CN106675623B - 烃物流的重级分的光化学加氢 - Google Patents

烃物流的重级分的光化学加氢 Download PDF

Info

Publication number
CN106675623B
CN106675623B CN201611040674.XA CN201611040674A CN106675623B CN 106675623 B CN106675623 B CN 106675623B CN 201611040674 A CN201611040674 A CN 201611040674A CN 106675623 B CN106675623 B CN 106675623B
Authority
CN
China
Prior art keywords
hydrocarbon stream
heavy
photochemical
alcohol
hydrogenation process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611040674.XA
Other languages
English (en)
Other versions
CN106675623A (zh
Inventor
R·J·科雷亚
F·P·弗雷明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University Rio De Janeiro
Petroleo Brasileiro SA Petrobras
Original Assignee
University Rio De Janeiro
Petroleo Brasileiro SA Petrobras
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University Rio De Janeiro, Petroleo Brasileiro SA Petrobras filed Critical University Rio De Janeiro
Publication of CN106675623A publication Critical patent/CN106675623A/zh
Application granted granted Critical
Publication of CN106675623B publication Critical patent/CN106675623B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G15/00Cracking of hydrocarbon oils by electric means, electromagnetic or mechanical vibrations, by particle radiation or with gases superheated in electric arcs
    • C10G15/08Cracking of hydrocarbon oils by electric means, electromagnetic or mechanical vibrations, by particle radiation or with gases superheated in electric arcs by electric means or by electromagnetic or mechanical vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/127Sunlight; Visible light
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/10Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/24Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing with hydrogen-generating compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0871Heating or cooling of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0877Liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/12Processes employing electromagnetic waves
    • B01J2219/1203Incoherent waves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1096Aromatics or polyaromatics
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • C10G2300/206Asphaltenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/302Viscosity
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/308Gravity, density, e.g. API

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明描述了用于烃物流的重级分的光化学加氢方法,其中存在于所述级分中的芳族和多(聚)芳族化合物在醇盐的存在下,在经受电磁辐照时选择性反应。

