CN106702283A - 基于esp薄板坯连铸连轧流程生产薄规格s355j0w钢的方法 - Google Patents

基于esp薄板坯连铸连轧流程生产薄规格s355j0w钢的方法 Download PDF

Info

Publication number
CN106702283A
CN106702283A CN201611263556.5A CN201611263556A CN106702283A CN 106702283 A CN106702283 A CN 106702283A CN 201611263556 A CN201611263556 A CN 201611263556A CN 106702283 A CN106702283 A CN 106702283A
Authority
CN
China
Prior art keywords
steel
s355j0w
esp
continuous casting
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611263556.5A
Other languages
English (en)
Inventor
刘宏志
秦哲
谢国海
王福良
朱经涛
狄丽华
严进宝
罗继锋
张德运
郑万任
于长江
喻尧
吴盛平
鲍生科
安守勇
孙庆强
季伟斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rizhao Baohua New Material Co Ltd
Original Assignee
Rizhao Baohua New Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rizhao Baohua New Material Co Ltd filed Critical Rizhao Baohua New Material Co Ltd
Priority to CN201611263556.5A priority Critical patent/CN106702283A/zh
Publication of CN106702283A publication Critical patent/CN106702283A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/26Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • B21B1/463Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a continuous process, i.e. the cast not being cut before rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • B21B37/76Cooling control on the run-out table
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明提供一种基于ESP薄板坯连铸连轧流程生产薄规格S355J0W钢的方法,包括选择原材料,原材料按质量百分比包括:0.03~0.07%的C、0.10~0.40%的Si、0.80~1.30%的Mn、0.40~0.80%的Cr、0.25~0.50%的Cu、0.10~0.30%的Ni、0.02~0.03%的Als、≤0.0050%的S、≤0.015%的P、≤0.005%的N;将原材料依次进行转炉冶炼、LF炉以及RH炉精炼;将从RH炉精炼形成的钢水经过ESP产线生成不同厚度的热轧带钢;在ESP产线中,粗轧出口温度为920~980℃,精轧出口的温度为800~850℃;采用层流冷却前段方式冷却热轧带钢,冷却至550~620℃,然后进入卷取机卷取为成卷带钢,成卷带钢缓冷后,采用1%~2.0%平整量进行平整成卷入库。利用本发明,解决传统热轧成本高、能耗大、大气腐蚀等问题,达到节能环保以及降低成本的目的。

Description

基于ESP薄板坯连铸连轧流程生产薄规格S355J0W钢的方法
技术领域
本发明涉及金属材料加工与成型技术领域,更为具体地,涉及一种基于ESP薄板坯连铸连轧流程生产薄规格S355J0W钢的方法。
背景技术
近几年,随着钢铁行情的持续走低,钢铁一直处于微利或无利状态,迫使钢铁厂家不得不探讨降本之道,而国内目前对环保的重视程度进一步加强,环保要求又空前严格,因此探讨降本又环保的钢铁生产工艺已经成为非常必要的生存之路。
充分利用ESP开发应用新产品符合国家总体规划和行业规划,符合国家转调创相关政策规定,能够满足工艺现代化、设备大型化、生产集约化、资源和能源循环化、能耗最小化、经济效益最佳化的高起点发展目标,对于推进钢铁行业节能减排和技术进步,促进企业转型升级、科技创新和产品结构调整,都具有十分重要的意义。
耐大气腐蚀钢S355J0W是在大气环境中耐腐蚀破坏的低合金钢。钢的耐大气腐蚀性,可以通过添加铜和磷得到明显改善,且以加铜的改进效果最显著。优异的耐大气腐蚀性是由于钢的表面形成了致密的铁锈层,将钢的基体与空气隔绝而有效地制止了铁锈的继续生长。耐大气腐蚀钢已广泛用于建筑结构、车辆、桥梁、栏杆之类要求耐大气腐蚀的领域。
因此,本发明提出了一种基于ESP薄板坯连铸连轧流程生产薄规格S355J0W钢的方法。
发明内容
鉴于上述问题,本发明的目的是提供一种基于ESP薄板坯连铸连轧流程生产薄规格S355J0W钢的方法,以解决传统热轧成本高、能耗大、大气腐蚀等问题,达到节能环保以及降低成本的目的。
本发明提供一种基于ESP薄板坯连铸连轧流程生产薄规格S355J0W钢的方法,包括:
选择原材料,其中,原材料按质量百分比包括:0.03~0.07%的C、0.10~0.40%的Si、0.80~1.30%的Mn、0.40~0.80%的Cr、0.25~0.50%的Cu、0.10~0.30%的Ni、0.02~0.03%的Als、≤0.0050%的S、≤0.015%的P、≤0.005%的N,其余为铁元素;
将原材料依次进行转炉冶炼、LF炉以及RH炉精炼;
将从RH炉精炼形成的钢水经过ESP产线生成不同厚度的热轧带钢;其中,在ESP产线中,粗轧出口温度为920~980℃,精轧出口的温度为800~850℃;
采用层流冷却前段方式冷却热轧带钢,冷却至550~620℃,然后进入卷取机卷取为成卷带钢,成卷带钢缓冷后,采用1%~2.0%平整量进行平整成卷入库。
此外,优选的方案是,在ESP产线中,连铸拉速4.5~6.0m/min,铸坯厚度90~110mm。
此外,优选的方案是,在ESP产线中,粗轧入口温度为≥950℃,感应加热出口的温度为1050~1180℃。
此外,优选的方案是,热轧带钢的厚度为1.0~3.5mm。
此外,优选的方案是,生产的S355J0W钢的金相组织为铁素体和珠光体,其中,S355J0W钢的屈服强度为≥420MPa,抗拉强度为≥530MP,延伸率为≥22%。
从上面的技术方案可知,本发明提供的基于ESP薄板坯连铸连轧流程生产薄规格S355J0W钢的方法,薄板坯无头轧制工艺,高拉速下铸坯不需均热炉加热直接轧制,生产工艺流程短,属于低能耗绿色制造工艺范畴,生产出来的热轧产品性能稳定、尺寸公差小,热轧状态可达到1.0mm极薄规格带材,保证强度同时可提高耐候性,达到“以薄代厚”节能降耗的目的。
为了实现上述以及相关目的,本发明的一个或多个方面包括后面将详细说明的特征。下面的说明以及附图详细说明了本发明的某些示例性方面。然而,这些方面指示的仅仅是可使用本发明的原理的各种方式中的一些方式。此外,本发明旨在包括所有这些方面以及它们的等同物。
附图说明
通过参考以下结合附图的说明的内容,并且随着对本发明的更全面理解,本发明的其它目的及结果将更加明白及易于理解。在附图中:
图1为根据本发明实施例的基于ESP薄板坯连铸连轧流程生产薄规格S355J0W钢的方法流程示意图;
图2为根据本发明实施例的S355J0W钢的基体组织的结构示意图。
在所有附图中相同的标号指示相似或相应的特征或功能。
具体实施方式
在下面的描述中,出于说明的目的,为了提供对一个或多个实施例的全面理解,阐述了许多具体细节。然而,很明显,也可以在没有这些具体细节的情况下实现这些实施例。
针对前述提出的传统热轧成本高能耗大等问题,本发明提出了一种基于ESP薄板坯连铸连轧流程生产薄规格S355J0W钢的方法,采用本工艺能够生产极薄带材,可减少冷轧工序轧制道次,达到“以薄代厚”节能降耗的目的,具有很高的社会经济效益。
其中,ESP(Endless Strip Production,无头带钢生产)产线,是阿维迪新建的新一代薄板坯连铸连轧生产线,由于其一次浇铸可生产一整条钢带,中间没有任何切头切尾,因而具有全连续带钢生产的优点,单条连铸线具有出色的生产能力、大规模生产大带宽带钢和优质带钢、从钢水到热轧卷的转换成本低、生产线工艺布置最为紧凑等特点。
以下将结合附图对本发明的具体实施例进行详细描述。
为了说明本发明提供的基于ESP薄板坯连铸连轧流程生产薄规格S355J0W钢的方法,图1示出了根据本发明实施例的基于ESP薄板坯连铸连轧流程生产薄规格S355J0W钢的方法流程。
如图1所示,本发明提供的基于ESP薄板坯连铸连轧流程生产薄规格S355J0W钢的方法包括:
S110:选择原材料,其中,原材料按质量百分比包括:0.03~0.07%的C、0.10~0.40%的Si、0.80~1.30%的Mn、0.40~0.80%的Cr、0.25~0.50%的Cu、0.10~0.30%的Ni、0.02~0.03%的Als、≤0.0050%的S、≤0.015%的P、≤0.005%的N,其余为铁元素;
S120:将原材料依次进行转炉冶炼、LF炉冶炼以及RH炉精炼;
S130:将从RH炉精炼形成的钢水经过ESP产线生成不同厚度的热轧带钢;其中,在ESP产线中,粗轧出口温度为920~980℃,精轧出口的温度为800~850℃;
S140:采用层流冷却前段方式冷却热轧带钢,冷却至550~620℃,然后进入卷取机卷取为成卷带钢,成卷带钢缓冷后,采用1%~2.0%平整量进行平整成卷入库。
上述步骤为采用ESP工艺生成S355J0W钢的具体方法,本发明生产薄规格S355J0W钢的方法具体包括冶炼工序、全无头ESP薄板坯连铸连轧工序、冷却工序、卷取工序,即:混铁炉→铁水预处理→BOF(转炉冶炼)→LF→RH→ESP连铸连轧→层流冷却→卷取→缓冷→平整→成品。本发明制备的S355J0W屈服强度Rel:≥420MPa,抗拉强度Rm:≥530MPa,A80≥22%金相组织为铁素体和珠光体,图2示出了根据本发明实施例的S355J0W钢的基体组织的结构。本发明采用全无头ESP薄板坯连铸连轧工艺可高效、低成本生产S355J0W钢,产品具有性能、尺寸稳定及规格薄的优势。
在本发明的步骤S110中,在生成低S355J0W钢的原材料选择中,C在原材料中的含量为:0.03~0.07%,C元素是保证材料强度、硬度以及耐磨性的最主要元素,中高碳钢要求有较高的强度以及疲劳极限,一般都是经过淬火+中温回火的状态下使用,以获得较高的弹性极限和韧性。为保证钢的强度,中高碳钢中必须含有足够的碳,以保证材料的屈服强度、抗拉强度、硬度等各项指标能够符合要求。碳元素能溶解在钢中形成固溶体,起到了固溶强化作用,是钢中的主要强化元素。它能与强碳化物形成元素一起结合形成碳化物析出时,起到了沉淀强化的作用,碳元素是对钢的强度贡献最大的元素,也是影响钢的抗弹减性最大的元素。故在本发明中C含量控制在0.030%~0.070%。
Si在原材料中的含量为:0.10~0.40%,Si除了能提高钢的强度以外,Si能提高马氏体板条间残余奥氏体的稳定性,同时也提高钢的低温回火脆性出现的温度范围,非常重要的是硅能阻止碳的扩散,延缓渗碳体的析出和聚积,提高马氏体的稳定性,因此可以有效提高钢的抗回火软化能力使所开发钢可以在较高的温度下回火,有利于提高钢的热处理适应能力。故在本发明中Si含量控制在0.10%~0.40%。
Mn在原材料中的含量为:0.80%~1.30%,Mn的最大作用是提高钢的淬透性,同时也是重要的固溶强化元素。锰是碳化物形成元素,也能以固溶状态存在,还具有细化珠光体组织的作用,因而能提高铁素体奥氏体的强度和硬度。Mn对提高钢的抗回火软化能力也有一定的作用,但Mn含量较高时有粗化晶粒和增加回火脆性的倾向,给加工带来困难。故在本发明中Mn含量控制在0.80%~1.30%。
Nb在原材料中的含量为:0.010%~0.030%,铌起到晶粒细化和沉淀强化作用,从而获得高强度与高韧性的力学性能合理匹配;提高再结晶温度,实现高温轧制。故在本发明中Nb含量控制在0.010%~0.030%。
Cr在原材料中的含量为:0.40%~0.80%,铬元素可降低钢中碳的活度,又是强碳化物形成元素,铬元素是能显著提高钢的淬透性,与锰共用的效果会更好,能减轻钢的脱碳倾向,提高了钢中碳扩散的激活能。故在本发明中Cr含量控制在0.40%~0.80%。
在步骤S120中,按照上述(步骤S110)的成分进行转炉、LF炉、RH炉冶炼。也就是说,铁水经转炉冶炼后再经过LF炉精炼得到所需成分的钢水。
在步骤S130中,在ESP产线中,铸坯进入粗轧入口的温度为≥950℃,中间坯在进入精轧机组前首先进入感应加热炉中,IH(感应加热出口温度为1050~1180℃,从感应加热炉出来进入精轧机组,并且精轧出口的温度不低于820℃,并且,在ESP产线中,根据实际需求,在生成设备上设定不同的参数,从而生成1.0~3.5mm不等厚度的S355J0W钢。
在本发明的实施例中,生成的S355J0W钢的厚度与其屈服强度、抗拉强度之间成反比,如果生成的S355J0W钢的厚度大,那么其屈服强度和抗拉强度会减小,如果生成的低S355J0W钢的厚度小,那么其屈服强度和抗拉强度会增大。
其中,需要说明的是,IH为感应加热出口温度,感应加热炉位于转毂剪之后,精轧机之前的位置,感应加热的作用是加热带钢,保证精轧温度,也可以说是调节中间坯的温度,IH温度按照带钢精轧要求且兼顾带钢表面质量而定,低于某一温度会造成精轧温度不合,高于某一温度则浪费能源。
在ESP产线中,从RH炉冶炼出来的钢水进入连铸机,以4.5~6.0m/min的拉速进行浇铸,从连铸机出来的铸坯直接进入3架粗轧机制成中间坯,然后经过摆式剪,将铸坯头部楔形段进行分段和切掉,接着铸坯进入堆垛机(堆垛机的作用是当后面设备出现故障时,可以在此堆垛机处下线)。正常轧制时直接通过,随后中间坯经转毂式飞剪切头尾,然后进入感应加热炉加热到1050~1170℃,随后进入精轧机组,从精轧机组出来生成热轧带钢。从精轧机组生成的热轧带钢经过层流冷却后卷取入库。
在本发明中,ESP全无头薄板坯连铸连轧流程低成本生产耐大气腐蚀钢S355J0W,可满足建筑结构、车辆、桥梁、栏杆等要求耐大气腐蚀领域的钢材。产品性能均匀稳定高、尺寸公差小、产品使用寿命高的需求,本工艺流程铸坯不经均热炉加热直接进行轧制,生产工艺流程短,节约能源,属于低能耗绿色制造工艺范畴。
采用ESP全无头薄板坯连铸连轧工艺低成本生产热轧薄规格耐大气腐蚀钢S355J0W,生产工艺流程短,属于低能耗绿色制造工艺范畴,生产出来的热轧产品性能稳定、尺寸公差小,热轧状态可达到1.0mm极薄规格带材,可减少冷轧工序轧制道次,达到“以薄代厚”节能降耗的目的。
根据上述生成S355J0W钢的方法,本发明根据如下的具体实施例作进一步的说明。
实施例1
在实施例中全无头ESP薄板坯连铸连轧流程生产S355J0W钢的工艺流程为混铁炉→铁水预处理→BOF→LF→RH→ESP连铸连轧→层流冷却→卷取→缓冷→平整→成品。
本实施例铁水、废钢等原材料依次进行转炉冶炼、LF精炼、RH精炼,钢水成分控制为C:0.038Wt%;Si:0.15Wt%;Mn:0.85Wt%;Als:0.030Wt%;Cr:0.45Wt%;Cu:0.26Wt%;Ni:0.13Wt%;S:0.0020Wt%;P:0.012Wt%;N:0.0032Wt%,余量为Fe。
LF、RH精炼的钢水经过ESP产线连铸、粗轧、感应加热、精轧、层流冷却、卷取、平整工艺生产不同厚度的热轧带钢。
连铸工序控制中间包过热度18℃,拉速5.5m/min,铸坯厚度95mm;
将铸坯经三道次粗轧进行轧制,粗轧入口温度1050℃,粗轧出口温度980℃;
将经粗轧中间坯产品经感应炉加热,感应炉IH出口温度控制在1130℃;
将经感应加热中间坯经5道次精轧轧制成1.0mm厚度热轧带钢,精轧出口温度在850℃;
将钢带经层流冷却,采用前段冷却模式冷却至620℃,然后进入卷取机卷取为成卷带钢,采用1%平整量对缓冷后的成卷带钢进行平整成卷入库。
生成的S355J0W钢的性能如表1所示:
表1
实施例2
在实施例中全无头ESP薄板坯连铸连轧流程生产S355J0W钢的工艺流程为混铁炉→铁水预处理→BOF→LF→RH→ESP连铸连轧→层流冷却→卷取→缓冷→平整→成品。
本实施例铁水、废钢等原材料依次进行转炉冶炼、LF精炼、RH精炼,钢水成分控制为C:0.040Wt%;Si:0.18Wt%;Mn:0.88Wt%;Als:0.025Wt%;Cr:0.46Wt%;Cu:0.26Wt%;Ni:0.15Wt%;S:0.0020Wt%;P:0.012Wt%;N:0.0032Wt%,余量为Fe。
LF、RH精炼的钢水经过ESP产线连铸、粗轧、感应加热、精轧、层流冷却、卷取、平整工艺生产不同厚度的热轧带钢。
连铸工序控制中间包过热度20℃,拉速5.5m/min,铸坯厚度95mm;
将铸坯经三道次粗轧进行轧制,粗轧入口温度1045℃,粗轧出口温度980℃;
将经粗轧中间坯产品经感应炉加热,感应炉IH出口温度控制在1140℃;
将经感应加热中间坯经5道次精轧轧制成1.2mm厚度热轧带钢,精轧出口温度控制在850℃;
将钢带经层流冷却,采用前段冷却模式冷却至620℃,然后进入卷取机卷取为成卷带钢,采用1%平整量对缓冷后的成卷带钢进行平整成卷入库。
生成的S355J0W钢的性能如表2所示:
表2
实施例3
在实施例中全无头ESP薄板坯连铸连轧流程生产S355J0W钢的工艺流程为混铁炉→铁水预处理→BOF→LF→RH→ESP连铸连轧→层流冷却→卷取→缓冷→平整→成品。
本实施例铁水、废钢等原材料依次进行转炉冶炼、LF精炼、RH精炼,钢水成分控制为C:0.045Wt%;Si:0.22Wt%;Mn:0.90Wt%;Als:0.022Wt%;Cr:0.48Wt%;Cu:0.27Wt%;Ni:0.17Wt%;S:0.0020Wt%;P:0.012Wt%;N:0.0032Wt%,余量为Fe。
LF、RH精炼的钢水经过ESP产线连铸、粗轧、感应加热、精轧、层流冷却、卷取、平整工艺生产不同厚度的热轧带钢。
连铸工序控制中间包过热度20℃,拉速5.5m/min,铸坯厚度95mm;
将铸坯经三道次粗轧进行轧制,粗轧入口温度1035℃,粗轧出口温度965℃;
将经粗轧中间坯产品经感应炉加热,感应炉IH出口温度控制在1135℃;
将经感应加热中间坯经5道次精轧轧制成1.5mm厚度热轧带钢,精轧出口温度控制在840℃;
将钢带经层流冷却,采用前段冷却模式冷却至620℃,然后进入卷取机卷取为成卷带钢,采用1%平整量对缓冷后的成卷带钢进行平整成卷入库。
生成的S355J0W钢的性能如表3所示:
表3
实施例4
在实施例中全无头ESP薄板坯连铸连轧流程生产S355J0W钢的工艺流程为混铁炉→铁水预处理→BOF→LF→RH→ESP连铸连轧→层流冷却→卷取→缓冷→平整→成品。
本实施例铁水、废钢等原材料依次进行转炉冶炼、LF精炼、RH精炼,钢水成分控制为C:0.048Wt%;Si:0.24Wt%;Mn:0.95Wt%;Als:0.023Wt%;Cr:0.50Wt%;Cu:0.29Wt%;Ni:0.19Wt%;S:0.0020Wt%;P:0.012Wt%;N:0.0032Wt%,余量为Fe。
LF、RH精炼的钢水经过ESP产线连铸、粗轧、感应加热、精轧、层流冷却、卷取、平整工艺生产不同厚度的热轧带钢。
连铸工序控制中间包过热度20℃,拉速5.4m/min,铸坯厚度95mm;
将铸坯经三道次粗轧进行轧制,粗轧入口温度1030℃,粗轧出口温度960℃;
将经粗轧中间坯产品经感应炉加热,感应炉IH出口温度控制在1130℃;
将经感应加热中间坯经5道次精轧轧制成1.8mm厚度热轧带钢,精轧出口温度控制在835℃;
将钢带经层流冷却,采用前段冷却模式冷却至610℃,然后进入卷取机卷取为成卷带钢,采用1%平整量对缓冷后的成卷带钢进行平整成卷入库。
生成的S355J0W钢的性能如表4所示:
表4
实施例5
在实施例中全无头ESP薄板坯连铸连轧流程生产S355J0W钢的工艺流程为混铁炉→铁水预处理→BOF→LF→RH→ESP连铸连轧→层流冷却→卷取→缓冷→平整→成品。
本实施例铁水、废钢等原材料依次进行转炉冶炼、LF精炼、RH精炼,钢水成分控制为C:0.050Wt%;Si:0.23Wt%;Mn:1.08Wt%;Als:0.025Wt%;Cr:0.51Wt%;Cu:0.28Wt%;Ni:0.20Wt%;S:0.0020Wt%;P:0.012Wt%;N:0.0032Wt%,余量为Fe。
LF、RH精炼的钢水经过ESP产线连铸、粗轧、感应加热、精轧、层流冷却、卷取、平整工艺生产不同厚度的热轧带钢。
连铸工序控制中间包过热度22℃,拉速5.3m/min,铸坯厚度95mm;
将铸坯经三道次粗轧进行轧制,粗轧入口温度1020℃,粗轧出口温度960℃;
将经粗轧中间坯产品经感应炉加热,感应炉IH出口温度控制在1130℃;
将经感应加热中间坯经5道次精轧轧制成2.0mm厚度热轧带钢,精轧出口温度控制在830℃;
将钢带经层流冷却,采用前段冷却模式冷却至610℃,然后进入卷取机卷取为成卷带钢,采用1%平整量对缓冷后的成卷带钢进行平整成卷入库。
生成的S355J0W钢的性能如表5所示:
表5
实施例6
在实施例中全无头ESP薄板坯连铸连轧流程生产S355J0W钢的工艺流程为混铁炉→铁水预处理→BOF→LF→RH→ESP连铸连轧→层流冷却→卷取→缓冷→平整→成品。
本实施例铁水、废钢等原材料依次进行转炉冶炼、LF精炼、RH精炼,钢水成分控制为C:0.052Wt%;Si:0.25Wt%;Mn:1.18Wt%;Als:0.025Wt%;Cr:0.50Wt%;Cu:0.28Wt%;Ni:0.19Wt%;S::.0020Wt%;P:0.012Wt%;N:0.0032Wt%,余量为Fe。
LF、RH精炼的钢水经过ESP产线连铸、粗轧、感应加热、精轧、层流冷却、卷取、平整工艺生产不同厚度的热轧带钢。
连铸工序控制中间包过热度18℃,拉速5.3m/min,铸坯厚度95mm;
将铸坯经三道次粗轧进行轧制,粗轧入口温度1010℃,粗轧出口温度960℃;
将经粗轧中间坯产品经感应炉加热,感应炉IH出口温度控制在1130℃;
将经感应加热中间坯经5道次精轧轧制成2.5mm厚度热轧带钢,精轧出口温度控制在830℃;
将钢带经层流冷却,采用前段冷却模式冷却至600℃,然后进入卷取机卷取为成卷带钢,采用1%平整量对缓冷后的成卷带钢进行平整成卷入库。
生成的S355J0W钢的性能如表6所示:
表6
实施例7
在实施例中全无头ESP薄板坯连铸连轧流程生产S355J0W钢的工艺流程为混铁炉→铁水预处理→BOF→LF→RH→ESP连铸连轧→层流冷却→卷取→缓冷→平整→成品。
本实施例铁水、废钢等原材料依次进行转炉冶炼、LF精炼、RH精炼,钢水成分控制为C:0.055Wt%;Si:0.30Wt%;Mn:1.25Wt%;Als:0.024Wt%;Cr:0.58Wt%;Cu:0.32Wt%;Ni:0.22Wt%;S:0.0020Wt%;P:0.012Wt%;N:0.0032Wt%,余量为Fe。
LF、RH精炼的钢水经过ESP产线连铸、粗轧、感应加热、精轧、层流冷却、卷取、平整工艺生产不同厚度的热轧带钢。
连铸工序控制中间包过热度22℃,拉速5.3m/min,铸坯厚度95mm;
将铸坯经三道次粗轧进行轧制,粗轧入口温度1010℃,粗轧出口温度955℃;
将经粗轧中间坯产品经感应炉加热,感应炉IH出口温度控制在1125℃;
将经感应加热中间坯经5道次精轧轧制成2.5mm厚度热轧带钢,精轧出口温度控制在830℃;
将钢带经层流冷却,采用前段冷却模式冷却至600℃,然后进入卷取机卷取为成卷带钢,采用1%平整量对缓冷后的成卷带钢进行平整成卷入库。
生成的S355J0W钢的性能如表7所示:
表7
实施例8
在实施例中全无头ESP薄板坯连铸连轧流程生产S355J0W钢的工艺流程为混铁炉→铁水预处理→BOF→LF→RH→ESP连铸连轧→层流冷却→卷取→缓冷→平整→成品。
本实施例铁水、废钢等原材料依次进行转炉冶炼、LF精炼、RH精炼,钢水成分控制为C:0.060Wt%;Si:0.35Wt%;Mn:1.20Wt%;Als:0.025Wt%;Cr:0.60Wt%;Cu:0.30Wt%;Ni:0.22Wt%;S:0.0020Wt%;P:0.012Wt%;N:0.0032Wt%,余量为Fe。
LF、RH精炼的钢水经过ESP产线连铸、粗轧、感应加热、精轧、层流冷却、卷取、平整工艺生产不同厚度的热轧带钢。
连铸工序控制中间包过热度22℃,拉速5.2m/min,铸坯厚度95mm;
将铸坯经三道次粗轧进行轧制,粗轧入口温度1000℃,粗轧出口温度950℃;
将经粗轧中间坯产品经感应炉加热,感应炉IH出口温度控制在1140℃;
将经感应加热中间坯经5道次精轧轧制成3.0mm厚度热轧带钢,精轧出口温度控制在820℃;
将所述钢带经层流冷却,采用前段冷却模式冷却至580℃,然后进入卷取机卷取为成卷带钢,采用1%平整量对缓冷后的成卷带钢进行平整成卷入库。
生成的S355J0W钢的性能如表8所示:
表8
实施例9
在实施例中全无头ESP薄板坯连铸连轧流程生产S355J0W钢的工艺流程为混铁炉→铁水预处理→BOF→LF→RH→ESP连铸连轧→层流冷却→卷取→平整→成品。
本实施例铁水、废钢等原材料依次进行转炉冶炼、LF精炼、RH精炼,钢水成分控制为C:0.065Wt%;Si:0.35Wt%;Mn:1.30Wt%;Als:0.020Wt%;Cr:0.60Wt%;Cu:0.35Wt%;Ni:0.22Wt%;S:0.0020Wt%;P:0.012Wt%;N:0.0032Wt%,余量为Fe。
LF、RH精炼的钢水经过ESP产线连铸、粗轧、感应加热、精轧、层流冷却、卷取、平整工艺生产不同厚度的热轧带钢。
连铸工序控制中间包过热度22℃,拉速5.2m/min,铸坯厚度95mm;
将铸坯经三道次粗轧进行轧制,粗轧入口温度990℃,粗轧出口温度945℃;
将经粗轧中间坯产品经感应炉加热,感应炉IH出口温度控制在1160℃;
将所述经感应加热中间坯经5道次精轧轧制成3.5mm厚度热轧带钢,精轧出口温度控制在820℃;
将钢带经层流冷却,采用前段冷却模式冷却至580℃,然后进入卷取机卷取为成卷带钢,采用1%平整量对缓冷后的成卷带钢进行平整成卷入库。
生成的S355J0W钢的性能如表9所示:
表9
实施例10
在实施例中全无头ESP薄板坯连铸连轧流程生产S355J0W钢的工艺流程为混铁炉→铁水预处理→BOF→LF→RH→ESP连铸连轧→层流冷却→卷取→平整→成品。
本实施例铁水、废钢等原材料依次进行转炉冶炼、LF精炼、RH精炼,钢水成分控制为C:0.03Wt%;Si:0.10Wt%;Mn:0.80Wt%;Als:0.020Wt%;Cr:0.40Wt%;Cu:0.25Wt%;Ni:0.12Wt%;S:0.0015Wt%;P:0.010Wt%;N:0.0030Wt%,余量为Fe。
LF、RH精炼的钢水经过ESP产线连铸、粗轧、感应加热、精轧、层流冷却、卷取、平整工艺生产不同厚度的热轧带钢。
连铸工序控制中间包过热度22℃,拉速4.5m/min,铸坯厚度90mm;
将铸坯经三道次粗轧进行轧制,粗轧入口温度950℃,粗轧出口温度920℃;
将经粗轧中间坯产品经感应炉加热,感应炉IH出口温度控制在1050℃;
将所述经感应加热中间坯经5道次精轧轧制成2.5mm厚度热轧带钢,精轧出口温度控制在800℃;
将钢带经层流冷却,采用前段冷却模式冷却至550℃,然后进入卷取机卷取为成卷带钢,采用1%平整量对缓冷后的成卷带钢进行平整成卷入库。
生成的S355J0W钢的性能如表10所示:
表10
实施例11
在实施例中全无头ESP薄板坯连铸连轧流程生产S355J0W钢的工艺流程为混铁炉→铁水预处理→BOF→LF→RH→ESP连铸连轧→层流冷却→卷取→缓冷→平整→成品。
本实施例铁水、废钢等原材料依次进行转炉冶炼、LF精炼、RH精炼,钢水成分控制为C:0.035Wt%;Si:0.40Wt%;Mn:1.0Wt%;Als:0.021Wt%;Cr:0.42Wt%;Cu:0.31Wt%;Ni:0.30Wt%;S:0.0018Wt%;P:0.011Wt%;N:0.0031Wt%,余量为Fe。
LF、RH精炼的钢水经过ESP产线连铸、粗轧、感应加热、精轧、层流冷却、卷取、平整工艺生产不同厚度的热轧带钢。
连铸工序控制中间包过热度20℃,拉速6.0m/min,铸坯厚度110mm;
将铸坯经三道次粗轧进行轧制,粗轧入口温度1035℃,粗轧出口温度980℃;
将经粗轧中间坯产品经感应炉加热,感应炉IH出口温度控制在1180℃;
将经感应加热中间坯经5道次精轧轧制成1.5mm厚度热轧带钢,精轧出口温度控制在850℃;
将钢带经层流冷却,采用前段冷却模式冷却至620℃,然后进入卷取机卷取为成卷带钢,采用1%平整量对缓冷后的成卷带钢进行平整成卷入库。
生成的S355J0W钢的性能如表11所示:
表11
实施例12
在实施例中全无头ESP薄板坯连铸连轧流程生产S355J0W钢的工艺流程为混铁炉→铁水预处理→BOF→LF→RH→ESP连铸连轧→层流冷却→卷取→缓冷→平整→成品。
本实施例铁水、废钢等原材料依次进行转炉冶炼、LF精炼、RH精炼,钢水成分控制为C:0.070Wt%;Si:0.13Wt%;Mn:1.30Wt%;Als:0.022Wt%;Cr:0.80Wt%;Cu:0.33Wt%;Ni:0.28Wt%;S:0.0019Wt%;P:0.009Wt%;N:0.0029Wt%,余量为Fe。
LF、RH精炼的钢水经过ESP产线连铸、粗轧、感应加热、精轧、层流冷却、卷取、平整工艺生产不同厚度的热轧带钢。
连铸工序控制中间包过热度20℃,拉速5.4m/min,铸坯厚度100mm;
将铸坯经三道次粗轧进行轧制,粗轧入口温度1030℃,粗轧出口温度960℃;
将经粗轧中间坯产品经感应炉加热,感应炉IH出口温度控制在1100℃;
将经感应加热中间坯经5道次精轧轧制成1.8mm厚度热轧带钢,精轧出口温度控制在840℃;
将钢带经层流冷却,采用前段冷却模式冷却至550℃,然后进入卷取机卷取为成卷带钢,采用1%平整量对缓冷后的成卷带钢进行平整成卷入库。
生成的S355J0W钢的性能如表12所示:
表12
需要说明的是,上述实施例生成的S355J0W钢在厚度上的浮动非常小可以忽略不计,屈服强度和抗拉强度均会有30MPa的上下浮动,在本发明中特此说明。
通过上述实施方式可以看出,本发明提供的基于ESP薄板坯连铸连轧流程生产薄规格S355J0W钢的方法,板坯无头轧制工艺,高拉速下铸坯不需均热炉加热直接轧制,生产工艺流程短,属于低能耗绿色制造工艺范畴,生产出来的热轧产品性能稳定、尺寸公差小,热轧状态可达到1.0mm极薄规格带材,保证强度同时可提高耐候性,达到“以薄代厚”节能降耗的目的。
如上参照附图以示例的方式描述了根据本发明提出的基于ESP薄板坯连铸连轧流程生产薄规格S355J0W钢的方法。但是,本领域技术人员应当理解,对于上述本发明所提出的基于ESP薄板坯连铸连轧流程生产薄规格S355J0W钢的方法,还可以在不脱离本发明内容的基础上做出各种改进。因此,本发明的保护范围应当由所附的权利要求书的内容确定。

Claims (5)

1.一种基于ESP薄板坯连铸连轧流程生产薄规格S355J0W钢的方法,其特征在于,包括:
选择原材料,其中,所述原材料按质量百分比包括:0.03~0.07%的C、0.10~0.40%的Si、0.80~1.30%的Mn、0.40~0.80%的Cr、0.25~0.50%的Cu、0.10~0.30%的Ni、0.02~0.03%的Als、≤0.0050%的S、≤0.015%的P、≤0.005%的N,其余为铁元素;
将所述原材料依次进行转炉冶炼、LF炉以及RH炉精炼;
将从所述RH炉精炼形成的钢水经过ESP产线生成不同厚度的热轧带钢;其中,在所述ESP产线中,粗轧出口温度为920~980℃,精轧出口的温度为800~850℃;
采用层流冷却前段方式冷却所述热轧带钢,冷却至550~620℃,然后进入卷取机卷取为成卷带钢,所述成卷带钢缓冷后,采用1%~2.0%平整量进行平整成卷入库。
2.如权利要求1所述的基于ESP薄板坯连铸连轧流程生产薄规格S355J0W钢的方法,其特征在于,
在所述ESP产线中,连铸拉速4.5~6.0m/min,铸坯厚度90~110mm。
3.如权利要求1所述的基于ESP薄板坯连铸连轧流程生产薄规格S355J0W钢的方法,其特征在于,
在所述ESP产线中,粗轧入口温度为≥950℃,感应加热出口的温度为1050~1180℃。
4.如权利要求1所述的基于ESP薄板坯连铸连轧流程生产薄规格S355J0W钢的方法,其特征在于,
所述热轧带钢的厚度为1.0~3.5mm。
5.如权利要求1所述的基于ESP薄板坯连铸连轧流程生产薄规格S355J0W钢的方法,其特征在于,
生产的S355J0W钢的金相组织为铁素体和珠光体,其中,所述S355J0W钢的屈服强度为≥420MPa,抗拉强度为≥530MP,延伸率为≥22%。
CN201611263556.5A 2016-12-30 2016-12-30 基于esp薄板坯连铸连轧流程生产薄规格s355j0w钢的方法 Pending CN106702283A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611263556.5A CN106702283A (zh) 2016-12-30 2016-12-30 基于esp薄板坯连铸连轧流程生产薄规格s355j0w钢的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611263556.5A CN106702283A (zh) 2016-12-30 2016-12-30 基于esp薄板坯连铸连轧流程生产薄规格s355j0w钢的方法

Publications (1)

Publication Number Publication Date
CN106702283A true CN106702283A (zh) 2017-05-24

Family

ID=58905585

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611263556.5A Pending CN106702283A (zh) 2016-12-30 2016-12-30 基于esp薄板坯连铸连轧流程生产薄规格s355j0w钢的方法

Country Status (1)

Country Link
CN (1) CN106702283A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107460413A (zh) * 2017-08-16 2017-12-12 北京科技大学 一种550MPa级超细晶高强耐候钢的制备方法及应用
CN107557511A (zh) * 2017-08-30 2018-01-09 武汉钢铁有限公司 基于直接还原铁的薄带钢短流程生产工艺
CN107739799A (zh) * 2017-09-30 2018-02-27 日照宝华新材料有限公司 基于全无头薄板连铸连轧生产spfh590钢的方法
CN108277442A (zh) * 2018-04-12 2018-07-13 日照钢铁控股集团有限公司 一种含Ti集装箱钢及其生产方法
CN108796189A (zh) * 2018-04-26 2018-11-13 日照钢铁控股集团有限公司 基于全无头薄板坯连铸连轧流程制备的薄规格re700mc钢及其制备方法
CN109266827A (zh) * 2018-08-30 2019-01-25 日照钢铁控股集团有限公司 一种控制铁素体热轧工艺中金相组织形成的生产工艺
CN110343914A (zh) * 2019-08-30 2019-10-18 安徽环宇铝业有限公司 一种道路防护栏用铝合金杆的生产工艺
CN111621688A (zh) * 2020-03-24 2020-09-04 本钢板材股份有限公司 一种新型钢结构专用钢及其制备方法
CN111647822A (zh) * 2020-03-24 2020-09-11 本钢板材股份有限公司 一种应用于环保厨房用钢及其制备方法
CN113278867A (zh) * 2021-04-28 2021-08-20 包头钢铁(集团)有限责任公司 一种前分散冷却模式下q355nhc耐候结构用钢带的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106011421A (zh) * 2016-06-06 2016-10-12 日照宝华新材料有限公司 基于esp薄板坯连铸连轧流程生产薄规格s500mc钢的方法
CN106191681A (zh) * 2016-08-30 2016-12-07 日照宝华新材料有限公司 基于esp薄板坯连铸连轧流程生产低碳钢铁素体的方法
CN106222561A (zh) * 2016-08-30 2016-12-14 日照宝华新材料有限公司 基于esp薄板坯连铸连轧流程生产低碳消防器材用钢的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106011421A (zh) * 2016-06-06 2016-10-12 日照宝华新材料有限公司 基于esp薄板坯连铸连轧流程生产薄规格s500mc钢的方法
CN106191681A (zh) * 2016-08-30 2016-12-07 日照宝华新材料有限公司 基于esp薄板坯连铸连轧流程生产低碳钢铁素体的方法
CN106222561A (zh) * 2016-08-30 2016-12-14 日照宝华新材料有限公司 基于esp薄板坯连铸连轧流程生产低碳消防器材用钢的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
侯豁然: "《含铌钢板(带)国内外标准使用指南》", 31 May 2012, 冶金工业出版社 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107460413A (zh) * 2017-08-16 2017-12-12 北京科技大学 一种550MPa级超细晶高强耐候钢的制备方法及应用
CN107460413B (zh) * 2017-08-16 2019-05-17 北京科技大学 一种550MPa级超细晶高强耐候钢的制备方法及应用
CN107557511A (zh) * 2017-08-30 2018-01-09 武汉钢铁有限公司 基于直接还原铁的薄带钢短流程生产工艺
CN107739799A (zh) * 2017-09-30 2018-02-27 日照宝华新材料有限公司 基于全无头薄板连铸连轧生产spfh590钢的方法
CN108277442A (zh) * 2018-04-12 2018-07-13 日照钢铁控股集团有限公司 一种含Ti集装箱钢及其生产方法
CN108796189A (zh) * 2018-04-26 2018-11-13 日照钢铁控股集团有限公司 基于全无头薄板坯连铸连轧流程制备的薄规格re700mc钢及其制备方法
CN109266827A (zh) * 2018-08-30 2019-01-25 日照钢铁控股集团有限公司 一种控制铁素体热轧工艺中金相组织形成的生产工艺
CN110343914A (zh) * 2019-08-30 2019-10-18 安徽环宇铝业有限公司 一种道路防护栏用铝合金杆的生产工艺
CN111621688A (zh) * 2020-03-24 2020-09-04 本钢板材股份有限公司 一种新型钢结构专用钢及其制备方法
CN111647822A (zh) * 2020-03-24 2020-09-11 本钢板材股份有限公司 一种应用于环保厨房用钢及其制备方法
CN113278867A (zh) * 2021-04-28 2021-08-20 包头钢铁(集团)有限责任公司 一种前分散冷却模式下q355nhc耐候结构用钢带的制备方法

Similar Documents

Publication Publication Date Title
CN106702283A (zh) 基于esp薄板坯连铸连轧流程生产薄规格s355j0w钢的方法
CN106834887B (zh) 基于esp薄板坯连铸连轧流程生产薄规格re510l钢的方法
CN106756508B (zh) 基于esp薄板坯连铸连轧流程生产薄规格reh380la钢的方法
CN105506494B (zh) 一种屈服强度800MPa级高韧性热轧高强钢及其制造方法
CN106834886B (zh) 基于ESP薄板坯连铸连轧流程生产薄规格RE65Mn钢的方法
CN106756560B (zh) 基于esp薄板坯连铸连轧流程生产薄规格re700l钢的方法
CN112981235B (zh) 一种屈服强度420MPa级的调质型建筑结构用钢板及其生产方法
CN106011421B (zh) 基于esp薄板坯连铸连轧流程生产薄规格s500mc钢的方法
WO2017117884A1 (zh) 一种精细钢帘线拉拔加工性能优的高碳钢线材及制造方法
CN106834924B (zh) 基于esp薄板坯连铸连轧流程生产薄规格saph440钢的方法
CN106191674A (zh) 低成本连铸坯成材大厚度低温压力容器用钢板及生产方法
CN101864537A (zh) 应用于深冷环境的超高强度9Ni钢及其制备工艺
CN106011618B (zh) 基于esp薄板坯连铸连轧流程生产dp780钢的方法
CN108315639A (zh) 一种高韧性600MPa级汽车大梁钢及其生产方法
CN106191680B (zh) 基于esp薄板坯连铸连轧流程生产dp600钢的方法
CN105177422B (zh) 一种超长薄规格eh36钢及其在卷炉卷轧机上的生产方法
CN108531810A (zh) 一种超高强钢热轧基板及其制备方法
CN112430787B (zh) 一种低屈强比高强度冷轧热镀锌钢板及其制造方法
CN107502819A (zh) 一种600MPa级0.6mm以下薄规格冷轧双相钢及其制备方法
CN114525452B (zh) 屈服强度700Mpa级热镀锌低合金高强钢及制备方法
CN106756561B (zh) 基于ESP薄板坯连铸连轧流程生产薄规格RE52Mn钢的方法
CN109402499A (zh) 一种防护用钢及其生产方法
CN113528940A (zh) 一种铝硅合金系镀层热成形钢及其制备方法
CN106801195B (zh) 基于ESP薄板坯连铸连轧流程生产薄规格RE75Cr1钢的方法
CN107747042A (zh) 一种690MPa级经济型高表面质量高扩孔钢及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170524