶片与端盖连接,涡轮叶片的外表面由热障涂层覆盖;本发明的有益效果为:涡轮叶片温度分布均匀;热板均温无掺混技术替代气膜冷却,完全避免冷却空气与高温燃气的掺混,提高发动机的可靠性;大幅提高冷却效率,降低燃料消耗,提高发动机的效率。

Description

一种热板均温无掺混涡轮叶片冷却装置及方法
技术领域
本发明属于航空发动机涡轮叶片冷却领域,涉及一种热板均温无掺混涡轮叶片冷却装置及方法。
背景技术
燃气涡轮发动机是航空飞行器的主要动力装置,提高涡轮前温度可以大幅提高发动机的推力并减少油耗。目前,涡轮前入口温度的提升速度远大于高温部件材料耐温性能的提升速度,因此高效的冷却技术是实现高推重比的关键技术。
现役涡轮叶片常采用以对流冷却、冲击冷却、气膜冷却及与热障涂层相结合的复合冷却方式。其中气膜冷却技术于十九世纪七十年代提出,涡轮叶片的气膜冷却技术在航空燃气轮机中的应用使航空发动机涡轮前入口温度有了较大提升。之后经过众多努力,涡轮前最高温度已达2012K。美国和西欧等发达国家的有关公司与研究单位计划将涡轮前温度提高到2200K~2255K,甚至对一次使用的发动机要高达2366K。而目前我国的航空发动机涡轮前最高温度还只有1900K,热端部件技术落后是我国涡轮发动机研制体系落后的主要障碍。目前气膜冷却的主要问题在于:气膜冷却会使涡轮叶片温度不均匀,产生较大的热应力;冷却气体用量不断加大,使得叶栅流道内流动与流场结构更加复杂;喷射孔及缝的存在使得叶片很难保持完整性,易于导致机械问题。
为实现对涡轮叶片的进一步冷却,使涡轮前最高温度进一步提升,同时满足涡轮叶片温度趋于均匀且无冷气与燃气发生掺混的要求,本发明提出采用热板均温无掺混涡轮叶片冷却的新装置及方法。
发明内容
针对现有技术存在的不足,本发明提供一种热板均温无掺混涡轮叶片冷却装置及方法,本发明根据涡轮叶片的结构,采用内嵌热板对涡轮叶片进行冷却。
本发明所采用的技术方案为:
一种热板均温无掺混涡轮叶片冷却装置,包括均温热板和涡轮叶片两部分。
所述的均温热板包括蒸发段、冷凝段和端盖,蒸发段处于涡轮叶片内部,液体在蒸发段汽化吸热,为涡轮叶片降低温度;冷凝段被端盖封闭,蒸汽在冷凝段液化,为蒸发段提供源源不断的液体;热板的金属丝网在热板的外圈,相当于热板的吸液芯,把冷凝段的液体运输到蒸发段,蒸汽通道在均温热板的内部,由于液体在蒸发段汽化,蒸发段的压力升高,在蒸发段与冷凝段的压差下,蒸汽通过蒸汽通道由蒸发段流向冷凝段。冷凝段除了与涡轮叶片连接的壁面外,其他壁面全部分布金属丝网,以保证金属丝网在任何情况下都能与冷凝段的液体接触,冷凝段外侧设置肋片,以增加换热面积,提高冷凝段的换热效率,加速蒸汽的液化。
所述的涡轮叶片与端盖连接,涡轮叶片的外表面由热障涂层覆盖,防止涡轮叶片表面材料熔化。
采用上述装置对涡轮叶片进行冷却的方法,包括以下步骤:
高温燃气通过涡轮叶片,涡轮叶片的温度升高,涡轮叶片内部热板的金属丝网内的液体吸热汽化,液体蒸发后体积增加,蒸发段的压力升高,则蒸汽通过蒸汽通道流向相对压力较低的冷凝段,蒸汽在冷凝段液化,液化的液体又被金属丝网吸到蒸发段,如此循环,对涡轮叶片进行冷却。
本发明的有益效果为:1)热板均温叶片冷却技术,可使叶片温度分布均匀,减小因温度梯度过大产生的热应力,从而延长叶片的使用寿命;2)热板均温无掺混技术替代气膜冷却,可以完全避免冷却空气与高温燃气的掺混,以及由于掺混导致的气动损失,从而大大提高发动机的可靠性;3)热板均温无掺混技术可大幅提高冷却效率,从而降低燃料消耗,提高发动机的效率。
附图说明
图1为本发明装置图;
图中:1蒸汽通道;2金属丝网;3肋片;4冷凝段;5端盖;6蒸发段。
具体实施方式
一种热板均温无掺混涡轮叶片冷却装置,包括均温热板、涡轮叶片两部分。均温热板包括蒸发段6、冷凝段4和端盖5,蒸发段6处于涡轮叶片内部,热板的金属丝网2在热板的外圈,相当于热板的吸液芯,蒸汽通道1在均温热板的内部,涡轮叶片的外表面由热障涂层覆盖,涡轮叶片与端盖5连接,端盖封闭均温热板的冷凝段4,冷凝段除了与涡轮叶片连接的壁面外,其他壁面全部分布金属丝网,冷凝段外侧设置肋片3。
采用上述装置对涡轮叶片进行冷却的方法,具体为:
高温燃气通过涡轮叶片,涡轮叶片的温度升高,涡轮叶片内部热板的金属丝网2内的液体吸热汽化,液体蒸发后体积增加,蒸发段的压力升高,则蒸汽通过蒸汽通道1流向相对压力较低的冷凝段4,蒸汽在冷凝段4液化,液化的液体又被金属丝网2吸到蒸发段6,如此循环,对涡轮叶片进行冷却。

Claims (3)

1.一种热板均温无掺混涡轮叶片冷却装置,其特征在于,所述的热板均温无掺混涡轮叶片冷却装置包括均温热板和涡轮叶片;
所述的均温热板包括蒸发段(6)和冷凝段(4)和端盖(5),蒸发段(6)处于涡轮叶片内部;端盖(5)用于封闭冷凝段(4);热板的金属丝网(2)位于热板外圈,将冷凝段(4)的液体运输到蒸发段(6),蒸汽通道(1)在均温热板的内部,蒸汽通过蒸汽通道(1)由蒸发段流向冷凝段;冷凝段(4)内侧除了与涡轮叶片连接的壁面外,其他壁面全部分布金属丝网(2);
所述的涡轮叶片与端盖(5)连接,涡轮叶片的外表面由热障涂层覆盖。
2.根据权利要求1所述的一种热板均温无掺混涡轮叶片冷却装置,其特征在于,所述的冷凝段(4)外侧设置肋片。
3.采用权利要求1或2所述的装置对涡轮叶片进行冷却的方法,其特征在于,高温燃气通过涡轮叶片,涡轮叶片温度升高,涡轮叶片内部热板的金属丝网(2)内的液体吸热汽化,液体蒸发后体积增加,蒸发段(6)的压力升高,则蒸汽通过蒸汽通道(1)流向相对压力较低的冷凝段(4),蒸汽在冷凝段(4)液化,液化的液体又被金属丝网(2)吸到蒸发段(6),外侧设置肋片(3)的冷凝段(4)增加换热面积,如此循环,对涡轮叶片进行冷却。
CN201710017687.3A 2017-01-13 2017-01-13 一种热板均温无掺混涡轮叶片冷却装置 Active CN106761950B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710017687.3A CN106761950B (zh) 2017-01-13 2017-01-13 一种热板均温无掺混涡轮叶片冷却装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710017687.3A CN106761950B (zh) 2017-01-13 2017-01-13 一种热板均温无掺混涡轮叶片冷却装置

Publications (2)

Publication Number Publication Date
CN106761950A true CN106761950A (zh) 2017-05-31
CN106761950B CN106761950B (zh) 2019-03-05

Family

ID=58949029

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710017687.3A Active CN106761950B (zh) 2017-01-13 2017-01-13 一种热板均温无掺混涡轮叶片冷却装置

Country Status (1)

Country Link
CN (1) CN106761950B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107687350A (zh) * 2017-08-14 2018-02-13 大连理工大学 一种双层吸液芯无开孔高效冷却涡轮导叶装置
WO2019033243A1 (zh) * 2017-08-14 2019-02-21 大连理工大学 一种双层吸液芯无开孔高效冷却涡轮导叶装置
CN110617114A (zh) * 2019-09-02 2019-12-27 上海大学 覆陶高温合金静叶片

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2098556U (zh) * 1991-06-01 1992-03-11 西安交通大学 涡轮转子冷却叶片
WO2016122483A1 (en) * 2015-01-28 2016-08-04 Siemens Aktiengesellschaft Turbine airfoil with trailing edge impingement cooling system
WO2016160030A1 (en) * 2015-04-03 2016-10-06 Siemens Aktiengesellschaft Turbine airfoil with internal cooling system including features taking advantage of rotating coriolis force
CN106089443A (zh) * 2015-04-02 2016-11-09 通用电气公司 用于涡轮机的热管冷却***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2098556U (zh) * 1991-06-01 1992-03-11 西安交通大学 涡轮转子冷却叶片
WO2016122483A1 (en) * 2015-01-28 2016-08-04 Siemens Aktiengesellschaft Turbine airfoil with trailing edge impingement cooling system
CN106089443A (zh) * 2015-04-02 2016-11-09 通用电气公司 用于涡轮机的热管冷却***
WO2016160030A1 (en) * 2015-04-03 2016-10-06 Siemens Aktiengesellschaft Turbine airfoil with internal cooling system including features taking advantage of rotating coriolis force

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郭青青等: "高温热管用于涡轮叶片冷却可行性分析", 《科技信息》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107687350A (zh) * 2017-08-14 2018-02-13 大连理工大学 一种双层吸液芯无开孔高效冷却涡轮导叶装置
WO2019033243A1 (zh) * 2017-08-14 2019-02-21 大连理工大学 一种双层吸液芯无开孔高效冷却涡轮导叶装置
CN110617114A (zh) * 2019-09-02 2019-12-27 上海大学 覆陶高温合金静叶片
CN110617114B (zh) * 2019-09-02 2021-12-03 上海大学 覆陶高温合金静叶片

Also Published As

Publication number Publication date
CN106761950B (zh) 2019-03-05

Similar Documents

Publication Publication Date Title
CN106761950A (zh) 一种热板均温无掺混涡轮叶片冷却装置及方法
US11542016B2 (en) Cryogenic cooling system for an aircraft
CN103786886B (zh) 一种用于飞机机翼的防除冰***
US10294822B2 (en) Turbine engine nacelle fitted with a heat exchanger
JP5226981B2 (ja) ヒートパイプを用いたタービンエンジン用熱伝達装置
US20140044525A1 (en) Gas turbine engine heat exchangers and methods of assembling the same
CA2822710C (en) Gas turbine engine heat exchangers and methods of assembling the same
CN109477434A (zh) 用于冷却在燃气涡轮发动机内的部件的***和方法
US20100236217A1 (en) Heat transfer system and method for turbine engine using heat pipes
CN107687350A (zh) 一种双层吸液芯无开孔高效冷却涡轮导叶装置
EP2241728B1 (en) Apparatus and method for cooling a turbine using heat pipes
CN105509125B (zh) 一种带有快速除霜功能的跨临界co2热泵供暖***
CN106014489A (zh) 带冷却结构的涡轮叶片及应用其的燃气轮机
CN106894918A (zh) 一种适用于组合动力循环发动机的模态预冷循环***
CN103850800B (zh) 进气道防冰装置及民用涡扇发动机
US20220111967A1 (en) Air cooling
CN104948303B (zh) 一种应用于lng为燃料的航空发动机的燃料供应***
US11384687B2 (en) Anti-icing system for gas turbine engine
CN208831049U (zh) 超临界工质透平保温及外部冲击型内外复合冷却装置
RU2423617C2 (ru) Способ охлаждения турбины
US11199364B2 (en) Heat exchanger
CA2103430A1 (en) Method for utilizing liquified natural gas as a heat sink for a gas turbine inlet chiller
US3376918A (en) Cooling of turbine blades
US11674441B2 (en) Turbofan engine, cooling system and method of cooling an electric machine
CN108999660A (zh) 超临界工质透平保温及外部冲击型内外复合冷却装置及其工作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant