CN106676356B - 基于激光熔化成形技术的镁合金骨固定植入材料制备方法 - Google Patents

基于激光熔化成形技术的镁合金骨固定植入材料制备方法 Download PDF

Info

Publication number
CN106676356B
CN106676356B CN201611131152.0A CN201611131152A CN106676356B CN 106676356 B CN106676356 B CN 106676356B CN 201611131152 A CN201611131152 A CN 201611131152A CN 106676356 B CN106676356 B CN 106676356B
Authority
CN
China
Prior art keywords
magnesium alloy
implantation
implantation material
bone
carries out
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611131152.0A
Other languages
English (en)
Other versions
CN106676356A (zh
Inventor
赵占勇
王宇
白培康
李宝强
李玉新
刘斌
王建宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi Yangchen Zhongbei Technology Co.,Ltd.
Shanxi Zhongbei Science Park Co ltd
Original Assignee
North University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North University of China filed Critical North University of China
Priority to CN201611131152.0A priority Critical patent/CN106676356B/zh
Publication of CN106676356A publication Critical patent/CN106676356A/zh
Application granted granted Critical
Publication of CN106676356B publication Critical patent/CN106676356B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/047Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/06Alloys based on magnesium with a rare earth metal as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/41Anti-inflammatory agents, e.g. NSAIDs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Mechanical Engineering (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

本发明提供一种基于激光熔化成形技术的镁合金骨固定植入材料制备方法,包括设计植入材料的镁合金成分;CT扫描植入位置轮廓尺寸;构建三维数据模型;运用SLM技术成形;经过热处理、清洗处理、浸药处理,最终制备出镁合金骨固定植入材料,运用本方法制作植入材料不仅能降低治疗成本,而且免去了二次手术给患者带来的痛苦,通过在镁合金材料中添加药物,使得镁合金在降解的同时不断对伤口持续给药,增加药效利用患者康复;本发明方法能够对不同病人不同部位的植入材料进行定制,可制作形状复杂的植入制品,而且制品与患者体型贴合良好。

Description

基于激光熔化成形技术的镁合金骨固定植入材料制备方法
技术领域
本发明属于激光熔化SLM成形技术领域,具体涉及一种基于激光熔化成形技术的镁合金骨固定植入材料制备方法。
背景技术
现如今,由于意外事故或疾病造成的骨折、骨缺损成为临床上的常见疾病,目前,临床上应用于骨折复位及骨移植手术后固定材料主要是不锈钢、钴铬合金、钛合金和一些高分子材料;不锈钢具有高抗冲击、高强度、高韧性和优良的加工性能,在骨外科手术中得到了普遍应用,但是不锈钢的生物相容性不高,在生理环境中溶出的镍离子可能诱发肿瘤形成,对人体健康造成损害;钴铬合金有良好的耐腐蚀性和力学性能,但钴基合金中溶出的钴、镍等离子具有致敏性问题,可能导致组织坏死;钛合金具有良好的生物学特性,如无细胞毒性、质轻、强度高、生物相容性好等优点,但是价格昂贵;聚乳酸(PLA)、聚乙醇酸(PGA)等可吸收高分子材料也已经用于临床,但它们存在亲水性差、细胞吸附力较弱等问题。
综上所述,目前临床上的植入材料主要存在以下缺点,1.应力遮挡效应差;2.合金中Co、Cr、Ni等金属对人体有毒副作用;3.需要进行二次取出手术,给患者带来二次痛苦,增加医疗费用;4.在治疗过程中,需要长时间口服或注射药物,药物不是直接作用在伤口,药效往往不佳。
然而,目前有相关的研究表明,镁合金作为新型生物植入材料,具有优异的力学性能,良好的生物相容性及体内可降解性,而且采用可降解镁合金作为体内植入材料,不仅能降低治疗成本,而且免去了二次手术给患者带来的痛苦,如果在镁合金中添加药物,使得镁合金在降解的同时不断对伤口持续给药,能够增加药效,非常利于患者康复。
再有按照传统的方法制备尺寸合适、贴合良好的骨科植入材料,不仅成本高,而且制备的周期较长,容易延误最佳的治疗时机;同时对于一些复杂零件,常规方法难以制备,无法满足患者需求。
激光增材制造技术以3D模型数据为基础,采用层层叠加的方法来制备零件;选择性激光熔化成形技术(SLM)是激光增材制造技术(3D打印)领域中最具发展潜力的技术之一,其基本原理是先在计算机上利用三维造型软件设计出制品的三维实体模型,对模型进行数据处理后,导入成形设备;成形时,首先把金属粉末均匀的铺在基板上,激光束按照三维模型当前截面轮廓数据选择性地熔化成形,随后在已加工好的截面上再铺一层金属粉末,激光按照模型下一层截面信息进行选择性熔化,如此往复循环直至整个制品完成熔化成形,该技术可以成形任意形状的零件,降低了开发成本和风险,缩短了新品研制的周期。
发明内容
本发明提供一种基于激光熔化成形技术的镁合金骨固定植入材料制备方法,利用SLM成形技术制备多孔装镂空结构的镁合金植入材料,解决目前各种植入材料所存在的问题。
本发明采用的技术方案是:
一种基于激光熔化成形技术的镁合金骨固定植入材料制备方法,其步骤包括:
步骤1、设计植入部分镁合金成分;
所述镁合金成分为Mg-Zn-La合金,其中Zn元素质量分数为0-8%,La元素质量分数为0-2%,其余为Mg元素;
步骤2、使用CT扫描对患处进行扫描,采集受伤位置的轮廓尺寸;
所述CT扫描层厚小于等于5mm;
步骤3、根据扫描数据,通过逆向工程和镜像重建技术构建植入材料的多孔三维数据模型;
所述孔的形状为圆形、方形、六边形或梯形,孔隙率为10%至60%;
步骤4、对构建植入材料的三维数据模型,进行应力分析,模型结构进一步优化;
步骤5、用MAGICS软件对三维模型进行数据处理,设定成形方向、支撑类型以及成形精度,然后,利用切片软件对模型进行切片处理并将数据传入SLM成形机;
所述数据处理的数据为:激光功率200-400W,扫描速度为6000-8000mm/min,扫描精度为0.015-0.03mm;
步骤6、进行SLM成形;
步骤7、成形件进行热处理并进行清洗;
所述热处理的方法是:270-350℃退火60-90min,升温速度10-20℃/min左右,缓慢冷却;所述清洗采用无水乙醇和去离子水;
步骤8、浸药处理;浸入的药物为消炎药和促进骨生长愈合的药物,PH呈碱性;
步骤9、对浸药处理的制品表面进行HA喷涂;所述HA喷涂采用等离子喷涂工艺,喷涂后需要用水蒸气处理,喷涂温度不超过200℃。
本发明的技术效果是:运用本发明方法制作的骨植入材料不仅能降低治疗成本,而且免去了二次手术给患者带来的痛苦,在镁合金中添加药物,使得镁合金在降解的同时不断对伤口持续给药,增加药效利用患者康复;本发明方法能够对不同病人不同部位的植入材料进行定制,可制作形状复杂的植入制品,而且制品与患者体型贴合良好。
附图说明
图1是本发明方法的流程示意图。
具体实施方式
下面结合实施例对本发明做进一步说明:
实施例1,基于激光熔化成形技术的镁合金骨板制备方法,包括如下步骤:
步骤1,设计骨板的镁合金成分,首先通过ANSYS模拟软件分析根据植入位置骨所承受的力及此位置植入镁合金后镁合金的降解情况,然后根据模拟结果及其合金元素对镁合金力学性能、腐蚀性的影响规律,确定合金成分,随后通过模拟软件计算不同成分镁合金的力学性能及腐蚀特性,最终获得合理的镁合金成分;
所述镁合金牌号为Mg-3Zn-0.5La合金,其中Zn元素质量分数为3%,La元素质量分数为0.5%,其余为Mg元素;
步骤2,使用CT扫描对患处进行扫描,采集受伤位置的轮廓尺寸,根据CT扫描扫描规范,扫描层厚为4mm;
步骤3,根据CT扫描数据,通过逆向工程和镜像重建技术,利用Solidworks三维软件构建该骨板的三维数据模型,随后利用Solidworks三维软件的拉伸切除功能将该构件的三维数据模型切成多孔状,使其成为多孔三维数据模型;
所述骨板为镂空结构,孔形为圆形,孔隙率为30%;
步骤4,利用ANSYS模拟软件模拟骨板的受力情况,首先将多孔三维数据模型导入到ANSYS模拟软件,并对三维数据模型进行网格划分,然后设定模型的受力边界条件,并且将植入位置受力情况加载到三维数据模型,此时,分析植入骨板的应力应变情况,根据模拟结果进一步优化模型结构;
步骤5,利用MAGICS软件对三维模型进行数据处理,将零件三维模型水平摆放,该摆放位置不需要添加支撑,成形精度设为0.015mm,切片软件设定切片厚度为0.015mm,将切好的数据模型导入到SLM成形机;
步骤6,进行SLM成形,经过工艺参数的优化,最佳成形参数为,激光功率300W,扫描速度6500mm/min,扫描精度0.015mm;
步骤7,对成形件进行热处理,经过工艺反复优化,热处理最佳工艺为:270±5℃退火80min,升温速度15℃/min左右,随炉冷却,热处理之后用无水乙醇和去离子水清洗并干燥;
步骤8,浸药处理,将成形件浸入消炎的庆大霉素和促进骨生长的骨肽溶液中,经过参数优化,溶液温度30℃,浸药时间10h,随后对浸药后的成形件烘干,烘干温度60℃,烘干时间10h;
步骤9,对浸药处理的制品表面喷涂HA,喷涂采用低温等离子喷涂工艺,为了防止高温对药物药效的影响,经过工艺优化,制品局部温度控制在100℃以内。
实施例2,基于激光熔化成形技术的镁合金骨钉制备方法,包括如下步骤:
步骤1,设计骨钉的镁合金成分,首先通过ANSYS模拟软件分析根据植入位置骨所承受的力及此位置植入镁合金后镁合金的降解情况,然后根据模拟结果及其合金元素对镁合金力学性能、腐蚀性的影响规律,确定合金成分,随后通过模拟软件计算不同成分镁合金的力学性能及腐蚀特性,最终获得合理的镁合金成分;
所述镁合金牌号为Mg-5Zn-1La合金,其中Zn元素质量分数为5%,La元素质量分数为1%,其余为Mg元素;
步骤2,使用CT扫描对患处进行扫描,采集受伤位置的轮廓尺寸,根据CT扫描扫描规范,扫描层厚为3mm;
步骤3,根据CT扫描数据,通过逆向工程和镜像重建技术,利用Solidworks三维软件构建该骨板的三维数据模型,随后利用Solidworks三维软件的拉伸切除功能将该构件的三维数据模型切成多孔状,使其成为多孔三维数据模型;所述骨钉为镂空结构,孔形可为圆形,孔隙率为20%;
步骤4,利用ANSYS模拟软件模拟骨钉的受力情况,首先将多孔三维数据模型导入到ANSYS模拟软件,并对三维数据模型进行网格划分,然后设定模型的受力边界条件,并且将植入位置受力情况加载到三维数据模型,此时,分析植入骨钉的应力应变情况,根据模拟结果进一步优化模型结构;
步骤5,利用MAGICS软件对三维模型进行数据处理,将零件三维模型水平摆放,,该摆放位置不需要添加支撑,成形精度设为0.01mm,切片软件设定切片厚度为0.01mm,将切好的数据模型导入到SLM成形机;
步骤6,进行SLM成形,经过工艺参数的优化,最佳成形参数为,,激光功率350W,扫描速度7000mm/min,扫描精度0.02mm;
步骤7,对成形件进行热处理,经过工艺优化,最佳热处理的工艺为:300℃退火60min,升温速度10℃/min左右,随炉冷却,热处理之后用无水乙醇和去离子水清洗并干燥;
步骤8,浸药处理,将成形件浸入消炎的庆大霉素和促进骨生长的骨肽溶液中,经过参数优化,溶液温度30℃,浸药时间10h,随后对浸药后的成形件烘干,烘干温度60℃,烘干时间10h;
步骤9,对浸药处理的制品表面喷涂HA,喷涂采用低温等离子喷涂工艺,为了防止高温对药物药效的影响,经过工艺优化,制品局部温度控制在100℃以内。

Claims (1)

1.一种基于激光熔化成形技术的镁合金骨固定植入材料制备方法,其特征在于:包括如下步骤:
步骤1、设计植入材料镁合金成分;首先利用ANSYS模拟软件根据植入位置骨所承受的力及此位置植入镁合金后镁合金的降解情况,及镁合金中各元素对镁合金力学性能、腐蚀性的影响规律,确定镁合金成分,再计算不同成分镁合金的力学性能及腐蚀特性,最终获得合理的镁合金成分;所述镁合金成分为Mg-Zn-La合金,其中Zn元素质量分数大于零且小于等于8%,La元素质量分数大于零且小于等于2%,其余为Mg元素;
步骤2、使用CT扫描仪对患处进行CT扫描,CT扫描的扫描层厚小于等于5mm,采集受伤位置的轮廓尺寸;
步骤3、根据CT扫描数据,通过逆向工程和镜像重建技术,利用Solidworks三维软件构建骨板的多孔三维数据模型,随后利用Solidworks三维软件的拉伸切除功能将构件的三维数据模型切成多孔状,使其成为多孔三维数据模型;所述多孔三维数据模型上孔的形状为圆形、方形、六边形或梯形,孔隙率为10%至60%;
步骤4、对构建植入材料的三维数据模型,进行应力分析,模型结构进一步优化;
步骤5、用MAGICS软件对三维模型进行数据处理,设定成形方向、支撑类型以及成形精度,然后,利用切片软件对模型进行切片处理并将数据传入SLM成形机;传入SLM成形机的数据为:激光功率200-400W,扫描速度为6000-8000mm/min,扫描精度为0.015-0.03mm;
步骤6、进行SLM成形,制成成形件;
步骤7、对成形件进行270-350℃退火60-90min,升温速度10-20℃/min左右,缓慢冷却,并采用无水乙醇和去离子水对热处理后的成形件进行清洗;
步骤8、对成形件进行浸药处理,成形件浸入的药物为消炎药和促进骨生长愈合的药物,PH呈碱性;
步骤9、对浸药处理的制品表面进行HA喷涂,HA喷涂采用等离子喷涂工艺,喷涂后需要用水蒸气处理,喷涂温度不超过200℃。
CN201611131152.0A 2016-12-09 2016-12-09 基于激光熔化成形技术的镁合金骨固定植入材料制备方法 Active CN106676356B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611131152.0A CN106676356B (zh) 2016-12-09 2016-12-09 基于激光熔化成形技术的镁合金骨固定植入材料制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611131152.0A CN106676356B (zh) 2016-12-09 2016-12-09 基于激光熔化成形技术的镁合金骨固定植入材料制备方法

Publications (2)

Publication Number Publication Date
CN106676356A CN106676356A (zh) 2017-05-17
CN106676356B true CN106676356B (zh) 2018-08-17

Family

ID=58868654

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611131152.0A Active CN106676356B (zh) 2016-12-09 2016-12-09 基于激光熔化成形技术的镁合金骨固定植入材料制备方法

Country Status (1)

Country Link
CN (1) CN106676356B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109530694B (zh) * 2018-12-21 2021-03-26 西安航天发动机有限公司 一种tc4钛合金多通道阀体激光选区熔化成形方法
CN109513940B (zh) * 2019-01-21 2022-05-17 苏州大学 一种生物体用多孔镁合金的激光制备方法
CN110129642B (zh) * 2019-04-15 2021-04-20 珠海市环顺科技有限公司 一种低模量人工骨及其制备方法
CN113616858A (zh) * 2021-07-14 2021-11-09 西安理工大学 羟基磷灰石掺杂及抑肿瘤增殖的镁合金骨夹板及制备方法
CN115737906A (zh) * 2022-10-10 2023-03-07 北京科技大学 一种可控降解骨填充材料及其增材制造方法
CN115635082A (zh) * 2022-10-12 2023-01-24 北京科技大学 一种可降解多孔金属骨钉及其增材制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04131350A (ja) * 1990-09-21 1992-05-06 Sugitani Kinzoku Kogyo Kk 凝固温度範囲の狭い鋳造用マグネシウム合金
CN104226995B (zh) * 2014-07-28 2017-04-19 中国科学院重庆绿色智能技术研究院 镁合金医学植入体电子束熔化成型方法
CN104087805B (zh) * 2014-07-29 2016-08-17 中国科学院重庆绿色智能技术研究院 镁合金及利用该镁合金制备用于激光成型生产医学植入体的镁合金粉体的方法
CN105455925A (zh) * 2016-01-11 2016-04-06 佛山市安齿生物科技有限公司 一种基于激光选区熔化技术制备骨修补植入物的方法

Also Published As

Publication number Publication date
CN106676356A (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
CN106676356B (zh) 基于激光熔化成形技术的镁合金骨固定植入材料制备方法
Salmi et al. Patient‐specific reconstruction with 3D modeling and DMLS additive manufacturing
Sumida et al. Custom-made titanium devices as membranes for bone augmentation in implant treatment: clinical application and the comparison with conventional titanium mesh
Williams The biomaterials conundrum in tissue engineering
CN104985183B (zh) 一种低弹性模量钛基颌骨植入体及其制备方法
Song et al. The design and manufacturing of a titanium alloy beak for Grus japonensis using additive manufacturing
Singare et al. Customized design and manufacturing of chin implant based on rapid prototyping
US10626373B2 (en) Culture scaffold for enhancing differentiation of osteoblast using pattern
CN112966411B (zh) 一种基于体代表单元应力的医疗植入件及制备方法与应用
Byun et al. The bioresorption and guided bone regeneration of absorbable hydroxyapatite-coated magnesium mesh
Xia et al. Application of additive manufacturing in customized titanium mandibular implants for patients with oral tumors
Qiu et al. Medical additive manufacturing: from a frontier technology to the research and development of products
TW201212957A (en) Medical device and manufacturing method thereof
Farajpour et al. Reconstruction of bilateral ramus-condyle unit defect using custom titanium prosthesis with preservation of both condyles
Xiong et al. Evaluation of biomechanical strength, stability, bioactivity, and in vivo biocompatibility of a novel calcium deficient hydroxyapatite/poly (amino acid) composite cervical vertebra cage
Liu et al. Novel design and optimization of porous titanium structure for mandibular reconstruction
CN110680562B (zh) 骨缺损修复支架及构建、制备方法、计算机可读存储介质、设备
CN110841106A (zh) 一种基于选区激光熔化技术的个性化节段骨植入物的设计和制备方法
RU2465015C1 (ru) Оксидное покрытие на чрескостные ортопедические имплантаты из нержавеющей стали
Durgun et al. Effect of 2100 MHz mobile phone radiation on healing of mandibular fractures: an experimental study in rabbits
Dobrzański et al. Ti6Al4V porous elements coated by polymeric surface layer for biomedical applications
Dalgarno et al. Mass customization of medical devices and implants: state of the art and future directions
CN213525691U (zh) 一种基于3d打印多孔钛合金的仿真颌骨植入物
CN209734234U (zh) 一种应用三维打印技术生成的个性化牙槽骨骨增量的钛网内植物
Hatton et al. Medical applications of 3D Printing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Zhao Zhanyong

Inventor after: Wang Yu

Inventor after: Bai Peikang

Inventor after: Li Baoqiang

Inventor after: Li Yuxin

Inventor after: Liu Bin

Inventor after: Wang Jianhong

Inventor before: Zhao Zhanyong

Inventor before: Bai Peikang

Inventor before: Li Baoqiang

Inventor before: Li Yuxin

Inventor before: Liu Bin

Inventor before: Wang Jianhong

GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190123

Address after: 030006 Shanxi Comprehensive Reform Demonstration Zone Taiyuan Xuefu Park South Central Street 529 Cleaning and Control Innovation Base D Block 21 Floor 02

Patentee after: Shanxi Yangchen Zhongbei Technology Co.,Ltd.

Address before: 030051 Room 6319, 182 Building, College Road, Jiancao District, Taiyuan City, Shanxi Province

Patentee before: Shanxi Zhongbei Science Park Co.,Ltd.

Effective date of registration: 20190123

Address after: 030051 Room 6319, 182 Building, College Road, Jiancao District, Taiyuan City, Shanxi Province

Patentee after: Shanxi Zhongbei Science Park Co.,Ltd.

Address before: 030051 Xueyuan Road 3, pointed lawn area, Taiyuan, Shanxi

Patentee before: NORTH University OF CHINA