Description

烃物流的重级分的光化学加氢
技术领域
本发明提供用于烃物流的重级分的光化学加氢方法,所述重级分转化成较轻级分,以改进这样的流的物理化学特性,尤其是粘度和密度。
发明背景
油是世界上第二最大的能源来源,随着全球发现重油(12至22.3°API,由ANP[
Figure GDA0002693503290000011
Nacional do Petróleo,Gás Natural e Biocombustíveis(BrazilianNational Agency of Petroleum,Natural Gas and Biofuels)]定义)和超重油(≤12°API,由ANP定义)的增多,这些油的生产、运输和精炼成为研究和探讨的主题。
油的价值和生产和精炼的成本与它的物理化学特性相关。它的粘度和密度越小,原油的附加值越大和生产链成本越低。
存在于原油中的一些芳族化合物会导致密度和粘度的增加,尤其是较重级分例如树脂和沥青质。沥青质构成较重且极性的原油化合物的级分,通常具有多稠合(缩聚)芳族结构,和包含不同的官能团、分子结构和相对大的分子质量分布。
除了提供增加的油密度和粘度以外,在获得原油时沥青质沉淀的倾向会导致严重的后果,例如油流动降低或甚至在油的生产、运输和精炼期间堵塞加工生产线,和可以使催化剂在精炼过程中中毒。
最小化沥青质的有害作用的一个选项是它的加氢,因为加氢降低沥青质分子的芳族烃的“核”之间的吸引力,以及降低悬浮液中分子的沉淀或团簇的发生,这最终导致它的粘度的降低。
因此,已经对该主题进行了许多研究。文献US2013/0277273例如描述了在催化剂和氢气的存在下存在于原油中的芳族化合物的加氢。所使用的催化剂为包含来自元素周期表的IB族、IVB族、VB族、VIB族、VIIB族或VIII族的金属的负载催化剂,所述金属包括但是不限于:铬,铁,锰,钼,钨,钒,银,金,镍,钯,铂,铑,钌或其混合物。
同时,文献US5,824,214描述了直接在石油生产井的底部在金属加氢催化剂的存在下通过声能以400Hz-10kHz的低频率处理包含至少1重量%的水的重原油。在该方法中,如由以下反应所定义的,由水形成氢气:
2H2O>>>2H2+O2
在本发明的另一个实施方案中,如果重原油不具有充足的水含量,可以通过使重原油在井底部与包含氨、肼和甲酸的化学化合物接触而原位形成氢气,这在金属加氢催化剂和声能的存在下,通过引起加氢反应导致氢气的形成和由此导致粘度降低。
然而,没有用于加氢存在于烃物流中的芳族化合物,特别是沥青质以降低这样的流的粘度和密度而不需要使用催化剂的方法的文献、描述或建议,和在下文中进行描述和要求保护该方法。
发明内容
以广泛的方式,本发明是关于通过光化学方法加氢来自烃物流的包括沥青质的含有一个或多个芳环的芳族重级分的方法,其中重级分的这些芳族化合物在醇盐存在下在经受电磁辐照时加氢。
附图描述
图1示出了作为温度的函数的在异丙醇钠和80质量%的油的存在下进行的实验中的粘度(以厘泊计)降低。
图2示出了在2-丙醇中在碱性介质(200mM NaOH)中的萘样品的同步荧光光谱,和曲线A对应于未受辐照时的样品和曲线B对应于在UV-VIS辐照之后的样品。
图3示出了对在2-丙醇中在碱性介质(200mM NaOH)中未受辐照的萘样品的GCMS分析结果.
图4示出了对在2-丙醇中在碱性介质(200mM NaOH)中辐照达8小时的萘样品的GCMS分析结果。
图5示出了在2-丙醇中在碱性介质(200mM NaOH)中的菲样品的同步荧光光谱,和曲线A对应于未受辐照时的样品和曲线B对应于在UV-VIS辐照之后的样品。
图6示出了在2-丙醇中在碱性介质(200mM NaOH)中未受辐照的的菲样品的GCMS分析结果。
图7示出了在2-丙醇中在碱性介质(200mM NaOH)中辐照达8小时的菲样品的GCMS分析结果。
图8示出了在2-丙醇中在碱性介质(200mM NaOH)中的石油样品的同步荧光光谱,和曲线A对应于未受辐照时的样品和曲线B对应于在UV-VIS辐照之后的样品。
具体实施方式
一般而言,本发明是基于存在于烃物流的重级分中的芳族化合物与醇盐在经受电磁辐照时的反应性。
在沥青质的情况下,由于它们具有表现出特征吸收光谱的芳族多稠合结构,它们能够吸收宽范围的波长的电磁辐射。取决于芳环稠合程度,分子吸收UV(紫外)波长范围直至近红外(NIR)波长范围的辐射,经过整个可见光谱(VIS)。
该方法包括使用电磁辐射,电磁辐射可以在紫外光谱(UV-100-400nm的波长)或可见光谱(400-780nm的波长),优选在450和700nm之间。在该激发态的芳族分子中,可以从烷氧自由基提取电子,之后提取氢自由基,所述烷氧自由基可以由碱与羟基有机化合物的反应获得。
因此,在羟基有机化合物和碱的存在下,芳族分子在芳环中存在的不饱和度方面选择性降低。通常,反应是部分的,但这作为施加辐射的函数而变得更加具有选择性。因此,该方法对于重油级分和尤其是对于芳族化合物如沥青质具有选择性,而不干扰轻级分,如在图2-8中示出的对于萘样品、菲样品和油样品所获得的通过GCMS的结果分析和同步荧光光谱中可以观察到的。
因此,本发明是关于使烃物流与醇盐在UV-VIS范围的辐射作用下反应来加氢重级分而获得具有低的密度和粘度的烃物流的方法,所述方法包括以下步骤:
a)提供该方法的载料,所述载料由烃物流组成,所述烃物流包含烃的含有具有一个或多个稠环的芳族化合物(浓度高于0.1质量%)的重级分;
b)在搅拌下,在20-60℃的温度和在大气压力下,相对于待还原的烃以1:1摩尔的比例,将至少一种醇盐加入所述载料,以获得载料/醇盐的均匀混合物;
c)使所获得的混合物经受UV-VIS范围波长的电磁辐射达5分钟至48小时的时间,以获得密度和粘度小于初始载料的经处理的物流。
优选地,该方法的载料为包含不可忽略水平的沥青质的烃物流,和这些化合物在载料的粘度方面很显著。这样的物流可具有浓度大于0.1质量%的它们的重级分,优选包含1-80质量%的沥青质级分的链。
重级分基本上包含芳族化合物,特别是具有自动关联能力和显著影响载料的密度和粘度的高分子量的多(聚)芳族化合物。
更具体地,本发明的烃物流的重级分的光化学加氢方法涉及使醇盐与处于激发态的芳族化合物选择性反应。该机理涉及四个步骤:
-由于使用UV-VIS范围波长的电磁辐射的样品辐照,形成激发态的芳族化合物;
-该激发态氧化和从醇盐提取电子;
-芳族化合物的阴离子型自由基从烷氧自由基提取氢自由基,生产酮;和
-芳族阴离子提取中间质子。
反应产物为由醇羰基化的化合物和来自芳族化合物的环状不饱和化合物。
待加氢的芳族化合物的选择通过一定波长的可施加的电磁辐射(光)进行。波长越长,发生反应的在烃物流中存在的芳族化合物所包含的环的稠合程度越高。
在直接使用醇盐的情况下,原则上,这为包含1-6个碳原子的链和具有一个或多个羟基的任何有机化合物的任何共轭碱,例如,例如:乙醇盐,异丙醇盐,甲醇盐,甘油化盐(glyceroxide)等。醇盐应该以化学计算量存在以还原物流中希望的类型。
此外,醇盐可以为醇和碱之间的反应结果。待使用的醇原则上可以包含1-6个碳原子,为单羟基或多羟基,例如乙醇,异丙醇,和优选甘油(或丙三醇),或其混合物。
在该方法中,碱仅用于增加反应介质中的醇盐阴离子的浓度,但也可以为能够从所用的羟基化合物或其混合物除去质子的任何碱。这些包括:氢氧化钠,氢氧化钾,金属钠,甲酸钠,甲酸钙,氧化钙,或其混合物。
当使用时,该方法中需要的碱和醇的量为对于以摩尔比例1:1:1转化各种油和/或其级分中的待加氢的芳族化合物成分而言化学计量的。
以下实施例对应于实验室规模实验,而没有限制该方法的范围,在此进行详细描述。
实施例
实施例1
下文所述的测试在光化学反应器中进行,其中芳族化合物以10-1000mg/L范围的不同浓度溶解于二氯甲烷。为了辐照样品,使用中压汞灯和450W。该灯主要发射250和450nm之间的UV。在存在和不存在反应介质中的氧气的情况下,每种样品在恒定搅拌下受辐照达12小时。
以下用作芳族化合物:由不同的巴西油获得的萘、菲、芘、苯并芘、六苯并苯、卟啉和沥青质样品。
为了与芳族化合物反应,使用通过使碱与醇反应获得的醇盐。
相对于醇测试芘:甲醇、乙醇、异丙醇和甘油。仅相对于乙醇测试其它芳族化合物。醇以10mg/L-10%的浓度使用。
对于碱,相对于碱测试芘:氢氧化钠、氢氧化钙和甲酸钙。仅相对于氢氧化钠测试其它芳族化合物。还相当于乙醇钠测试了芘,没有添加更多的醇。
该方法伴随有反应混合物的UV-VIS和荧光光谱。UV-VIS光谱记录在200和500nm之间。荧光光谱通过同步方法记录,已经观察到在激发和发射之间发射250-500nm和20nm的距离,UV-VIS光谱迁移至更短的波长和荧光光谱的强度降低,表明存在于介质中的芳环稠合降低。
实施例2
本发明是基于在通过使碱和醇反应获得的醇盐存在下在经受由来自使用汞蒸气450瓦灯的反应器的紫外或可见光的辐照时芳族化合物的反应性。该灯主要发射250和450nm之间的UV。在存在和不存在反应介质中的氧气的情况下,样品在恒定搅拌下受辐照达12小时。在UV-VIS辐照时在NaOH溶液存在下在2-丙醇中以化学计量比例部分加氢菲和萘。
所研究的芳族化合物为来自具有8-30°API的不同API程度的油的芘、苯并芘、六苯并苯、卟啉和沥青质样品。在该方法中所使用的一系列醇由甲醇、乙醇、2-丙醇、丁醇、戊醇、己醇和甘油组成。所使用的碱为氢氧化钠、氢氧化钾、甲酸钙。该方法方案在下表中给出:
Figure GDA0002693503290000071
Figure GDA0002693503290000072
Figure GDA0002693503290000073
Figure GDA0002693503290000081
Figure GDA0002693503290000082
Figure GDA0002693503290000083
Figure GDA0002693503290000091
Figure GDA0002693503290000092
在所用的所有系列醇中,以及使用测试的三种类型碱,发现芳族样品的加氢。2-丙醇与氢氧化钠一起产生最满意的结果,也就是相比于研究的其它物质,得到更高水平的加氢。

Claims (7)

1.用于烃物流的重级分的光化学加氢方法,其特征在于它包括使存在于烃物流的重级分中的芳族化合物与醇盐在UV-VIS范围的电磁辐照的存在下和在20-60℃的温度和大气压力下反应,所述醇盐通过使共轭碱与包含1至6个碳原子的醇反应而形成。
2.根据权利要求1所述的用于烃物流的重级分的光化学加氢方法,其特征在于它包括以下步骤:
a)提供该方法的载料,所述载料由烃物流组成,所述烃物流包含浓度高于0.1质量%的烃的重级分,所述重级分含有具有一个或多个稠环的芳族化合物;
b)在搅拌下,在20-60℃的温度和在大气压力下,相对于待还原的烃以1:1摩尔的比例,将至少一种醇盐加入所述载料,以获得载料/醇盐的均匀混合物;
c)使所获得的混合物经受UV-VIS范围波长的电磁辐射达5分钟至48小时的时间,以获得密度和粘度小于初始载料的经处理的物流。
3.根据权利要求1或2所述的用于烃物流的重级分的光化学加氢方法,其特征在于所述芳族化合物选自:菲、萘、芘、苯并芘、六苯并苯、沥青质、卟啉和它们的衍生物,或其混合物。
4.根据权利要求1所述的用于烃物流的重级分的光化学加氢方法,其特征在于所述醇为一元醇。
5.根据权利要求1所述的用于烃物流的重级分的光化学加氢方法,其特征在于所述醇为多元醇。
6.根据权利要求1的用于重油级分的光化学加氢方法,其特征在于所述醇选自:乙醇、2-丙醇、甘油或其混合物。
7.根据权利要求1所述的用于烃物流的重级分的光化学加氢方法,其特征在于共轭碱选自:氢氧化钠、氢氧化钾、金属钠、甲酸钠、甲酸钙、氧化钙或其混合物。
CN201611040674.XA 2015-11-10 2016-11-10 烃物流的重级分的光化学加氢 Active CN106675623B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102015028294-0A BR102015028294B1 (pt) 2015-11-10 2015-11-10 Hidrogenação fotoquímica de frações pesadas de correntes de hidrocarbonetos
BR102015028294-0 2015-11-10

Publications (2)

Publication Number Publication Date
CN106675623A CN106675623A (zh) 2017-05-17
CN106675623B true CN106675623B (zh) 2021-01-12

Family

ID=58667756

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611040674.XA Active CN106675623B (zh) 2015-11-10 2016-11-10 烃物流的重级分的光化学加氢

Country Status (6)

Country Link
US (1) US10258958B2 (zh)
CN (1) CN106675623B (zh)
AU (1) AU2016256749B2 (zh)
BR (1) BR102015028294B1 (zh)
CA (1) CA2948166C (zh)
MX (1) MX2016014669A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3663393A (en) * 1968-09-03 1972-05-16 Fmc Corp Irradiation method of preparing aralkyl hydroperoxides from hydrocarbons
US4168218A (en) * 1977-05-23 1979-09-18 Eastman Kodak Company Preparation of substituted benzopinacols
JP2001246263A (ja) * 2000-03-08 2001-09-11 Mitsubishi Heavy Ind Ltd 光触媒の固定化方法
CN101168164A (zh) * 2006-10-27 2008-04-30 中国科学院沈阳应用生态研究所 一种多环芳烃污染土壤的紫外光降解方法
CN103121895A (zh) * 2011-11-18 2013-05-29 中国石油化工股份有限公司 稠环芳烃制取单环芳烃方法
CN104386849A (zh) * 2014-10-13 2015-03-04 同济大学 一种选择性降解水中微量多环芳烃的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5824214A (en) 1995-07-11 1998-10-20 Mobil Oil Corporation Method for hydrotreating and upgrading heavy crude oil during production
BRPI0816677B1 (pt) * 2007-09-13 2018-01-23 Kabushiki Kaisha Sangi Método para produzir uma composição de combustível para um motor de combustão interna usando um ou mais álcoois como um material de partida
US9169448B2 (en) 2012-04-19 2015-10-27 Baker Hughes Incorporated In-situ hydrogenation of aromatic compounds for heavy oil upgrading

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3663393A (en) * 1968-09-03 1972-05-16 Fmc Corp Irradiation method of preparing aralkyl hydroperoxides from hydrocarbons
US4168218A (en) * 1977-05-23 1979-09-18 Eastman Kodak Company Preparation of substituted benzopinacols
JP2001246263A (ja) * 2000-03-08 2001-09-11 Mitsubishi Heavy Ind Ltd 光触媒の固定化方法
CN101168164A (zh) * 2006-10-27 2008-04-30 中国科学院沈阳应用生态研究所 一种多环芳烃污染土壤的紫外光降解方法
CN103121895A (zh) * 2011-11-18 2013-05-29 中国石油化工股份有限公司 稠环芳烃制取单环芳烃方法
CN104386849A (zh) * 2014-10-13 2015-03-04 同济大学 一种选择性降解水中微量多环芳烃的方法

Also Published As

Publication number Publication date
BR102015028294B1 (pt) 2020-05-12
AU2016256749B2 (en) 2022-04-28
CA2948166C (en) 2023-04-11
BR102015028294A2 (pt) 2017-05-23
MX2016014669A (es) 2018-05-08
CN106675623A (zh) 2017-05-17
AU2016256749A1 (en) 2017-05-25
CA2948166A1 (en) 2017-05-10
US20170128907A1 (en) 2017-05-11
US10258958B2 (en) 2019-04-16

Similar Documents

Publication Publication Date Title
Wu et al. Solar energy-driven lignin-first approach to full utilization of lignocellulosic biomass under mild conditions
Schutyser et al. Selective nickel‐catalyzed conversion of model and lignin‐derived phenolic compounds to cyclohexanone‐based polymer building blocks
Zhao et al. Photocatalysis with quantum dots and visible light: selective and efficient oxidation of alcohols to carbonyl compounds through a radical relay process in water
Wang et al. One‐pot process for hydrodeoxygenation of lignin to alkanes using Ru‐based bimetallic and bifunctional catalysts supported on zeolite Y
Zakzeski et al. Catalytic lignin valorization process for the production of aromatic chemicals and hydrogen
de Souza et al. Hydrodeoxygenation of phenol over Pd catalysts. Effect of support on reaction mechanism and catalyst deactivation
Gupta et al. Metal‐Free Oxidation of Glycerol over Nitrogen‐Containing Carbon Nanotubes
Macala et al. Hydrogen transfer from supercritical methanol over a solid base catalyst: A model for lignin depolymerization
Zhang et al. Zirconium oxide supported palladium nanoparticles as a highly efficient catalyst in the hydrogenation–amination of levulinic acid to pyrrolidones
Vinu et al. Photocatalytic activity of Ag-substituted and impregnated nano-TiO2
Vilcocq et al. New insights into the mechanism of sorbitol transformation over an original bifunctional catalytic system
Koichumanova et al. Towards stable catalysts for aqueous phase conversion of ethylene glycol for renewable hydrogen
Chagas et al. The Role of the Oxygen Vacancies in the Synthesis of 1, 3‐Butadiene from Ethanol
Luo et al. Selective lignin oxidation towards vanillin in phenol media
Zeng et al. Hydrogenolysis of lignin to produce aromatic monomers over FePd bimetallic catalyst supported on HZSM-5
Barrett et al. A pinch of salt improves n-butanol selectivity in the Guerbet condensation of ethanol over Cu-doped Mg/Al oxides
Soghrati et al. C− O Hydrogenolysis of Tetrahydrofurfuryl Alcohol to 1, 5‐Pentanediol Over Bi‐functional Nickel‐Tungsten Catalysts
Amaniampong et al. Titania‐supported gold nanoparticles as efficient catalysts for the oxidation of cellobiose to organic acids in aqueous medium
Yuan et al. Reductive depolymerization of kraft and organosolv lignin in supercritical acetone for chemicals and materials
Kuznetsov et al. Catalytic hydrogenolysis of native and organosolv lignins of aspen wood to liquid products in supercritical ethanol medium
Li et al. Photocatalytic degradation of lignin model compounds and kraft pine lignin by CdS/TiO2 under visible light irradiation
DE112017000998T5 (de) Kohlenstoffvermittelte Wasserspaltung unter Verwendung von Formaldehyd
Nguyen et al. Novel Nano‐Fe2O3‐Co3O4 Modified Dolomite and Its Use as Highly Efficient Catalyst in the Ozonation of Ammonium Solution
CN106675623B (zh) 烃物流的重级分的光化学加氢
Du et al. Synthetic fuels from biomass: photocatalytic hydrodecarboxylation of octanoic acid by Ni nanoparticles deposited on TiO2

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant