CN106710884A - Metal-organic complex and silver nano-wire compound as well as preparation method and application thereof - Google Patents

Metal-organic complex and silver nano-wire compound as well as preparation method and application thereof Download PDF

Info

Publication number
CN106710884A
CN106710884A CN201611023788.3A CN201611023788A CN106710884A CN 106710884 A CN106710884 A CN 106710884A CN 201611023788 A CN201611023788 A CN 201611023788A CN 106710884 A CN106710884 A CN 106710884A
Authority
CN
China
Prior art keywords
nano silver
silver wire
metal
compound
organic complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611023788.3A
Other languages
Chinese (zh)
Other versions
CN106710884B (en
Inventor
庞欢
赵明明
周寿斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGSU HUAFU STORAGE NEW TECHNOLOGY Co Ltd
Yangzhou University
Original Assignee
JIANGSU HUAFU STORAGE NEW TECHNOLOGY Co Ltd
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIANGSU HUAFU STORAGE NEW TECHNOLOGY Co Ltd, Yangzhou University filed Critical JIANGSU HUAFU STORAGE NEW TECHNOLOGY Co Ltd
Priority to CN201611023788.3A priority Critical patent/CN106710884B/en
Publication of CN106710884A publication Critical patent/CN106710884A/en
Application granted granted Critical
Publication of CN106710884B publication Critical patent/CN106710884B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

The invention provides a metal-organic complex and silver nano-wire compound. The compound is of a two-dimensional flaky structure, and comprises silver nano-wires, an organic ligand and a metal salt. The invention further provides a preparation method and application of the metal-organic complex and silver nano-wire compound. The preparation method of the compound is simple, short in reaction time, high in repetition, easy in reaction, high in efficiency and low in energy consumption and cost.

Description

Metal-organic complex and nano silver wire compound and preparation method and application
Technical field
The invention belongs to new energy and supercapacitor technologies field, more particularly to a kind of Metal-organic complex and silver Nanowire composite, further relates to preparation method and the application of the compound.
Background technology
To meet the great demand of removable new energy, inexpensive, the environment-friendly ultracapacitor of excellent performance, safety is Cause the extensive concern of relevant enterprise and expert.Ultracapacitor can be divided into pseudocapacitors, double electricity by energy storage mechnism difference The class of layer capacitor and mixed capacitor etc. 3, its electrode material can also be divided into Carbon Materials, metal oxide (such as RuO2) and conduction it is poly- Compound, such as polypyridine (PPy), polyacrylonitrile (PAN), wait 3 major classes.Metal oxide is mainly counterfeit with what conducting polymer was produced Electric capacity, and Carbon Materials primarily form electric double layer capacitance.Two kinds in 3 class electrode materials are combined to form mixing electric capacity, As a kind of current research tendency.
Because the MOFs based on cobalt has absorbable gas, functional density high, good cyclical stability, thus super Capacitor area is also gradually exploited application;And nano silver wire is used as superior conductive material, with the MOFs with high capacitance Material is consistent, and the composite for being formed integrates high capacitance and high conductivity, therefore in the field ten of ultracapacitor Divide important.However, general composite, the Material cladding especially to substrate with specific surface area high, if without water A series of methods for providing it with energy such as heat are to be difficult to carry out, therefore Metal-organic complex is with nano silver wire compound not Have been reported that.
The content of the invention
Technical problem:In order to solve the defect of prior art, the invention provides a kind of Metal-organic complex and Yin Na Rice noodles compound and preparation method and application.
Technical scheme:The Metal-organic complex that the present invention is provided and nano silver wire compound, are two-dimensional sheet structure, Including mol ratio 1:(2-4):The nano silver wire of (1-3), organic ligand and slaine.
It is present invention also offers the preparation method of above-mentioned Metal-organic complex and nano silver wire compound including following Step:Under the conditions of being stirred at room temperature, nano silver wire ethanol solution, organic ligand and slaine, room are sequentially added in reaction dissolvent Temperature stirring co-precipitation, centrifugation, washing of precipitate, drying obtain final product Metal-organic complex and nano silver wire compound.
Wherein, the nano silver wire is obtained using polyol reduction method.
Wherein, reaction dissolvent is (1-3):The mixed solvent of the unitary alcohol and water of (1-3), the preferred methyl alcohol of monohydric alcohol or Ethanol;The organic ligand is methylimidazole, benzimidazole, trimesic acid or gamma-cyclodextrin;The slaine is solvable The cobalt salt of property, mantoquita, zinc salt or sylvite;The mol ratio of the nano silver wire, organic ligand and slaine is 1:(2-4):(1- 3)。
Wherein, be co-precipitated is 4-6h.
The answering in ultracapacitor present invention also offers above-mentioned Metal-organic complex and nano silver wire compound With.
Beneficial effect:The present invention provide compound preparation process is simple, the reaction time is short, repetitive rate is high, reaction is easy, Efficiency high, energy consumption is low, with low cost.
The present invention is dispersed in ethanol solution using nano silver wire as carrier, and nano silver wire has excellent optics and electricity Learn property, however, nano silver wire surface is smooth in itself, there is no any base group modification, it is difficult to compound with slaine, the present invention exists Do not cause that slaine is combined with it in the case of room temperature by any modification, the MOFs of sheet and the composite wood of nano silver wire is obtained Material has two-dimensional structure, with big specific surface area, is conducive to the transmission of electronics, according to electro-chemical test, it is found that its performance is fabulous, With potential application value.
Specifically, the present invention has advantage following prominent relative to prior art:
(1) using MOFs and nano silver wire composition sheet composite construction, the structure is combined the compound that the present invention is provided The advantage of MOFs and nano silver wire, overcomes unstable, the easily oxidized shortcoming of silver, and capacitive effect is more preferably.
(2) in the past it was recognized that Metal-organic complex (MOFs) be three-dimensional structure, and metal of the invention-have Machine complex is two-dimensional structure with nano silver wire compound, with big specific surface area, is conducive to the transmission of electronic and ionic, is had The electric capacity higher than conventional MOFs.The MOFs of this sheet disclosed by the invention and the composite of nano silver wire do not have report at present Road.
(3) in compound preparation method of the present invention, nano silver wire is added before MOFs is formed, and the laminated structure of composition can be with Nano silver wire interacts, when metal ion and part crystallize to form MOFs, nano wire can be wrapped up well into In MOFs laminated structures, nano wire has both improve the electric conductivity of material through being coated in MOFs films, and electric capacity is increased again.
(4) compound preparation method process is simple of the present invention:First, Metal-organic complex and nano silver wire compound Synthesis is stirred at room temperature, succinct convenient, step is simple, and repetitive rate can reach absolutely;Second, for synthesized Product, it is not necessary to be vacuum dried, it is only necessary to drying at room temperature, or dry, it is simple to operation;The method has well may be used Implementation, it is simple to operate, it is cheap, with good practicality.
(5) the forefront research of the development of advanced energy storage equipment will be needed towards a continuable future, nanometer Material has extensive due to providing huge surface volume ratio, good transmission characteristic and attractive physicochemical properties Application prospect.The present invention successfully in the solution at room temperature stirring synthesize two-dimentional amorphous metal-organic coordination compound (Cozif)/ Nano silver wire (AgNWs) nanometer sheet, electro-chemical test experimental data shows:The two-dimensional system structure that the present invention is provided is in two electrodes On the basis of system and cyclical stability, enough active materials and electrolyte contacts are provide not only, also promote ion and electricity The transmission of son and buffering Volume Changes, there is provided specific capacitance high.Used as electrode material for super capacitor, what the present invention was provided answers Compound is placed in the aqueous assay of 3M potassium hydroxide, in 1.0Ag-1Current density under electric capacity be up to 1497Fg-1
Brief description of the drawings
Fig. 1 is the scanning electron microscope (SEM) photograph of sheet ZIF-67 products in comparative example.
The ESEM of the composite of sheet ZIF-67 and nano silver wire and projection electron microscope in Fig. 2 embodiments 1.
The infrared contour of ZIF-67, ZIF-67/ nano silver wire compound in Fig. 3 embodiments 1 and comparative example.
Specific embodiment
In the present invention, nano silver wire length used is not required, institute can be obtained using disclosed method in the prior art The nano silver wire of crystal formation and diameter is needed, for example, nano silver wire can be prepared using the method disclosed in following documents:
(1)Changchao Jia,Ping Yang,Aiyu Zhang.Glycerol and ethylene glycol co-mediated synthesis of uniform multiple crystalline silver nanowires, Materials Chemistry and Physics,2014,143(2),794-800.
(2)Linfeng Gou,Mircea Chipara,and Jeffrey M.Zaleski,Convenient,Rapid Synthesis of Ag Nanowires,Chem.Mater.2007,19,1755-1760.
(3)Yugang Sun,Yadong Yin,Brian T.Mayers,Thurston Herricks,and Younan Xia,Uniform Silver Nanowires Synthesis by Reducing AgNO3with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone).Chem.Mater.2002,14,4736- 4745.
Below by embodiment, the present invention will be further described, but embodiments of the present invention not limited to this.
The preparation of comparative example sheet ZIF-67
The methyl alcohol of 9ml and the deionized water of 9ml are stirred at room temperature down as the solvent of reaction, add the dimethyl of 0.9mmol Imidazoles (2-methylimidazole), adds the cabaltous nitrate hexahydrate (Co (NO of 0.6mmol3)2·6H2O), stir at room temperature Mix 5 hours, be centrifuged, washing, room temperature drying, you can obtain sheet ZIF-67, ESEM experimental result such as Fig. 1 of product is red Outer such as Fig. 3.
Embodiment 1
Metal-organic complex and nano silver wire compound (ZIF-67), are two-dimensional sheet structure, including mol ratio 1:3: 2 nano silver wire, organic ligand and slaine.
Its preparation method, comprises the following steps:, used as the solvent for reacting, room temperature is stirred for the methyl alcohol of 9ml and the deionized water of 9ml Mix down, add the methylimidazole (2-methylimidazole) of 0.9mmol, be subsequently adding the ethanol of 0.3mmol nano silver wires Solution, adds the cabaltous nitrate hexahydrate (Co (NO of 0.6mmol3)2·6H2O), it is stirred at room temperature 5 hours, is centrifuged, washing, Room temperature is dried, and is obtained final product.The ESEM of product, transmission electron microscope experimental result such as Fig. 2, infrared such as Fig. 3.
The MOFs and the flaky composite material of nano silver wire for being formed are flexible into fold;The laminated structure energy of MOFs compositions Interacted with nano silver wire, when metal ion and part crystallize to form MOFs, nano wire can be wrapped up well into In MOFs laminated structures, nano wire is through being coated in MOFs films.Metal-organic complex and nano silver wire compound are microns Level, with good chemical property.
Embodiment 2
Metal-organic complex and nano silver wire compound (ZIF-67), are two-dimensional sheet structure, including mol ratio 1:2: 1 nano silver wire, organic ligand and slaine.
Its preparation method, comprises the following steps:, used as the solvent for reacting, room temperature is stirred for the methyl alcohol of 9ml and the deionized water of 9ml Mix down, add the benzimidazole of 0.6mmol, be subsequently adding the ethanol solution of 0.3mmol nano silver wires, add 0.3mmol's Zinc nitrate, is stirred at room temperature 5 hours, centrifugation, washing, room temperature drying, obtains final product, and obtains final product.
Embodiment 3
Metal-organic complex and nano silver wire compound (ZIF-67), are two-dimensional sheet structure, including mol ratio 1:4: 3 nano silver wire, organic ligand and slaine.
Its preparation method, comprises the following steps:The methyl alcohol of 9ml and the deionized water of 27ml are used as the solvent for reacting, room temperature Under stirring, the trimesic acid of 1.2mmol is added, be subsequently adding the methanol solution of 0.3mmol nano silver wires, added The copper chloride of 0.9mmol, is stirred at room temperature 4 hours, centrifugation, washing, room temperature drying, obtains final product.
Embodiment 4
Metal-organic complex and nano silver wire compound (ZIF-67), are two-dimensional sheet structure, including mol ratio 1:3: 2 nano silver wire, organic ligand and slaine.
Its preparation method, comprises the following steps:The methyl alcohol of 27ml and the deionized water of 9ml are used as the solvent for reacting, room temperature Under stirring, the gamma-cyclodextrin of 0.9mmol is added, be subsequently adding the ethanol solution of 0.3mmol nano silver wires, add 0.6mmol Potassium nitrate, be stirred at room temperature 6 hours, be centrifuged, washing, room temperature drying, obtain final product.

Claims (6)

1. Metal-organic complex and nano silver wire compound, it is characterised in that:The compound is two-dimensional sheet structure, bag Include mol ratio 1:(2-4):The nano silver wire of (1-3), organic ligand and slaine.
2. the preparation method of the Metal-organic complex described in claim 1 and nano silver wire compound, it is characterised in that:Bag Include following steps:Under the conditions of being stirred at room temperature, nano silver wire ethanol solution, organic ligand and metal are sequentially added in reaction dissolvent Salt, is stirred at room temperature co-precipitation, centrifugation, and washing of precipitate, drying obtain final product Metal-organic complex and nano silver wire compound.
3. the preparation method of Metal-organic complex according to claim 2 and nano silver wire compound, its feature exists In:The nano silver wire is obtained using polyol reduction method.
4. the preparation method of Metal-organic complex according to claim 2 and nano silver wire compound, its feature exists In:Reaction dissolvent is (1-3):The mixed solvent of the unitary alcohol and water of (1-3), the preferred methyl alcohol of monohydric alcohol or ethanol;It is described Organic ligand is methylimidazole, benzimidazole, trimesic acid or gamma-cyclodextrin;The slaine be soluble cobalt salt, Mantoquita, zinc salt or sylvite;The mol ratio of the nano silver wire, organic ligand and slaine is 1:(2-4):(1-3).
5. the preparation method of Metal-organic complex according to claim 2 and nano silver wire compound, its feature exists In:It is 4-6h to be co-precipitated.
6. the Metal-organic complex described in claim 1 and application of the nano silver wire compound in ultracapacitor.
CN201611023788.3A 2016-11-14 2016-11-14 metal-organic complex and silver nanowire complex as well as preparation method and application thereof Active CN106710884B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611023788.3A CN106710884B (en) 2016-11-14 2016-11-14 metal-organic complex and silver nanowire complex as well as preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611023788.3A CN106710884B (en) 2016-11-14 2016-11-14 metal-organic complex and silver nanowire complex as well as preparation method and application thereof

Publications (2)

Publication Number Publication Date
CN106710884A true CN106710884A (en) 2017-05-24
CN106710884B CN106710884B (en) 2019-12-13

Family

ID=58941086

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611023788.3A Active CN106710884B (en) 2016-11-14 2016-11-14 metal-organic complex and silver nanowire complex as well as preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN106710884B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107867713A (en) * 2017-11-09 2018-04-03 扬州大学 A kind of ZnO sensing electrode material preparation methods of porous nano pie structure
CN108213414A (en) * 2017-12-29 2018-06-29 安庆师范大学 A kind of method and its application for coating MOF and improving gold nano cluster photostability
CN110137461A (en) * 2019-05-10 2019-08-16 陕西科技大学 Lithium ion battery cobalt/cobalt oxide carbon nano-fiber flexible electrode material and preparation method thereof derived from MOF
CN110527107A (en) * 2019-08-27 2019-12-03 深圳大学 A kind of orderly two-dimentional electroconductive molecule monolayer array preparation method and photoelectric device
CN111234245A (en) * 2020-01-15 2020-06-05 扬州大学 Ag nanowire/ZIF ultrathin nanosheet composite material, preparation method and application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104151336A (en) * 2014-08-08 2014-11-19 复旦大学 Preparation method of metal-organic framework compound with hierarchical pore structure
CN104174388A (en) * 2014-08-08 2014-12-03 复旦大学 Metal organic frame composite material and preparation method thereof
CN105233702A (en) * 2015-10-17 2016-01-13 大连理工大学 Preparation method for forming metal organic framework ZIF-67 film by utilizing cobalt nano array layer conversion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104151336A (en) * 2014-08-08 2014-11-19 复旦大学 Preparation method of metal-organic framework compound with hierarchical pore structure
CN104174388A (en) * 2014-08-08 2014-12-03 复旦大学 Metal organic frame composite material and preparation method thereof
CN105233702A (en) * 2015-10-17 2016-01-13 大连理工大学 Preparation method for forming metal organic framework ZIF-67 film by utilizing cobalt nano array layer conversion

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107867713A (en) * 2017-11-09 2018-04-03 扬州大学 A kind of ZnO sensing electrode material preparation methods of porous nano pie structure
CN107867713B (en) * 2017-11-09 2019-07-05 扬州大学 A kind of ZnO sensing electrode material preparation method of porous nano pie structure
CN108213414A (en) * 2017-12-29 2018-06-29 安庆师范大学 A kind of method and its application for coating MOF and improving gold nano cluster photostability
CN110137461A (en) * 2019-05-10 2019-08-16 陕西科技大学 Lithium ion battery cobalt/cobalt oxide carbon nano-fiber flexible electrode material and preparation method thereof derived from MOF
CN110527107A (en) * 2019-08-27 2019-12-03 深圳大学 A kind of orderly two-dimentional electroconductive molecule monolayer array preparation method and photoelectric device
CN111234245A (en) * 2020-01-15 2020-06-05 扬州大学 Ag nanowire/ZIF ultrathin nanosheet composite material, preparation method and application

Also Published As

Publication number Publication date
CN106710884B (en) 2019-12-13

Similar Documents

Publication Publication Date Title
Wang et al. Recent progress in metal-organic frameworks as active materials for supercapacitors
Yun et al. Porous Fe2O3 modified by nitrogen-doped carbon quantum dots/reduced graphene oxide composite aerogel as a high-capacity and high-rate anode material for alkaline aqueous batteries
Li et al. Advances in transition-metal (Zn, Mn, Cu)-based MOFs and their derivatives for anode of lithium-ion batteries
Huang et al. Template-controlled in-situ growing of NiCo-MOF nanosheets on Ni foam with mixed linkers for high performance asymmetric supercapacitors
Lu et al. Syntheses and energy storage applications of MxSy (M= Cu, Ag, Au) and their composites: rechargeable batteries and supercapacitors
Feng et al. One-pot synthesis of copper sulfide nanowires/reduced graphene oxide nanocomposites with excellent lithium-storage properties as anode materials for lithium-ion batteries
Wang et al. Highly stable three-dimensional nickel–cobalt hydroxide hierarchical heterostructures hybridized with carbon nanotubes for high-performance energy storage devices
Jeong et al. Metal oxide/graphene composites for supercapacitive electrode materials
Zai et al. 3D hierarchical Co–Al layered double hydroxides with long-term stabilities and high rate performances in supercapacitors
CN106710884A (en) Metal-organic complex and silver nano-wire compound as well as preparation method and application thereof
Xing et al. Ultrathin and highly crumpled/porous CoP nanosheet arrays anchored on graphene boosts the capacitance and their synergistic effect toward high-performance battery-type hybrid supercapacitors
Wu et al. Ultrathin N-doped Ti3C2-MXene decorated with NiCo2S4 nanosheets as advanced electrodes for supercapacitors
Shi et al. Construction of interconnected NiCo layered double hydroxides/metal-organic frameworks hybrid nanosheets for high-performance supercapacitor
Zhang et al. Polyvinylpyrrolidone (PVP) assisted in-situ construction of vertical metal-organic frameworks nanoplate arrays with enhanced electrochemical performance for hybrid supercapacitors
Yue et al. Design and synthesis of conductive metal‐organic frameworks and their composites for supercapacitors
Xue et al. Heterostructure of metal–organic framework-derived straw-bundle-like CeO2 decorated with (Ni, Co) 3S4 nanosheets for high-performance supercapacitor
Liu et al. Facile synthesis of NiCoP nanosheets on carbon cloth and their application as positive electrode material in asymmetric supercapacitor
Chen et al. Facile self-assembly of sandwich-like MXene/graphene oxide/nickel–manganese layered double hydroxide nanocomposite for high performance supercapacitor
Guo et al. Double layers combined with MXene and in situ grown NiAl-LDH arrays on nickel foam for enhanced asymmetric supercapacitors
Rajesh et al. 2D layered nickel-cobalt double hydroxide nano sheets@ 1D silver nanowire-graphitic carbon nitrides for high performance super capacitors
Zhang et al. 3D hetero-nanostructured electrode constructed on carbon fiber paper with 2D 1T-MoS2/1D Cu (OH) 2 for flexible asymmetric solid-state supercapacitors
Liu et al. Construction of hierarchical Cu2+ 1O@ NiCoAl-layered double hydroxide nanorod arrays electrode for high-performance supercapacitor
Wu et al. Hierarchical architecture of two-dimensional Ti3C2 nanosheets@ Metal-Organic framework derivatives as anode for hybrid li-ion capacitors
Chen et al. Facile preparation and performances of Ni, Co, and Al layered double hydroxides for application in high-performance asymmetric supercapacitors
Liu et al. Oxygen-Vacancy-Rich NiMnZn-Layered Double Hydroxide Nanosheets Married with Mo2CT x MXene for High-Efficiency All-Solid-State Hybrid Supercapacitors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant