CN106711195B - 一种p型ZnMSnO非晶氧化物半导体薄膜及其制备方法 - Google Patents

一种p型ZnMSnO非晶氧化物半导体薄膜及其制备方法 Download PDF

Info

Publication number
CN106711195B
CN106711195B CN201610914173.3A CN201610914173A CN106711195B CN 106711195 B CN106711195 B CN 106711195B CN 201610914173 A CN201610914173 A CN 201610914173A CN 106711195 B CN106711195 B CN 106711195B
Authority
CN
China
Prior art keywords
type
znmsno
oxide semiconductor
zncusno
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610914173.3A
Other languages
English (en)
Other versions
CN106711195A (zh
Inventor
吕建国
程晓涵
叶志镇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201610914173.3A priority Critical patent/CN106711195B/zh
Publication of CN106711195A publication Critical patent/CN106711195A/zh
Application granted granted Critical
Publication of CN106711195B publication Critical patent/CN106711195B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/22Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds
    • H01L29/2206Amorphous materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/22Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds
    • H01L29/227Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • H01L29/78693Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate the semiconducting oxide being amorphous

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种p型ZnMSnO非晶氧化物半导体薄膜,所述ZnMSnO中的M元素为过渡金属元素、且自身的氧化物为p型导电,为Cu、Ni、Ag、Au、Fe、Co、Mn元素中的一种,在所述ZnMSnO中M元素为自身的最低价态;所述ZnMSnO中,Zn为+2价,为材料的基体元素;M为最低价态,掺入基体形成p型导电;Sn为+2价,具有球形电子轨道,在非晶状态下电子云高度重合,起到空穴传输通道的作用。本发明还公开了制备p型ZnCuSnO非晶氧化物半导体薄膜的方法,以ZnCuSnO陶瓷片为靶材,采用射频磁控溅射法,制得的p型ZnCuSnO非晶薄膜的空穴浓度1015~1016cm‑3,可见光透过率≧85%。本发明所制备的薄膜可以用于P型非晶薄膜晶体管。

Description

一种p型ZnMSnO非晶氧化物半导体薄膜及其制备方法
技术领域
本发明涉及一种非晶氧化物半导体薄膜,尤其涉及一种p型非晶氧化物半导体薄膜及其制备方法。
背景技术
薄膜晶体管(TFT)是微电子特别是显示工程领域的核心技术之一。目前,TFT主要是基于非晶硅(a-Si)技术,但是a-Si TFT是不透光的,光敏性强,需要加掩膜层,显示屏的像素开口率低,限制了显示性能,而且a-Si迁移率较低(~2 cm2/Vs),不能满足一些应用需求。基于多晶硅(p-Si)技术的TFT虽然迁移率高,但是器件均匀性较差,而且制作成本高,这限制了它的应用。此外,有机半导体薄膜晶体管(OTFT)也有较多的研究,但是OTFT的稳定性不高,迁移率也比较低(~1 cm2/Vs),这对其实际应用是一个较大制约。
为解决上述问题,人们近年来开始致力于非晶氧化物半导体(AOS)TFT的研究,其中最具代表性的是InGaZnO。与Si基TFT不同,AOS TFT具有如下优点:可见光透明,光敏退化性小,不用加掩膜层,提高了开口率,可解决开口率低对高分辨率、超精细显示屏的限制;易于室温沉积,适用于有机柔性基板;迁移率较高,可实现高的开/关电流比,较快的器件响应速度,应用于高驱动电流和高速器件;特性不均较小,电流的时间变化也较小,可抑制面板的显示不均现象,适于大面积化用途。
由于金属氧化物特殊的电子结构,氧原子的2p能级一般都远低于金属原子的价带电子能级,不利于轨道杂化,因而O 2p轨道所形成的价带顶很深,局域化作用很强,因而空穴被严重束缚,表现为深受主能级,故此,绝大多数的氧化物本征均为n型导电,具有p型导电特性的氧化物屈指可数。目前报道的p型导电氧化物半导体主要为SnO、NiO、Cu2O、CuAlO2等为数不多的几种,但这些氧化物均为晶态结构,不是非晶形态。目前人们正在研究的AOS如InGaZnO等均为n型半导体,具有p型导电的非晶态氧化物半导体几乎没有。因而,目前报道的AOS TFT均为n型沟道,缺少p型沟道的AOS TFT,这对AOS TFT在新一代显示、透明电子学等诸多领域的应用产生了很大的制约。因而,设计和寻找并制备出p型导电的非晶氧化物半导体薄膜是人们亟需解决的一个难题。
发明内容
本发明针对实际应用需求,拟提供一种p型非晶氧化物半导体薄膜及其制备方法。
本发明提供了一种p型ZnMSnO非晶氧化物半导体薄膜,其中M具有下述共性:为过渡金属元素,自身的氧化物为p型导电,掺入ZnO基体提供空穴,包括Cu、Ni、Ag、Au、Fe、Co、Mn七种元素。在p型ZnMSnO体系中:Zn为+2价,为材料的基体元素;M为最低价态,掺入基体形成p型导电,且具有一定的空穴浓度的控制作用;Sn为+2价,在材料中也可提供p型导电,且具有球形电子轨道,在非晶状态下电子云高度重合,起到空穴传输通道的作用。
本发明所提供的p型ZnMSnO非晶氧化物半导体薄膜,在ZnMSnO中,Zn为+2价,M元素为Cu、Ni、Ag、Au、Fe、Co、Mn中的一种,且均为其最低价态,Sn为+2价;ZnMSnO薄膜为非晶态,具有p型导电特性。
本发明所述的一种p型ZnMSnO非晶氧化物半导体薄膜,具体的,进一步地,M为Cu,此时ZnMSnO即为ZnCuSnO,如各实施例具体阐述的,p型ZnCuSnO薄膜化学式为ZnCuxSnyO1+0.5x+y,其中0.2≦x≦0.3,0.3≦y≦0.5。
本发明还提供了制备上述p型ZnCuSnO非晶氧化物半导体薄膜的制备方法,具体步骤如下:
(1)以高纯ZnO、Cu2O和SnO粉末为原材料,混合,研磨,在1000℃的N2气氛下烧结,制成ZnCuSnO陶瓷片为靶材,其中Zn、Cu、Sn三组分的原子比为1:(0.2~0.3):(0.3~0.5);
(2)采用射频磁控溅射方法,将衬底和靶材安装在溅射反应室中,抽真空至不高于1×10-3Pa;
(3)通入Ar-O2为工作气体,气体压强1.1~1.2Pa,Ar-O2流量体积比为10:2~10:3,溅射功率120~130W,衬底温度为25~300℃,在Ar-O2离子的轰击下,靶材表面原子和分子溅射出来,在衬底上沉积形成一层薄膜,在Ar气氛下自然冷却到室温,得到p型ZnCuSnO非晶薄膜。
采用上述方法生长的p型ZnCuSnO非晶氧化物半导体薄膜,其性能指标为:ZnCuSnO非晶薄膜具有p型导电特性,空穴浓度1015~1016cm-3,可见光透过率≧85%。
上述材料参数和工艺参数为发明人经多次实验确立的,需要严格控制,在发明人的实验中若超出上述参数的范围,则无法实现设计的p型ZnCuSnO材料,也无法获得具有p型导电且为非晶态的ZnCuSnO薄膜。
在p型ZnMSnO体系中,M具有下述共性:为过渡金属元素,自身的氧化物为p型导电,掺入ZnO基体提供空穴,在体系中具有最低的化学价态。当M为Ni、Ag、Au、Fe、Co、Mn时,与M为Cu具有同样的机理,也具有类似的性质,除ZnCuSnO之外的其它的p型ZnMSnO非晶氧化物半导体薄膜能用上述类似的方法与步骤进行制备,所得的材料和器件具有类似的性能。
本发明的有益效果在于:
1)本发明所述的p型ZnMSnO非晶氧化物半导体薄膜,其中Zn为材料的基体元素,M掺入基体形成p型导电,且具有空穴浓度的控制作用,Sn起到空穴传输通道的作用,基于上述原理,ZnMSnO是一种良好的p型AOS材料。
2)本发明所述的p型ZnMSnO非晶氧化物半导体薄膜,具有良好的材料特性,其p型导电性能易于通过组分比例实现调控。
3)本发明所述的p型ZnMSnO非晶氧化物半导体薄膜,可以作为沟道层制备的p型AOS TFT,从而为p型AOS TFT的应用提供关键材料。
4)本发明所述的p型ZnMSnO非晶氧化物半导体薄膜,与已存在的n型InGaZnO非晶氧化物半导体薄膜组合,可形成一个完整的AOS的p-n体系,且p型ZnMSnO与n型InGaZnO均为透明半导体材料,因而可制作透明光电器件和透明逻辑电路,开拓AOS在透明电子产品中应用,促进透明电子学的发展。
5)本发明所述的p型ZnMSnO非晶氧化物半导体薄膜,可在室温下生长,与有机柔性衬底相兼容,因而可在可穿戴、智能化的柔性产品中获得广泛应用。
6)本发明所述的p型ZnMSnO非晶氧化物半导体薄膜,在生长过程中存在较宽的参数窗口,可实现大面积室温沉积,能耗低,制备工艺简单、成本低,可实现工业化生产。
具体实施例
以下结合具体实施例进一步说明本发明。
实施例1
(1)以高纯ZnO、Cu2O和SnO粉末为原材料,混合,研磨,在1000℃的N2气氛下烧结,制成ZnCuSnO陶瓷片为靶材,其中Zn、Cu、Sn三组分的原子比为1:0.2:0.3;
(2)采用射频磁控溅射方法,将衬底和靶材安装在溅射反应室中,抽真空至1×10- 3Pa;
(3)通入Ar-O2为工作气体,气体压强1.1Pa,Ar-O2流量体积比为10:2,溅射功率120W,衬底温度为25℃,在Ar-O2离子的轰击下,靶材表面原子和分子溅射出来,在衬底上沉积形成一层薄膜,便得到p型ZnCu0.2Sn0.3O1.4非晶薄膜。
以石英为衬底,按照上述生长步骤制得p型ZnCu0.2Sn0.3O1.4薄膜,对其进行结构、电学和光学性能测试,测试结果为:薄膜为非晶态,厚度50nm;具有p型导电特性,空穴浓度1015cm-3;可见光透过率85%。
实施例2
(1)以高纯ZnO、Cu2O和SnO粉末为原材料,混合,研磨,在1000℃的N2气氛下烧结,制成ZnCuSnO陶瓷片为靶材,其中Zn、Cu、Sn三组分的原子比为1:0.25:0.4;
(2)采用射频磁控溅射方法,将衬底和靶材安装在溅射反应室中,抽真空至1×10- 3Pa;
(3)通入Ar-O2为工作气体,气体压强1.1Pa,Ar-O2流量体积比为10:2,溅射功率120W,衬底温度为150℃,在Ar-O2离子的轰击下,靶材表面原子和分子溅射出来,在衬底上沉积形成一层薄膜,便得到p型ZnCu0.25Sn0.4O1.525非晶薄膜。
以石英为衬底,按照上述生长步骤制得p型ZnCu0.25Sn0.4O1.525薄膜,对其进行结构、电学和光学性能测试,测试结果为:薄膜为非晶态,厚度56nm;具有p型导电特性,空穴浓度1015cm-3;可见光透过率86%。
实施例3
(1)以高纯ZnO、Cu2O和SnO粉末为原材料,混合,研磨,在1000℃的N2气氛下烧结,制成ZnCuSnO陶瓷片为靶材,其中Zn、Cu、Sn三组分的原子比为1:0.3:0.5;
(2)采用射频磁控溅射方法,将衬底和靶材安装在溅射反应室中,抽真空至1×10- 3Pa;
(3)通入Ar-O2为工作气体,气体压强1.2Pa,Ar-O2流量体积比为10:3,溅射功率130W,衬底温度为300℃,在Ar-O2离子的轰击下,靶材表面原子和分子溅射出来,在衬底上沉积形成一层薄膜,便得到p型ZnCu0.3Sn0.5O1.65非晶薄膜。
以石英为衬底,按照上述生长步骤制得p型ZnCu0.3Sn0.5O1.65薄膜,对其进行结构、电学和光学性能测试,测试结果为:薄膜为非晶态,厚度63nm;具有p型导电特性,空穴浓度1016cm-3;可见光透过率90%。
上述各实施例中,使用的原料ZnO粉末、Cu2O粉末和SnO粉末的纯度均在99.99%以上。
本发明p型ZnCuSnO非晶氧化物半导体薄膜制备所使用的衬底,并不局限于实施例中的石英片,其它各种类型的衬底均可使用。
在p型ZnMSnO体系中,M具有下述共性:为过渡金属元素,自身的氧化物为p型导电,掺入ZnO基体提供空穴,在体系中具有最低的化学价态。当M为Ni、Ag、Au、Fe、Co、Mn时,与M为Cu具有同样的机理、具有类似的性质,除ZnCuSnO之外的其它的p型ZnMSnO非晶氧化物半导体薄膜能用上述类似的方法与步骤进行制备,所得的材料和器件具有类似的性能。

Claims (3)

1.一种p型ZnMSnO非晶氧化物半导体薄膜,其特征在于:所述ZnMSnO中的M元素为过渡金属元素、且自身的氧化物为p型导电,在所述ZnMSnO中M元素为自身的最低价态;所述ZnMSnO中,Zn为+2价,Sn为+2价;且所述ZnMSnO中M为Cu元素,即ZnMSnO为ZnCuSnO,p型ZnCuSnO非晶薄膜的化学式为ZnCuxSnyO1+0.5x+y,其中0.2≦x≦0.3,0.3≦y≦0.5。
2.根据权利要求1所述的一种p型ZnMSnO非晶氧化物半导体薄膜,其特征在于:p型ZnCuSnO非晶薄膜的空穴浓度1015~1016cm-3,可见光透过率≧85%。
3.如权利要求1或2所述p型ZnMSnO非晶氧化物半导体薄膜的制备方法,其特征在于:制备p型ZnCuSnO非晶氧化物半导体薄膜包括步骤:
1)以高纯ZnO、Cu2O和SnO粉末为原材料,混合,研磨,在1000℃的N2气氛下烧结,制成ZnCuSnO陶瓷片为靶材,其中Zn、Cu、Sn三组分的原子比为1:(0.2~0.3):(0.3~0.5);
2)采用射频磁控溅射方法,将衬底和靶材安装在溅射反应室中,抽真空至不高于1×10-3Pa;
3)通入Ar-O2为工作气体,气体压强1.1~1.2Pa,Ar-O2流量体积比为10:2~10:3,溅射功率120~130W,衬底温度为25~300℃,在Ar-O2离子的轰击下,靶材表面原子和分子溅射出来,在衬底上沉积形成一层薄膜,在Ar气氛下自然冷却到室温,得到p型ZnCuSnO非晶薄膜。
CN201610914173.3A 2016-10-20 2016-10-20 一种p型ZnMSnO非晶氧化物半导体薄膜及其制备方法 Active CN106711195B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610914173.3A CN106711195B (zh) 2016-10-20 2016-10-20 一种p型ZnMSnO非晶氧化物半导体薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610914173.3A CN106711195B (zh) 2016-10-20 2016-10-20 一种p型ZnMSnO非晶氧化物半导体薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN106711195A CN106711195A (zh) 2017-05-24
CN106711195B true CN106711195B (zh) 2020-01-17

Family

ID=58940383

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610914173.3A Active CN106711195B (zh) 2016-10-20 2016-10-20 一种p型ZnMSnO非晶氧化物半导体薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN106711195B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11107919B2 (en) * 2017-08-31 2021-08-31 Taiwan Semiconductor Manufacturing Co., Ltd. Method of manufacturing semiconductor device including ferroelectric layer having columnar-shaped crystals

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103173732A (zh) * 2013-03-08 2013-06-26 北京航空航天大学 一种p型透明导电氧化物及其掺杂非晶薄膜的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001237460A (ja) * 2000-02-23 2001-08-31 Matsushita Electric Ind Co Ltd 発光素子
KR101472219B1 (ko) * 2012-09-18 2014-12-11 주식회사 엘지화학 투명 전도성막 및 이의 제조방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103173732A (zh) * 2013-03-08 2013-06-26 北京航空航天大学 一种p型透明导电氧化物及其掺杂非晶薄膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
P-type transparent conducting oxides;Kelvin H. L. Zhang et al;《Journal of Physics–Condensed Matter》;20160727;第28卷(第38期);第383002-383020页 *

Also Published As

Publication number Publication date
CN106711195A (zh) 2017-05-24

Similar Documents

Publication Publication Date Title
JP5510767B2 (ja) 薄膜トランジスタおよびその製造方法
CN109402739A (zh) 一种二维铋氧硒原子晶体材料、及其制备方法和用途
CN103710675A (zh) 一种ZnO基薄膜及其制备方法
CN104218074A (zh) 一种非晶半导体薄膜及其制备方法和应用
CN106711195B (zh) 一种p型ZnMSnO非晶氧化物半导体薄膜及其制备方法
Mandal et al. Investigation on the optical and electrical performance of aluminium doped gallium oxide thin films
Li et al. Impact of active layer thickness of nitrogen-doped In–Sn–Zn–O films on materials and thin film transistor performances
CN106711201B (zh) 一种p型CrMCuO非晶氧化物半导体薄膜及其制备方法
CN106711197B (zh) 一种p型CuNiSnO非晶氧化物半导体薄膜及其制备方法
CN104078513A (zh) 一种非晶氧化物半导体薄膜及其制备方法和应用
Yang et al. Amorphous nickel incorporated tin oxide thin film transistors
CN106711228B (zh) 一种p型LaMSnO非晶氧化物半导体薄膜及其制备方法
CN106711200B (zh) 一种p型ZnRhMO非晶氧化物半导体薄膜及其制备方法
CN106711193B (zh) 一种p型CaMSnO非晶氧化物半导体薄膜及其制备方法
CN106711199B (zh) 一种p型CuNSnO非晶氧化物半导体薄膜及其制备方法
Huang et al. Flexible nickel-doped zinc oxide thin-film transistors fabricated on plastic substrates at low temperature
CN106702326B (zh) 一种p型NiMSnO非晶氧化物半导体薄膜及其制备方法
CN106711198B (zh) 一种p型CuMInO非晶氧化物半导体薄膜及其制备方法
CN106711196B (zh) 一种p型ZnGeSnO非晶氧化物半导体薄膜及其制备方法
Su et al. Electrical characteristics of tungsten-doped InZnSnO thin film transistors by RF magnetron sputtering
Li et al. High-performance transparent Li-doped indium-tin-zinc-oxide thin film transistor fabricated by radio frequency magnetron sputtering method
Kim et al. Defect control in zinc oxynitride semiconductor for high-performance and high-stability thin-film transistors
Lin et al. Annealing effects on the performances of Bismuth-doped Indium Zinc Oxide thin-film transistors
CN109037315B (zh) 一种用于薄膜晶体管的沟道层材料及其制备方法与应用
CN106298953B (zh) 一种高性能氧化镍基p型薄膜晶体管及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant